
Fast Prefix Search in Little Space, with

Applications∗

Djamal Belazzougui1, Paolo Boldi2, Rasmus Pagh3, and Sebastiano
Vigna2

1Université Paris Diderot—Paris 7, France.
2Dipartimento di Scienze dell’Informazione, Università degli Studi

di Milano, Italy.
3IT University of Copenhagen, Denmark.

Abstract

It has been shown in the indexing literature that there is an essential
difference between prefix/range searches on the one hand, and predeces-
sor/rank searches on the other hand, in that the former provably allows
faster query resolution. Traditionally, prefix search is solved by data struc-
tures that are also dictionaries—they actually contain the strings in S.
For very large collections stored in slow-access memory, we propose much
more compact data structures that support weak prefix searches—they re-
turn the ranks of matching strings provided that some string in S starts
with the given prefix. In fact, we show that our most space-efficient data
structure is asymptotically space-optimal.

Previously, data structures such as String B-trees (and more compli-
cated cache-oblivious string data structures) have implicitly supported
weak prefix queries, but they all have query time that grows logarithmi-
cally with the size of the string collection. In contrast, our data structures
are simple, naturally cache-efficient, and have query time that depends
only on the length of the prefix, all the way down to constant query time
for strings that fit in one machine word.

We give several applications of weak prefix searches, including exact
prefix counting and approximate counting of tuples matching conjunctive
prefix conditions.

∗This article was presented at the 18th Annual European Symposium on Algorithms (ESA),
Liverpool (United Kingdom), September 6-8, 2010. This version contains the appendices
omitted from the version published in the conference proceedings.

ar
X

iv
:1

80
4.

04
72

0v
1

 [
cs

.D
S]

 1
2

A
pr

 2
01

8

1 Introduction

In this paper we are interested in the following problem (hereafter referred to as
prefix search): given a collection of strings, find all the strings that start with
a given prefix. In particular, we will be interested in the space/time tradeoffs
needed to do prefix search in a static context (i.e., when the collection does not
change over time).

There is a large literature on indexing of string collections. We refer to
Ferragina et al. [14, 4] for state-of-the-art results, with emphasis on the cache-
oblivious model. Roughly speaking, results can be divided into two categories
based on the power of queries allowed. As shown by Pǎtraşcu and Thorup [19]
any data structure for bit strings that supports predecessor (or rank) queries
must either use super-linear space, or use time Ω(log |p|) for a query on a prefix
p. On the other hand, it is known that prefix queries, and more generally range
queries, can be answered in constant time using linear space [1].

Another distinction is between data structures where the query time grows
with the number of strings in the collection (typically comparison-based), versus
those where the query time depends only on the length of the query string
(typically some kind of trie)1. In this paper we fill a gap in the literature by
considering data structures for weak prefix search, a relaxation of prefix search,
with query time depending only on the length of the query string. In a weak
prefix search we have the guarantee that the input p is a prefix of some string in
the set, and we are only requested to output the ranks (in lexicographic order)
of the strings that have p as prefix. Weak prefix searches have previously been
implicitly supported by a number of string indexes, most notably the String
B-tree [13] and its descendants. In the paper we also present a number of new
applications, outlined at the end of the introduction.

Our first result is that weak prefix search can be performed by accessing a
data structure that uses just O(n log `) bits, where ` is the average string length.
This is much less than the space of n` bits used for the strings themselves. We
also show that this is the minimum possible space usage for any such data struc-
ture, regardless of query time. We investigate different time/space tradeoffs: At
one end of this spectrum we have constant-time queries (for prefixes that fit
in O(1) words), and still asymptotically vanishing space usage for the index.
At the other end, space is optimal and the query time grows logarithmically
with the length of the prefix. Precise statements can be found in the technical
overview below.

Motivation for smaller indexes. Traditionally, algorithmic complexity is
studied in the so-called RAM model. However, in recent years a discrepancy
has been observed between that model and the reality of modern computing
hardware. In particular, the RAM model assumes that the cost of memory
access is uniform; however, current architectures, including distributed ones,
have strongly non-uniform access cost, and this trend seems to go on, see e.g. [17]

1Obviously, one can also combine the two in a single data structure.

2

for recent work in this direction. Modern computer memory is composed of
hierarchies where each level in the hierarchy is both faster and smaller than the
subsequent level. As a consequence, we expect that reducing the size of the
data structure will yield faster query resolution. Our aim in reducing the space
occupied by the data structure is to improve the chance that the data structure
will fit in the faster levels of the hierarchy. This could have a significant impact
on performance, e.g. in cases where the plain storage of the strings does not
fit in main memory. For databases containing very long keys this is likely to
happen (e.g., static repositories of URLs, that are of utmost importance in the
design of search engines, can contain strings as long as one kilobyte). In such
cases, reduction of space usage from O(n`) to O(n log `) bits can be significant.

By studying the weak version of prefix search, we are able to separate clearly
the space used by the original data, and the space that is necessary to store
an index. Gál and Miltersen [15] classify structures as systematic and non-
systematic depending on whether the original data is stored verbatim or not.
Our indices provide a result without using the original data, and in this sense our
structures for weak prefix search are non-systematic. Observe, however, that
since those structures gives no guarantee on the result for strings that are not
prefixes of some string of the set, standard information-theoretical lower bounds
(based on the possibility of reconstructing the original set of strings from the
data structure) do not apply.

Technical overview. For simplicity we consider strings over a binary alpha-
bet, but our methods generalise to larger alphabets (the interested reader can
refer to appendix H for discussion on this point). Our main result is that weak
prefix search needs just O(|p|/w+ log |p|) time and O(n log `) space in addition
to the original data, where ` is the average length of the strings, p is the query
string, and w is the machine word size. For strings of fixed length w, this re-
duces to query time O(logw) and space O(n logw), and we show that the latter
is optimal regardless of query time. Throughout the paper we strive to state
all space results in terms of `, and time results in terms of the length of the
actual query string p, as in a realistic setting (e.g., term dictionaries of a search
engine) string lengths might vary wildly, and queries might be issued that are
significantly shorter than the average (let alone maximum) string length. Ac-
tually, the data structure size depends on the hollow trie size of the set S—a
data-aware measure related to the trie size [16] that is much more precise than
the bound O(n log `).

Building on ideas from [1], we then give an O(1 + |p|/w) solution (i.e., con-
stant time for prefixes of length O(w)) that uses space O(n`1/c log `). This
structure shows that weak prefix search is possible in constant time using sub-
linear space. This data structure uses O(1 + |p|/B) I/Os in the cache-oblivious
model.

Comparison to related results. If we study the same problem in the I/O
model or in the cache-oblivious model, the nearest competitor is the String B-

3

tree [13], and its cache-oblivious version [4]. In the static case, the String B-tree
can be tuned to use O(n log `) bits by carefully encoding the string pointers, and
it has very good search performance with O(logB(n) + |p|/B) I/Os per query
(supporting all query types discussed in this paper). However, a search for p
inside the String B-tree may involve Ω(|p|) RAM operations, so it may be too
expensive for intensive computations2. Our first method, which also achieves
the smallest possible space usage of O(n log `) bits, uses O(|p|/w+log |p|) RAM
operations and O(|p|/B+log |p|) I/Os instead. The number of RAM operations
is a strict improvement over String B-trees, while the I/O bound is better for
large enough sets. Our second method uses slightly more space (O(n`1/c log `)
bits) but features O(|p|/w) RAM operations and O(|p|/B) I/Os.

In [14], the authors discuss very succinct static data structures for the same
purposes (on a generic alphabet), decreasing the space to a lower bound that is,
in the binary case, the trie size. The search time is logarithmic in the number
of strings. As in the previous case, we improve on RAM operations and on I/Os
for large enough sets.

The first cache-oblivious dictionary supporting prefix search was devised by
Brodal et al. [5] achieving O(|p|) RAM operations and O(|p|/B)+logB(n) I/Os.
We note that the result in [5] is optimal in a comparison-based model, where
we have a lower bound of logB(n) I/Os per query. By contrast, our result, like
those in [4, 14], assumes an integer alphabet where we do not have such a lower
bound.

