
ar
X

iv
:1

10
8.

60
22

v1
 [

cs
.C

G
]

 3
0

A
ug

 2
01

1

Balancing Degree, Diameter and Weight in Euclidean Spanners ∗

Shay Solomon †§ Michael Elkin†‡

Abstract

In a seminal STOC’95 paper, Arya et al. [4] devised a construction that for any set S of n points in
R

d and any ǫ > 0, provides a (1 + ǫ)-spanner with diameter O(log n), weight O(log2 n) · w(MST (S)),
and constant maximum degree. Another construction of [4] provides a (1+ ǫ)-spanner with O(n) edges
and diameter O(α(n)), where α stands for the inverse Ackermann function. There are also a few
other known constructions of (1 + ǫ)-spanners. Das and Narasimhan [20] devised a construction with
constant maximum degree and weight O(w(MST (S))), but the diameter may be arbitrarily large. In
another construction by Arya et al. [4] there is diameter O(log n) and weight O(log n) · w(MST (S)),
but it may have arbitrarily large maximum degree. While these constructions address some important
practical scenarios, they fail to address situations in which we are prepared to compromise on one of
the parameters, but cannot afford this parameter to be arbitrarily large.

In this paper we devise a novel unified construction that trades between the maximum degree,
diameter and weight gracefully. For a positive integer k, our construction provides a (1 + ǫ)-spanner
with maximum degree O(k), diameter O(logk n+ α(k)), weight O(k · logk n · logn) ·w(MST (S)), and
O(n) edges. Note that for k = O(1) this gives rise to maximum degree O(1), diameter O(log n) and
weight O(log2 n) · w(MST (S)), which is one of the aforementioned results of [4]. For k = n1/α(n) this
gives rise to diameter O(α(n)), weight O(n1/α(n) · logn · α(n)) · w(MST (S)) and maximum degree
O(n1/α(n)). In the corresponding result from [4] the spanner has the same number of edges and
diameter, but its weight and degree may be arbitrarily large. Our bound of O(logk n + α(k)) on the
diameter is optimal under the constraints that the maximum degree is O(k) and the number of edges
is O(n). Similarly to the bound of Arya et al. [4], our bound on the weight is optimal up to a factor
of logn. Our construction also provides a similar tradeoff in the complementary range of parameters,
i.e., when the weight should be smaller than log2 n, but the diameter is allowed to grow beyond logn.

For random point sets in the d-dimensional unit cube, we “shave” a factor of logn from the
weight bound. Specifically, in this case our construction achieves maximum degree O(k), diameter
O(logk n+ α(k)) and weight that is with high probability O(k · logk n) · w(MST (S)).

Finally, en route to