Implicit in the paper of Alstrup et al. [1] on range queries is a linear-
space structure for constant-time weak prefix search on fixed-length bit strings.
Our constant-time data structure, instead, uses sublinear space and allows for
variable-length strings.

Applications. Data structures that allow weak prefix search can be used to
solve the non-weak version of the problem, provided that the original data is
stored (typically, in some slow-access memory): a single probe is sufficient to
determine if the result set is empty; if not, access to the string set is needed
just to retrieve the strings that match the query. We also show how to solve
range queries with two additional probes to the original data (wrt. the output
size), improving the results in [1]. We also present other applications of our
data structures to other important problems, viz., prefix counting. We finally
show that our results extend to the cache-oblivious model, where we provide an
alternative to the results in [5, 4, 14] that removes the dependence on the data
set size for prefix searches and range queries.

Our contributions. The main contribution of this paper is the identification
of the weak prefix search problem, and the proposal of an optimal solution based
on techniques developed in [2]. Optimality (in space or time) of the solution is
also a central result of this research. The second interesting contribution is the

2Actually, the string B-tree can be tuned to work in O(|P |/w + logn) time in the RAM
model, but this would imply a O(|P |/B + logn) I/O cost instead of O(|P |/B + logB n).

4

description of range locators for variable-length strings; they are an essential
building block in our weak prefix search algorithms, and can be used whenever
it is necessary to recover in little space the range of leaves under a node of a
trie.

2 Notation and tools

In the following sections, we will use the toy set of strings shown in Figure 1
to display examples of our constructions. In this section, we introduce some
terminology and notation adopted throughout the rest of the paper. We use von
Neumann’s definition and notation for natural numbers: n = { 0, 1, . . . , n− 1 },
so 2 = { 0, 1 } and 2∗ is the set of all binary strings.
Weak prefix search. Given a prefix-free set of strings S ⊆ 2∗, the weak prefix
search problem requires, given a prefix p of some string in S, to return the range
of strings of S having p as prefix; this set is returned as the interval of integers
that are the ranks (in lexicographic order) of the strings in S having p as prefix.
Model and assumptions. Our model of computation is a unit-cost word
RAM with word size w. We assume that |S| = O(2cw) for some constant c, so
that constant-time static data structures depending on |S| can be used.
We also consider bounds in the cache-oblivious model. In this model, we consider
that the machine has a two levels memory hierarchy, where the fast level has an
unknown size of M bits (which is actually not used in this paper) and a slower
level of unspecified size where our data structures resides. We assume that the
slow level plays a role of cache for the fast level with an optimal replacement
strategy where the transfers between the two levels is done in blocks of an
unknown size of B bits, with B ≤ M . The cost of an algorithm is the total
number of block transfers between the two levels.
Compacted tries. Consider the compacted trie built for a prefix-free set of
strings S ⊆ 2∗. For a given node α of the trie, we define (see Figure 1):

• eα, the extent of node α, is the longest common prefix of the strings
represented by the leaves that are descendants of α (this was called the
“string represented by α” in [2]);

• cα, the compacted path of node α, is the string stored at α;

• nα, the name of node α, is the string eα deprived of its suffix cα (this was
called the “path leading to α” in [2]);

• given a string x, we let exit(x) be the exit node of x, that is, the only node
α such that nα is a prefix of x and either eα = x or eα is not a prefix of x;

• the skip interval [iα . . jα) associated to α is [0 . . |cα|) for the root, and
[|nα| − 1 . . |eα|) for all other nodes.

We note the following property, proved in Appendix B:

5

0
0
1
0
0
1

0 1

1
0

0
1
0

0 1

1
0

α

nam
e

(n
α)

c
α

handle
(h

α)

extent
(e

α)

skip
interval

(iα
..j

α]=
(6
..10]

s0 = 001001010
s1 = 0010011010010
s2 = 00100110101

Figure 1: The compacted trie for the set S = { s0, s1, s2 }, and the related
names.

T

0 → ∞
00 → ∞
0010 → 001001 (6)
0010010 → ∞
00100101 → 001001010 (9)
0010011 → ∞
00100110 → 0010011010 (10)
00100110100 → ∞
001001101001 → 0010011010010 (13)
00100110101 → 00100110101 (11)

P b

0010010 1
0010011 0
00100110100 1
00100110101 1
00100110110 0
0010100 0

Figure 2: The data making up a z-fast prefix trie based on the trie above, and
the associated range locator. T maps handles to extents; the corresponding
hollow z-fast prefix trie just returns the lengths (shown in parentheses) of the
extents. In the range locator table, we boldface the zeroes and ones appended
to extents, and we underline the actual keys (as trailing zeroes are removed).
The last two keys are 00100110101+ and 0010011+, respectively.

6

Theorem 1 The average length of the extents of internal nodes is at most the
average string length minus one.

Data-aware measures. Consider the compacted trie on a set S ⊆ 2∗. We
define the trie measure of S [16] as

T(S) =
∑
α

(jα − iα) =
∑
α

(|cα|+ 1)− 1 = 2n− 2 +
∑
α

|cα| = O(n`),

where the summation ranges over all nodes of the trie. For the purpose of this
paper, we will also use the hollow trie measure

HT(S) =
∑

α internal

(bitlength(|cα|) + 1)− 1.

Since bitlength(x) = dlog(x+1)e, we have HT(S) = n−2+
∑
α internal dlog(|cα|+ 1)e =

O(n log `).3

Storing functions. The problem of storing statically an r-bit function f : A→
2r from a given set of keys A has recently received renewed attention [10, 7, 20].
For the purposes of this paper, we simply recall that these methods allow us to
store an r-bit function on n keys using rn+cn+o(n) bits for some constant c ≥ 0,
with O(|x|/w) access time for a query string x. Practical implementations are
described in [3]. In some cases, we will store a compressed function using a min-
imal perfect function (O(n) bits) followed by a compressed data representation
(e.g., an Elias–Fano compressed list [3]). In that case, storing natural numbers
x0, x1, . . . , xn−1 requires space

∑
iblog(xi+1)c+n log(

∑
iblog(xi+1)c/n)+O(n).

Relative dictionaries. A relative dictionary stores a set E relatively to some
set S ⊇ E. That is, the relative dictionary answers questions about membership
to E, but its answers are required to be correct only if the query string is in
S. It is possible to store such a dictionary in |E| log(|S|/|E|) bits of space with
O(|x|/w) access time [2].
Rank and select. We will use two basic blocks of several succinct data
structures—rank and select. Given a bit array (or bit string) b ∈ 2n, whose
positions are numbered starting from 0, rankb(p) is the number of ones up to
position p, exclusive (0 ≤ p ≤ n), whereas selectb(r) is the position of the r-th
one in b, with bits numbered starting from 0 (0 ≤ r < rankb(n)). It is well
known that these operations can be performed in constant time on a string of
n bits using additional o(n) bits, see [18, 8, 6, 21].

3 From prefixes to exit nodes

We break the weak prefix search problem into two subproblems. Our first goal
is to go from a given a prefix of some string in S to its exit node.

3A compacted trie is made hollow by replacing the compacted path at each node by its
length and then discarding all its leaves. A recursive definition of hollow trie appears in [3].

7

3.1 Hollow z-fast prefix tries

We start by describing an improvement of the z-fast trie, a data structure first
defined in [2]. The main idea behind a z-fast trie is that, instead of representing
explicitly a binary tree structure containing compacted paths of the trie, we
will store a function that maps a certain prefix of each extent to the extent
itself. This mapping (which can be stored in linear space) will be sufficient
to navigate the trie and obtain, given a string x, the name of the exit node
of x and the exit behaviour (left, right, or possibly equality for leaves). The
interesting point about the z-fast trie is that it provides such a name in time
O(|x|/w+ log |x|), and that it leads easily to a probabilistically relaxed version,
or even to blind/hollow variants.

To make the paper self-contained, we recall the main definitions from [2].
The 2-fattest number in a nonempty interval of positive integers is the number
in the interval whose binary representation has the largest number of trailing
zeros. Consider the compacted trie on S, one of its nodes α, its skip interval
[iα . . jα), and the 2-fattest number f in (iα . . jα] (note the change); if the interval
is empty, which can happen only at the root, we set f = 0. The handle hα of
α is eα[0 . . f), where eα[0 . . f) denotes the first f bits of eα. A (deterministic)
z-fast trie is a dictionary T mapping each handle hα to the corresponding extent
eα. In Figure 2, the part of the mapping T with non-∞ output is the z-fast trie
built on the trie of Figure 1.

We now introduce a more powerful structure, the (deterministic) z-fast prefix
trie. Consider again a node α of the compacted trie on S with notation as
above. The pseudohandles of α are the strings eα[0 . . f ′), where f ′ ranges among
the 2-fattest numbers of the intervals (iα . . t], with iα < t < f . Essentially,
pseudohandles play the same rôle as handles for every prefix of the handle
that extends the node name. We note immediately that there are at most
log(f − iα) ≤ log |cα| pseudohandles associated with α, so the overall number of
handles and pseudohandles is bounded by HT(S) +

∑
x∈S log |x| = O(n log `).

It is now easy to define a z-fast prefix trie: the dictionary providing the map
from handles to extents is enlarged to pseudohandles, which are mapped to the
special value ∞.

We are actually interested in a hollow version of a z-fast prefix trie—more
precisely, a version implemented by a function T that maps handles of internal
nodes to the length of their extents, and handles of leaves and pseudohandles
to ∞. The function (see again Figure 2) can be stored in a very small amount
of space; nonetheless, we will still be able to compute the name of the exit
node of any string that is a prefix of some string in S using Algorithm 2, whose
correctness is proved in Appendix D.

3.2 Space and time

The space needed for a hollow z-fast prefix trie depends on the component
chosen for its implementation. The most trivial bound uses a function mapping

8

Algorithm 1
Input: a prefix p of some string
in S.
i← blog |p|c
`, r ← 0, |p|
while r − ` > 1 do

if ∃b such that 2ib ∈ (` . . r)
then

// 2ib is 2-fattest number in
(` . . r)
g ← T

(
p[0 . . 2ib)

)
if g ≥ |p| then
r ← 2ib

else
`← g

end if
end if
i← i− 1

end while
if ` = 0 then

return ε
else

return p[0 . . `+ 1)
end if

Figure 3: Given a nonempty string
p that is the prefix of at least one
string in the set S, this algorithm
returns the name of exit(p).

Algorithm 2
Input: the name x of a node
if x = ε then
i← 0, j ← n

else
i← rankb h(x←)
if x = 111 · · · 11 then
j ← n

else
j ← rankb h((x+)←)

end if
end if
return [i . . j)

Figure 4: Given the name x of a
node in a trie containing n strings,
compute the interval [i . . j) con-
taining precisely all the (ranks of
the) strings prefixed by x (i.e., the
strings in the subtree whose name is
x).

9

handles and pseudohandles to one bit that makes it possible to recognise handles
of internal nodes (O(n log `) bits), and a function mapping handles to extent
lengths (O(n logL) bits, where L is the maximum string length).

These results, however, can be significantly improved. First of all, we can
store handles of internal nodes in a relative dictionary. The dictionary will store
n−1 strings out of O(n log `) strings, using O(n log((n log `)/n)) = O(n log log `)
bits. Then, the mapping from handles to extent lengths hα 7→ |eα| can actually
be recast into a mapping hα 7→ |eα| − |hα|. But since |eα| − |hα| ≤ |cα|, by
storing this data using a compressed function we will use space∑

α

blog(|eα| − |hα|+ 1)c+O(n log log `) +O(n)

≤
∑
α

blog(|cα|+ 1)c+O(n log log `) ≤ HT(S) +O(n log log `),

where α ranges over internal nodes.
Algorithm 1 cannot iterate more than log |p| times; at each step, we query

constant-time data structures using a prefix of p: using incremental hashing [9,
Section 5], we can preprocess p in time O(|p|/w) (and in |p|/B I/Os) so that
hashing prefixes of p requires constant time afterwards. We conclude that Al-
gorithm 1 requires time O(|p|/w + log |p|).

3.3 Faster, faster, faster. . .

We now describe a data structure mapping prefixes to exit nodes inspired by
the techniques used in [1] that needs O(n`1/2 log `) bits of space and answers in
time O(|p|/w), thus providing a different space/time tradeoff. The basic idea is
as follows: let s =

⌈
`1/2

⌉
and, for each node α of the compacted trie on the set

S, consider the set of prefixes of eα with length t ∈ (iα . . jα] such that either t
is a multiple of s or is smaller than the first such multiple. More precisely, we
consider prefixes whose length is either of the form ks, where ks ∈ (iα . . jα], or
in (iα . .min{ k̄s, jα }], where k̄ is the minimum k such that ks > iα.

We store a function F mapping each prefix p defined above to the length of
the name of the corresponding node α (actually, we can map p to |p| − |nα|).
Additionally, we store a mapping G from each node name to the length of its
extent (again, we can just map nα 7→ |cα|).

To retrieve the exit node of a string p that is a prefix of some string in S, we
consider the string q = p[0 . . |p| − |p| mod s) (i.e., the longest prefix of p whose
length is a multiple of s). Then, we check whether G(p[0 . . F (q))) ≥ |p| (i.e.,
whether p is a prefix of the extent of the exit node of q). If this is the case, then
clearly p has the same exit node as q (i.e., p[0 . . F (q))). Otherwise, the map
F provides directly the length of the name of the exit node of p, which is thus
p[0 . . F (p)). All operations are completed in time O(|p|/w).

The proof that this structure uses space O(n`1/2 log `) is deferred to Ap-
pendix C.

10

4 Range location

Our next problem is determining the range (of lexicographical ranks) of the
leaves that appear under a certain node of a trie. Actually, this problem is
pretty common in static data structures, and usually it is solved by associating
with each node a pair of integers of log n ≤ w bits. However, this means that
the structure has, in the worst case, a linear (O(nw)) dependency on the data.

To work around this issue, we propose to use a range locator—an abstraction
of a component used in [2]. Here we redefine range locators from scratch, and
improve their space usage so that it is dependent on the average string length,
rather than on the maximum string length.

A range locator takes as input the name of a node, and returns the range
of ranks of the leaves that appear under that node. For instance, in our toy
example the answer to 0010011 would be [1 . . 3). To build a range locator, we
need to introduce monotone minimal perfect hashing.

Given a set of n strings T , a monotone minimal perfect hash function [2]
is a bijection T → n that preserves lexicographical ordering. This means that
each string of T is mapped to its rank in T (but strings not in T give random
results). We use the following results from [3]:4

Theorem 2 Let T be a set of n strings of average length ` and maximum length
L, and x ∈ 2∗ be a string. Then, there are monotone minimal perfect hashing
functions on T that:

1. use space O(n log `) and answer in time O(|x|/w);

2. use space O(n log logL) and answer in time O(|x|/w + log |x|).

We show how a reduction can relieve us from the dependency on L; this is
essential to our goals, as we want to depend just on the average length:

Theorem 3 There is a monotone minimal perfect hashing function on T using
space O(n log log `) that answers in time O(|x|/w + log |x|) on a query string
x ∈ 2∗.

Proof 1 We divide T into the set of strings T− shorter then ` log n, and the
remaining “long” strings T+. Setting up a n-bit vector b that records the el-
ements of T− with select-one and select-zero structures (n + o(n) bits), we
can reduce the problem to hashing monotonically T− and T+. We note, how-
ever, that using Theorem 2 T− can be hashed in space O(|T−| log log(` log n)) =
O(|T−| log log `), as 2` ≥ log n, and T+ can be hashed explicitly using a (log n)-
bit function; since |T+| ≤ n/ log n necessarily, the function requires O(n) bits.
Overall, we obtain the required bounds.

We now describe in detail our range locator, using the notation of Section 2.
Given a string x, let x← be x with all its trailing zeroes removed. We build

4Actually, results in [3] are stated for prefix-free sets, but it is trivial to make a set of
strings prefix-free at the cost of doubling the average length.

11

a set of strings P as follows: for each extent e of an internal node, we add
to P the strings e←, e1, and, if e 6= 111 · · · 11, we also add to P the string
(e1+)←, where e1+ denotes the successor of length |e1| of e1 in lexicographical
order (numerically, it is e1 + 1). We build a monotone minimal perfect hashing
function h on P , noting the following easily proven fact:

Proposition 1 The average length of the strings in P is at most 3`.

The second component of the range locator is a bit vector b of length |P |,
in which bits corresponding to the names of leaves are set to one. The vector is
endowed with a ranking structure rankb (see Figure 2).

It is now immediate that given a node name x, by hashing x← and ranking
the bit position thus obtained in b, we obtain the left extreme of the range of
leaves under x. Moreover, performing the same operations on (x+)←, we obtain
the right extreme. All these strings are in P by construction, except for the case
of a node name of the form 111 · · · 11; however, in that case the right extreme
is just the number of leaves (see Algorithm 4 for the details).

A range locator uses at most 3n+o(n) bits for b and its selection structures.
Thus, space usage is dominated by the monotone hashing component. Using
the structures described above, we obtain:

Theorem 4 There are structures implementing range location in time O(|x|/w)
using O(n log `) bits of space, and in O(|x|/w+ log |x|) time using O(n log log `)
bits of space.

We remark that other combinations of monotone minimal perfect hashing
and succinct data structures can lead to similar results. For instance, we could
store the trie structure using a preorder standard balanced parentheses represen-
tation, use hashing to retrieve the lexicographical rank r of a node name, select
the r-th open parenthesis, find in constant time the matching closed parenthesis
and obtain in this way the number of leaves under the node. Among several
such asymptotically equivalent solutions, we believe ours is the most practical.

5 Putting It All Together

In this section we gather the main results about prefix search:

Theorem 5 There are structures implementing weak prefix search in space
HT(S)+O(n log log `) with query time O(|p|/w+log |p|), and in space O(n`1/2 log `)
with query time O(|p|/w).

Proof 2 The first structure uses a hollow z-fast prefix trie followed by the range
locator of Theorem 3: the first component provides the name nα of exit node
of |p|; given nα, the range locator returns the correct range. For the second
structure, we use the structure defined in Section 3.3 followed by the first range
locator of Theorem 2.

12

Actually, the second structure described in Theorem 5 can be made to occupy
space O(n`1/c log `) for any constant c > 0, as shown in Appendix E:

Theorem 6 For any constant c > 0, there is a structure implementing weak
prefix search in space O(n`1/c log `) with query time O(|p|/w).

We note that all our time bounds can be translated into I/O bounds in the cache-
oblivious model if we replace the O(|p|/w) terms by O(|p|/B). The O(|p|/w)
term represents appears in two places:

• The phase of precalculation of a hash-vector of d|p|/we hash words on the
prefix p which is later used to compute all the hash functions on prefixes
of p.

• In the range location phase, where we need to compute x← and (x+)←,
where x is a prefix of p and subsequently compute the hash vectors on x←

and (x+)← .

Observe that the above operations can be carried on using arithmetic operations
only without any additional I/O (we can use 2-wise independent hashing involv-
ing only multiplications and additions for computing the hash vectors and only
basic basic arithmetic operations for computing x← and (x+)←) except for the
writing the result of the computation which occupies O(|p|/w) words of space
and thus take O(|p|/B) I/Os. Thus both of the two phases need only O(|p|/B)
I/Os corresponding to the time needed to read the pattern and to write the
result.

6 A space lower bound

In this section we show that the space usage achieved by the weak prefix search
data structure described in Theorem 5 is optimal up to a constant factor. In
fact, we show a matching lower bound for the easier problem of prefix counting
(i.e., counting how many strings start with a given prefix), and consider the
more general case where the answer is only required to be correct up to an
additive constant less than k. We note that any data structure supporting
prefix counting can be used to achieve approximate prefix counting, by building
the data structure for the set that contains every k-th element in sorted order.
The proof is in Appendix F.

Theorem 7 Consider a data structure (possibly randomised) indexing a set S
of n strings with average length ` > log(n) + 1, supporting k-approximate prefix
count queries: Given a prefix of some key in S, the structure returns the number
of elements in S that have this prefix with an additive error of less than k, where
k < n/2. The data structure may return any number when given a string that
is not a prefix of a key in S. Then the expected space usage on a worst-case
set S is Ω((n/k) log(` − log n)) bits. In particular, if no error is allowed and
` > (1 + ε) log n, for constant ε > 0, the expected space usage is Ω(n log `) bits.

13

Note that the trivial information-theoretical lower bound does not apply, as it
is impossible to reconstruct S from the data structure.

It is interesting to note the connections with the lower and upper bounds pre-
sented in [14]. This paper shows a lower bound on the number of bits necessary
to represent a set of strings S that, in the binary case, reduces to T(S)+log `, and
provide a matching data structure. Theorem 5 provides a hollow data structure
that is sized following the naturally associated measure: HT(S)+O(n log log `).
Thus, Theorem 5 and 7 can be seen as the hollow version of the results pre-
sented in [14]. Improving Theorem 7 to HT(S) + o(HT(S)) is an interesting
open problem.

7 Applications

In this section we highlight some applications of weak prefix search. In several
cases, we have to access the original data, so we are actually using weak prefix
search as a component of a systematic (in the sense of [15]) data structure.
However, our space bounds consider only the indexing data structure. Note
that the pointers to a set of string of overall n` bits need in principle O(n log `)
bits of spaces to be represented; this space can be larger than some of the data
structures themselves. Most applications can be turned into cache-oblivious
data structures, but this discussion is postponed to the Appendix for the sake
of space.

In general, we think that the space used to store and access the original data
should not be counted in the space used by weak/blind/hollow structures, as
the same data can be shared by many different structures. There is a standard
technique, however, that can be used to circumvent this problem: by using
2n` bits to store the set S, we can round the space used by each string to the
nearest power of two. As a results, pointers need just O(n log log `) bits to be
represented.

7.1 Prefix search and counting in minimal probes

The structures for weak prefix search described in Section 5 can be adapted
to solve the prefix search problem within the same bounds, provided that the
actual data are available, although typically in some slow-access memory. Given
a prefix p we get an interval [i . . j). If there exists some string in the data set
prefixed by p, then it should be at one of the positions in interval [i . . j), and
all strings in that interval are actually prefixed by p. So we have reduced the
search to two alternatives: either all (and only) strings at positions in [i . . j) are
prefixed by p, or the table contains no string prefixed by p. This implies the
two following results:

• We can report all the strings prefixed by a prefix p in optimal number of
probes. If the number of prefixed strings is t, then we will probe exactly
t positions in the table. If no string is prefixed by p, then we will probe a
single position in the table.

14

• We can count the number of strings prefixed by a given prefix in just one
probe: it suffices to probe the table at any position in the interval [i . . j):
if the returned string is prefixed by p, we can conclude that the number
of strings prefixed by p is j − i; otherwise, we conclude that no string is
prefixed by p.

7.2 Range emptiness and search with two additional probes

The structures for weak prefix search described in Section 5 can also be used for
range emptiness and search within the same bounds, again if the actual data is
available. In the first case, given two strings a and b we ask whether any string
in the interval [a . . b] belongs to S; in the second case we must report all such
strings.

Let p the longest common prefix of a and b (which can be computed in time
O(|p|/w)). Then we have two sub-cases

• The case p = a (a is actually a prefix of b). We are looking for all strings
prefixed by a which are lexicographically smaller than b. We perform a
prefix query for a, getting [i . . j). Then we can report all elements in
S∩ [a . . b] by doing a scan strings at positions in [i . . j) until we encounter
a string which is not in interval [a . . b]. Clearly the number of probed
positions is |S ∩ [a . . b]|+ 1.

• The case p 6= a. We perform a prefix query for p0, getting [i0 . . j0) and
another query for p1, getting [i1 . . j1). Now it is immediate that if S ∩
[a . . b] is not empty, then necessarily it is made by a suffix of [i0 . . j0)
and by a prefix of [i1 . . j1). We can now report S ∩ [a . . b] using at most
|S ∩ [a . . b]| + 2 probes; we start from the end of the first interval and
scan backwards until we find an element not in [a . . b]; then, we start from
the beginning of the second interval and scan forwards until we find an
element not in [a . . b]

We report all elements thus found: clearly, we make at most two additional
probes. In particular, we can report whether S ∩ [a . . b] is empty in at most two
probes. These results improve the space bounds of the index described in [1],
provide a new index using just HT(S) +O(n log log `) bits, and give bounds in
terms of the average length.

References

[1] Stephen Alstrup, Gerth Brodal, and Theis Rauhe. Optimal static range
reporting in one dimension. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 476–482. ACM, 2001.

[2] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Monotone minimal perfect hashing: Searching a sorted table with O(1)

15

accesses. In Proceedings of the 20th Annual Symposium On Discrete Math-
ematics (SODA), pages 785–794. ACM Press, 2009.

[3] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Theory and practise of monotone minimal perfect hashing. In Proceed-
ings of the Eleventh Workshop on Algorithm Engineering and Experiments,
ALENEX 2009, New York, New York, USA, January 3, 2009, pages 132–
144, 2009.

[4] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul.
Cache-oblivious string b-trees. In Proceedings of the 25th ACM sympo-
sium on Principles of Database Systems, pages 233–242, New York, NY,
USA, 2006. ACM.

[5] Gerth Stølting Brodal and Rolf Fagerberg. Cache-oblivious string dictio-
naries. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-
26, 2006, pages 581–590, 2006.

[6] Andrej Brodnik and J. Ian Munro. Membership in constant time and
almost-minimum space. SIAM Journal on Computing, 28(5):1627–1640,
1999.

[7] Denis Xavier Charles and Kumar Chellapilla. Bloomier filters: A second
look. In Algorithms - ESA 2008, 16th Annual European Symposium, Karl-
sruhe, Germany, September 15-17, 2008. Proceedings, pages 259–270, 2008.

[8] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary stor-
age (extended abstract). In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta, Geor-
gia., pages 383–391, 1996.

[9] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger.
Polynomial hash functions are reliable (extended abstract). In Automata,
Languages and Programming, 19th International Colloquium, ICALP92,
Vienna, Austria, July 13-17, 1992, Proceedings, pages 235–246, 1992.

[10] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for re-
trieval and approximate membership (extended abstract). In Proceedings
of 35th International Colloquium on Automata, Languages and Program-
ming (ICALP), volume 5125 of Lecture Notes in Computer Science, pages
385–396. Springer, 2008.

[11] Peter Elias. Efficient storage and retrieval by content and address of static
files. J. Assoc. Comput. Mach., 21(2):246–260, 1974.

[12] Peter Elias. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory, 21:194–203, 1975.

16

[13] Paolo Ferragina and Roberto Grossi. The string B-tree: a new data struc-
ture for string search in external memory and its applications. Journal of
the ACM, 46(2):236–280, 1999.

[14] Paolo Ferragina, Roberto Grossi, Ankur Gupta, Rahul Shah, and Jef-
frey Scott Vitter. On searching compressed string collections cache-
obliviously. In Proceedings of the 27th ACM symposium on Principles of
Database Systems, pages 181–190, 2008.

[15] A. Gál and P.B. Miltersen. The cell probe complexity of succinct data
structures. Theoret. Comput. Sci., 379(3):405–417, 2007.

[16] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Com-
pressed data structures: Dictionaries and data-aware measures. Theor.
Comput. Sci., 387(3):313–331, 2007.

[17] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ail-
amaki. Reactive NUCA: near-optimal block placement and replication in
distributed caches. In Stephen W. Keckler and Luiz André Barroso, editors,
ISCA, pages 184–195. ACM, 2009.

[18] G. Jacobson. Space-efficient static trees and graphs. In In Proc 30th Annual
Symposium on Foundations of Computer Science, pages 549–554, 1989.

[19] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching
predecessors. In Proc. 18th Symposium on Discrete Algorithms (SODA),
pages 555–564, 2007.

[20] Ely Porat. An optimal bloom filter replacement based on matrix solv-
ing. In Computer Science - Theory and Applications, Fourth International
Computer Science Symposium in Russia, CSR 2009, Novosibirsk, Russia,
August 18-23, 2009. Proceedings, pages 263–273, 2009.

[21] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct in-
dexable dictionaries with applications to encoding k -ary trees, prefix sums
and multisets. ACM Trans. Algorithms, 3(4):43, 2007.

17

A Conclusions

We have presented two data structures for prefix search that provide different
space/time tradeoffs. In one case (Theorem 5), we prove a lower bound showing
that the structure is space optimal. In the other case (Theorem 6) the structure
is time optimal. It is also interesting to note that the space usage of the time-
optimal data structure can be made arbitrarily close to the lower bound. Our
structures are based on range locators, a general building block for static data
structures, and on structures that are able to map prefixes to names of the
associated exit node. In particular, we discuss a variant of the z-fast trie, the
z-fast prefix trie, that is suitable for prefix searches. Our variant carries on the
good properties of the z-fast trie (truly linear space and logarithmic access time)
and significantly widens its usefulness by making it able to retrieve the name of
the exit node of prefixes. We have shown several applications in which sublinear
indices access very quickly data in slow-access memory, improving some results
in the literature.

B Proof of Theorem 1

Let E be the sum of the lengths of the extents of internal nodes, and M the sum
of the lengths of the strings in the trie. We show equivalently that E ≤M(n−
1)/n−n+1. This is obviously true if n = 1. Otherwise, let r be the length of the
compacted path at the root, and let n0, n1 be the number of leaves in the left and
right subtrie; correspondingly, let Ei the sum of lengths of the extents of each
subtrie, and Mi the sum of the lengths of the strings in each subtrie, stripped
of their first r+ 1 bits. Assuming by induction Ei ≤Mi(ni− 1)/ni−ni + 1, we
have to prove

E0 + (n0 − 1)(r + 1) + E1 + (n1 − 1)(r + 1) + r ≤
n0 + n1 − 1

n0 + n1
(M0 +M1 + (n0 + n1)(r + 1))− n0 − n1 + 1,

which can be easily checked to be always true under the assumption above.

C Proof of the space bound claimed in Section 3.3

First of all, it can easily be proved that the domain of F is O(n`1/2) in size. Each
α contributes at most s prefixes whose lengths are in interval (iα . .min(k̄s, jα)].
It also contributes at most (jα− iα)/s+1 prefixes whose lengths are of the form
ks, where ks ∈ (iα . . jα]. Overall the total number of prefixes is no more than:∑

α

(s+ (jα − iα)/s+ 1) = (s+ 1)(2n− 1) +
∑
α

((jα − iα)/s)

The sum of lengths of skip intervals of all nodes of the trie T (S) is no larger

18

than sum of lengths of strings n`:

T(S) =
∑
α

(jα − iα) ≤ n`

From that we have:∑
α

((jα − iα)/s) =
1

s

∑
α

(jα − iα) ≤ 1

s
n` ≤ ns

Summing up, the total number of prefixes is less than (s + 1)(2n − 1) + ns =
O(ns) = O(n`1/2). Since the output size of the function F is bounded by
maxα log |cα| ≤ logL, where L is the maximum string length, we would obtain
the space bound O(n`1/2 logL). To prove the strict bound O(n`1/2 log `), we
need to further refine the structure so that the “cutting step” s is larger in the
deeper regions of the trie.

Let S− be the subset of strings of S of length less than `(log n)2, and S+

the remaining strings. We will change the step s after depth `(log n)2. Let
s =

⌈
`1/2

⌉
and let s+ =

⌈
(`(log n)2)1/2

⌉
=
⌈
`1/2 log n

⌉
. We will say that a node

is deep if its extent is long at least `(log n)2. We will split F into a function
F− with output size log(`(log n)2) = log ` + 2 log log n = O(log `) that maps
prefixes shorter than `(log n)2 (short prefixes), and a function F+ with output
size log(`n) = log n + log ` that maps the remaining long prefixes. For every
node α with skip interval [iα . . jα), we consider three cases:

1. If jα < `(log n)2 (a non-deep node), we will store the prefixes of eα
that have lengths either of the form ks, where ks ∈ (iα . . jα], or in
(iα . .min{ k̄s, jα }], where k̄ is the minimum k such that ks > iα. Those
prefixes are short, so they will be mapped using F−.

2. If iα < `(log n)2 ≤ jα (a deep node with non-deep parent), we store the
following prefixes of eα:

(a) Prefixes of lengths ks, where ks ∈ (iα . . `(log n)2), or of lengths in
(iα . .min{ k̄s, `(log n)2 }], where k̄ is the minimum k such that ks >
iα. Those prefixes are short, so they will be mapped using F−.

(b) Prefixes of lengths `(log n)2+ks+, where `(log n)2+ks+ ∈ [`(log n)2 . . jα].
Those prefixes are long, so they will be mapped using F+.

3. If iα ≥ `(log n)2 (a deep node with a deep parent), we will store all prefixes
that have lengths either of the form `(log n)2+ks+, where `(log n)2+ks+ ∈
(iα . . jα], or in (iα . .min{ `(log n)2 + k̄s+, jα }], where k̄ is the minimum
k such that `(log n)2 + ks+ > iα. Those prefixes are long, so they will be
mapped using F+.

The function F is now defined by combining F− and F+ in the obvious way.
To retrieve the exit node of a string p that is a prefix of some string in S, we have
two cases: if |p| < `(log n)2, we consider the string q = p[0 . . |p| − |p| mod s),

19

otherwise we consider the string q = p[0 . . |p|−(|p|−d`(log n)2e) mod s+). Then,
we check whether G(p[0 . . F (q))) ≥ |p| (i.e., whether p is a prefix of the extent
of the exit node of q). If this is the case, then we conclude clearly p has the
same exit node of q (i.e., p[0 . . F (q))). Otherwise, the map F gives the name of
the exit node of p : p[0 . . F (p)).

The space bound holds immediately for F−, as we already showed that pre-
fixes (long and short) are overallO(n`1/2), and F− has output size log(`(log n)2)) =
O(log `).

To bound the size of F+, we first bound the number of deep nodes. Clearly
either a deep node is a leaf or it has two deep children. If a deep node is a leaf
then its extent is long at least `(log n)2, so it represent a string from S+. Hence,
the collection of deep nodes constitute a forest of complete binary trees where
the number of leaves is the number of strings in S+. As the number of strings
in S+ is at most n/(log n)2, we can conclude that the total number of nodes in
the forests (i.e., the number of deep nodes) is at most 2n/(log n)2− 1. For each
deep node we have two kinds of long prefixes:

1. Prefixes that have lengths of the form `(log n)2 + ks+. Those prefixes can
only be prefixes of long strings, and for each long string x ∈ S+, we can
have at most |x|/s+ such prefixes. As the total length of all strings in S+

is at most n`, we conclude that the total number of such prefixes is at
most n`/s+ = O(n`/

⌈
`1/2 log n

⌉
) = O(n`1/2/(log n)).

2. Prefixes that have lengths in (iα . .min{`(log n)2+k̄s+, jα}] or in [`(log n)2 . .min{`(log n)2+
k̄s+, jα}] for a node α, where k̄ is the minimum k such that `(log n)2 +
ks+ > iα . We can have at most s+ prefix per node: since we have
at most 2n/(log n)2 − 1 nodes, the number of prefixes of that form is
O(s+n/(log n)2) = O(n`1/2/(log n)).

As we have a total of O(n`1/2/(log n)) long prefixes, and the output size of F+

is O(log ` + log n), we can conclude that total space used for F+ is bounded
above by O((log `+ log n)n`1/2/ log n) = O(n`1/2 log `).

Finally, we remark that implementing G by means of a compressed function
we need just HT(S) +O(n log log `) +O(n) = O(n log `) bits of space.

D Correctness proof of Algorithm 1

The correctness of Algorithm 1 is expressed by the following

Lemma 1 Let X = { p0 = ε, p1, . . . , pt }, where p1, p2, . . . , pt are the extents
of the nodes of the trie that are prefixes of p, ordered by increasing length.
Let (` . . r) be the interval maintained by the algorithm. Before and after each
iteration the following invariants are satisfied:

1. there exists at most a single b such that 2ib ∈ (` . . r);

2. ` = |pj | for some j, and ` ≤ |pt|;

20

3. during the algorithm, T is only queried with strings that are either the
handle of an ancestor of exit(p), or a pseudohandle of exit(p); so, T is
well-defined on all such strings;

4. |pt| ≤ r;

We will use the following property of 2-fattest numbers, proved in [2]:

Lemma 2 Given an interval [x . . y] of strictly positive integers:

1. Let i be the largest number such that there exists an integer b satisfying
2ib ∈ [x, y]. Then b is unique, and the number 2ib is the 2-fattest number
in [x . . y].

2. If y − x < 2i, there exists at most a single value b such that 2ib ∈ [x . . y].

3. If i is such that [x . . y] does not contain any value of the form 2ib, then
y − x+ 1 ≤ 2i − 1 and the interval may contain at most one single value
of the form 2i−1b.

Now, the correctness proof of Lemma 1 follows. (1) Initially, when i =
blog |p|c we have (` . . r) = (0 . . |p|), and this interval contains at most a single
value of the form 2ib, that is 2i. Now after some iteration suppose that we have
at most a single b such that 2ib ∈ (` . . r). We have two cases:

• There is no b such that 2ib ∈ (` . . r). Then, the interval remains unchanged
and, by Lemma 2 (3), it will contain at most a single value of the form
2i−1b.

• There is a single b such that 2ib ∈ (` . . r). The interval may be updated
in two ways: either we set the interval to (g . . r) for some g ≥ 2ib or we
set the interval to (` . . 2ib). In both cases, the new interval will no longer
contain 2ib. By invariant 3. of Lemma 2, the new interval will contain at
most a single value of the form 2i−1b.

(2) The fact that ` = |pj | for some j is true at the beginning, and when ` is
reassigned it remains true: indeed, if T

(
p[0 . . 2ib)

)
= g < |p| this means that

p[0 . . 2ib) is the handle of a node α found on the path to exit(p), and g = |eα|;
but since p is a prefix of some string, p[0 . . g) = eα and the latter is pj for some
j. This fact also implies ` ≤ |pt|, since the pi’s have decreasing lengths.
(3) By (2), ` is always the length of the extent of some pj , whereas r = |p| at
the beginning, and then it can only decrease; so (` . . r) is a union of some skip
intervals of the ancestors of exit(p) and of an initial part of the skip interval of
the node exit(p) itself. Hence, its 2-fattest number is either the handle of some
of the ancestors (possibly, of exit(p) itself) or a pseudohandle of exit(p) (this
can only happen if r is not larger than the 2-fattest number of the skip interval
of exit(p)).
(4) The property is true at the beginning. Then, r is reduced only in two cases:
either 2ib is the 2-fattest number of the skip interval of exit(p) (in this case, g

21

is assigned |eexit(p)| ≥ |p|); or we are querying with a pseudohandle of exit(p) or
with the handle of a leaf (in this case, g is assigned the value∞). In both cases,
r is reduced to 2ib, which is still not smaller than the extent of the parent of
exit(p).

E Proof of Theorem 6

Rather that describing the proof from scratch, we describe the changes necessary
to the proof given in Appendix C.

The main idea is that of setting t = d`1/ce, t+ = d`1/c log ne, and let s = tc−1

and s+ = t+
c−1

. In this way, since n` = O(ntc) clearly the prefixes of the form
ks and `(log n)c + ks+ are O(n`1/c) and O(n`1/c/ log n). The problem is that
now the prefixes at the start of each node (i.e., those of length iα, iα + 1, . . .)
are too many.

To obviate to this problem, we record significantly less prefixes. More pre-
cisely we record sequences of prefixes of increasing lengths:

• For non deep nodes we first store prefixes of lengths iα, iα+1, . . . until we
hit a multiple of t, say k0t. Then we record prefixes of lengths (k0 + 1)t,
(k0+2)t,. . . until we hit a multiple of t2, and so on, until we hit a multiple
of s. Then we finally terminate by recording prefixes of lengths multiple
of s.

• We work analogously with t+ and s+ for deep nodes whose parents are
also deep nodes. That is we store all prefixes of lengths iα , iα + 1, . . .
until we hit a length of the form `(log n)c+k0t

+, then record all prefixes of
lengths `(log n)c+ (k0 + 1)t+,`(log n)c+ (k0 + 2)t+ until we hit a length of

the form `(log n)c + k1t
+2

, and so on until we record a length of the form
`(log n)c+kc−2s

+. Then we finally store all prefixes of lengths `(log n)c+
(kc−2 + 1)s+,`(log n)c + (kc−2 + 2)s+. . . .

• For deep nodes with non deep parents, we do the following two things:

– We first record short prefixes. We record all strings of lengths iα,iα+
1, . . . until we either hit a length multiple of t or length `(log n)c. If
we have hit length `(log n)c we stop recording short prefixes. Other-
wise, we continue in the same way, with prefixes of lengths multiple
of tu for increasing u = 1 . . . c− 1 each time terminating the step if
we hit a multiple of tu+1 or completely halt recording short prefixes
if we hit length `(log n)c.

– Secondly, we record long prefixes. That is all prefixes of lengths of
the form `(log n)c + ks+

Clearly each node contributes at most O(ct) short prefixes (O(ct+) long prefixes
respectively). In the first case, there are obviously O(n`1/c) short prefixes. In
the second case, since the number of deep nodes is at most 2n/(log n)2−1 there

22

are at mostO(n`1/c/ log n) long prefixes. Overall, F− requiresO(n`1/c log(`(log n)2)) =
O(n`1/c log `) bits, whereas F+ requiresO((n`1/c/ log n) log(`n)) = O(n`1/c log `)
bits.

The query procedure is modified as follows: for i = c − 1, c − 2, . . . , 0, if
p is short we consider the string q = p[0 . . |p| − |p| mod ti) and check whether
G(p[0 . . F (q))) ≥ |p|. If this happen, we know that p[0 . . F (q)) is the name
of the exit node of p and we return it. Note that if p is a prefix of some
string in S, this must happen at some point (eventually at i = 0). If p is
long, we do the same using t+ and s+. That is we consider the string q =

p[0 . . |p| − (|p| − d`(log n)2e) mod t+
i
) and check whether G(p[0 . . F (q))) ≥ |p|.

If this happen, we know that p[0 . . F (q)) is the name of the exit node of p and
we return it.

This procedure finds the name of the exit node of |p| in time O(|p|/w).

F Proof of Theorem 7

Let u = 2` be the number of possible keys of length `. We show that there
exists a probability distribution on key sets S such that the expected space
usage is Ω((n/k) log log(u/n)) bits. By the “easy directions of Yao’s lemma,”
this implies that the expected space usage of any (possibly randomised) data
structure on a worst case input is at least Ω((n/k) log log(u/n)) bits. The bound
for ` > (1 + ε) log n and k = 1 follows immediately.

Assume without loss of generality that n/(k+ 1) and k are powers of 2. All
strings in S will be of the form abc, where a ∈ 2log2(n/(k+1)), b ∈ 2`−log2(n/(k+1))−log2 k,
and c ∈ 2log2 k. Let t = `− log2(n/(k + 1))− log2 k denote the length of b. For
every value of a the set will contain exactly k + 1 elements: One where b and c
are strings of 0s, and for b chosen uniformly at random among strings of Ham-
ming weight 1 we have k strings for c ∈ 2log2 k. Notice that the entropy of the
set S is n/(k+ 1) log2 t, as we choose n/(k+ 1) values of b independently from a
set of t strings. To finish the argument we will need to show that any two such
sets require different data structures, which means that the entropy of the bit
string representing the data structure for S must also be at least n/(k+1) log2 t,
and in particular this is a lower bound on the expected length of the bit string.

Consider two different sets S′ and S′′. There exists a value of a, and distinct
values b′, b′′ of Hamming weight 1 such that S′ contains all k `-bits strings
prefixed by ab′, and S′′ contains all k `-bits strings prefixed by ab′′. Assume
without loss of generality that b′ is lexicographically before b′′. Now consider
the query for a string of the form a0`, which is a prefix of ab′ but not ab′′ –
such a string exists since b′ and b′′ have Hamming weight 1. The number of
keys with this prefix is k + 1 and 1, respectively, for S′ and S′′, so the answers
to the queries must be different (both in the multiplicative and additive case).
Hence, different data structures are needed for S′ and S′′.

23

G Applications in the cache-oblivious model

Prefix search and counting. For prefix search our constant time results
imply an improvement in the cache-oblivious model compared to results in [5, 4,
14]. Suppose that the strings are stored contiguously in increasing lexicographic
order. Using Elias–Fano encoding [11] we can store pointers to strings such that
starting position of a string can be located in constant time. Using our fastest
result, a weak prefix search takes just O(|p|/B) for the weak prefix search and
then just O(1) time to locate the pointers to beginning of first string in the range
(which we note by Rs) and to the ending of the last string in the range (which
we note by Re). Then the prefix search can be carried in optimal O(K/B) I/Os,
where K = Re − Rs + 1 is the total length of the strings satisfying the query
or in optimal O(|p|/B) I/Os if no string satisfies the query. That is we read the
first |p| bits of first string in the range(or any other string in the range), just
to check whether those |p| bits are identical to p, in which case, we read the
remaining K − |p| bits satisfying the search query.

For counting queries we also clearly have the optimal O(|p|/B) I/Os bound
as we can just do a weak prefix search in O(|p|/B) I/Os, locating a range of
strings and then retrieving the first |p| bits of any key in the range.

Range emptiness. In the cache oblivious model a range query for an interval
[a . . b] of variable length strings can be done in optimal O(K/B+ |a|/B+ |b|/B)
I/Os where K is size of output. For that, we can slightly modify the way strings
are stored in memory. As before, we store strings in increasing lexicographic
order. but this time we store the length of each string at the end and at the
beginning of each string. We note that storing the string lengths using Elias
δ or γ coding [12] never increases the lengths of any individual string by more
than a constant factor and that they occupy no more than constant number of
of memory words each (moreover total space wasted by stored lengths is O(n`)
bits). Thus we can scan the strings backward and forward in optimal time in
cache-oblivious model. That is the number of blocks we read is no more than a
constant factor than necessary.

The algorithm becomes very clear now : given the interval [a . . b], as before,
we either perform a single prefix query for prefix a in case a is a prefix of b
or otherwise perform two prefix queries for p0 and p1 (where p is the longest
common prefix). Then using Elias-Fano we can locate the pointers to first string
in first case or locate the two pointers to last string in first interval and first
string in second interval in the second case. Then we only need to scan forward
and backward checking each time whether the strings are in the interval. Each
checking needs only to read max(|a|, |b|) bits. Thus we do not perform more
than O(K/B+ |a|/B+ |b|/B) I/Os. In particular checking for the two boundary
strings does not take more than O(|a|/B+ |b|/B) I/Os. Even reading the length
of the two boundary strings takes no more than O(1) I/Os as the lengths are
encoded in no more than a constant number of words and we have w < B.

24

H Extensions to larger alphabets

Our data structures for for weak prefix search can easily be extended to work
for any integer alphabet of size σ.

H.1 First extension approach

The most straightforward approach consists in considering each character in
the alphabet as a sequence of log(σ) bits. The length of a string of length p
becomes |p| log σ, and the total length of the strings in the collection becomes
O(nl log σ). In this context query times for weak prefix search become:

• The query time for the space optimal solution becomes O((|p| log σ)/w +
log(|p| log σ)) = O((|p| log σ)/w+ log |p|+ log log σ), while the space usage
becomes HT +O(n(log log ` + log log log σ)) = HT +O(n log log `), where
HT is the hollow trie size of the compacted binary trie built on the trans-
formed set of strings.

• The query time of the time optimal solution becomesO((|p| log σ)/w, while
space usage becomes O(n(` log σ)1/c log(` log σ)). Note that query time is
still optimal in this case.

Cache oblivious model The query times for prefix range and general range
queries in the cache oblivious model become :

• For the the space optimal solution, query time for a prefix range query
becomes (|p| log σ)/B+log |p|+log log σ+K log(σ)/B) for a prefix search
on a prefix p,where K is length of the output in number of characters.
For a range query on an interval [a, b] the query time becomes ((|a| +
|b|) log σ)/B + log |p|+ log log σ +K log(σ)/B.

• The query time of the time optimal solution becomes O(|p| log σ)/B +
K log(σ)/B) for a prefix query and ((|a|+|b|) log σ)/B+log |p|+log log σ+
K log(σ)/B for range queries.

H.2 Second extension approach

We now describe the second extension approach which is almost as simple as
the first one. We do a small modification of our scheme which will permit us to
gain time or space compared to the naive solution above. We first notice that
the procedure which identifies exit nodes does not depend at all on the alphabet
being binary. Our solution will be built on a top of a compacted trie (which we
note by Tσ)built on the set of strings over original alphabet (we do not convert
the strings to binary alphabet). Thus any node in the internal node in the
trie will have between 2 and σ children where each children is labeled with a
character in [0, σ−1]. All the data structures defined in section 4 can be reused
without any modification on an alphabet of size σ instead of an alphabet of size

25

2. The range locator in section 5 also extends directly to larger alphabets. A
more detailed description of the range locator extension to larger alphabets is
given below. Before that we will first present an analysis of space usage of our
data structures. For that we first redefine the hollow z-fast trie size for larger
alphabets (which we not by HTσ(S)) as :

HTσ(S) =
∑
α

(bitlength(|cα|) + 1)− 1.

where the summation is done over internal nodes only. Note that for a given
data set on alphabet σ, HTσ could be much smaller than HT, for two reasons :

• The first reason is that the number of internal nodes in Tσ could be as
small as O(n/σ). In contrast the trie T has exactly n internal nodes.

• The second reason is that the length |cα| is expressed in number of char-
acters instead of number of bits. That is bitlength(|cα|) uses log log σ
bits.

Thus space used by the functions which maps prefixes to their exit nodes can be
restated as HTσ +O(n log log `) bits for the z-fast hollow trie and O(n`1/c(log `+
log log n)) for the time optimal solution. The difference between space usage in
this variant and the variant for binary alphabet is the (log log n) term. This term
comes from the function F− which dominates space usage and uses O(log ` +
log log n) bits per inserted prefix. This term was previously absorbed by the
log ` term as for binary alphabet where we had ` ≥ log n.

Range locator for larger alphabets The adaptation of range locator for
large alphabets is also straightforward. The main difference between range
locator for binary alphabet and the range locator for an alphabet of size σ is
that the names of exit nodes are now of the form pc, where p is the extent of
some node α in the trie and c is a character from [0 . . . σ) instead of {0, 1}. For
each node whose name is pc we will store in the mmphf the names pc and (pc)+,
where (pc)+ is define recursively in the following way: if c is the last character in
the alphabet then (pc)+ = p+, otherwise (pc)+ = pc+, where c+ is the successor
of c in the lexicographic order of the alphabet. The number of elements inserted
in the mmphf is at most 2(2n − 1). This is the case because we have 2n − 1
for each node contributes at most two prefixes to the range locator. Note that
because the two prefixes associated with two different nodes may overlap, we
could have less 2(2n− 1) prefixes.
Depending on the mmphf we used we get two different tradeoffs:

• Space usageO(n(log log `+log log log σ)) bits with query timeO((|P | log σ)/w+
log(|P |+ log log(σ))) if we use logarithmic time mmphf.

• Space usage O(n(log `+ log log σ)) bits with query time O((|P | log σ)/w)
if we use constant time mmphf.

26

Improved space usage for constant time exit node mapping The space
usage of the constant time exit node mapping functions (functions F and G)
can be reduced from O(n`1/c(log `+ log log n)) to O(n`1/c(log `+ log log log n)).
For that we will use three function F 1, F 2 and F 3 instead of just two function
F− and F+. That is F 1 stores prefixes of lengths less ` log log n, F 2 stores
prefixes of lengths between ` log log n and ` log n and finally F 3 stores prefixes
of lengths above ` log n. It can easily be seen that space usage is dominated by
the function F 1 which will thus use log `+ log log log n bits of space per stored
prefix. We could further reduce space usage by using four or more function, but
we will see in next section that this does not give any asymptotic improvement.

H.3 Putting things together

The second extension makes it possible to improve the space/time tradeoff for
the logarithmic and constant time weak prefix search solutions.

Constant time queries Using the second extension, we note that space us-
age of constant time solution can be improved to O(n(log ` + log log σ)) in
case ` is constant. Note that because we have ` log σ ≥ log n, we have that
log σ = Ω(log n). The space usage for the first extension method is at least
Ω((` log σ)1/c(log `+ log log σ)). Thus with the second extension we have a log-
arithmic improvement in space usage compared to the first extension. How-
ever, we can do even better. That is even if we have ` = O((log log n)k)
for any constant k (note that this implies that log σ = Ω(log n/(log log n)k)),
we can still obtain O(n(log ` + log log σ)) bits of space. That is by choosing
c = k + 1, the space usage of exit node mapping functions in second extension
(the functions F 1, F 2, F 3 andG) method becomesO(`1/c(log `+log log log n)) =
O((log log n)k/(k+1) log log log n) bits and thus the space usage becomes domi-
nated by the range locator which uses O(n(log `+ log log σ)) bits of space.

Logarithmic time queries For logarithmic weak prefix searches, we can
have two kinds of improvements. Either space usage improvement or query
time improvement. That is by combining the second approach method with the
range locator suitable for large alphabets, we get the following:

• By using a constant time mmphf as a sub-component of the range locator
we get query time O((|P | log σ)/w + log(|P |)) with O(n(log ` + log log σ)
of space usage.

• By using the logarithmic time mmphs as a sub-component of the range
locator, we get query time O((|P | log σ)/w + log(|P |) + log log σ) with
improved HTσ +O(n log log `) bits of space usage.

H.4 Cache oblivious model

The performance of prefix search naturally improves in the cache-oblivious
model for the logarithmic time prefix search. Using the second extension com-

27

bined with range locator based constant time mmphf, we get query timeO(|P |/B+
log |P |) against O(|P |/B + log |P | + log log σ) for the first extension method.
With the first extension the used space is HT +O(n log `) against O(n(log ` +
log log σ)) for the second extension. Note that the space usage of the first exten-
sion is better than that of second extension as we have n(log `+log log σ) ≥ HT .
Note that the improvement in query time can be very significant in case σ is
very large.
For constant time weak prefix queries, the query time is already optimal. How-
ever the space/time tradeoff can be improved using the second extension method.
For a given constant c, the query time is O(|P |/B+c) for both the first and sec-
ond extension, but space is for second extension is O(n(`1/c(log `+log log logn)+
log log σ)) against O(n(` log σ)1/c log(` log σ)) for the first extension method. It
can be seen that for large log σ the space saving can be significant. In the
particular case where log σ = Ω(log n/(log log n)k) for some constant k and the
` = (log log n)k we can obtain O(|P |/B + k) using only O(n(log ` + log log σ))
bits of space.

28

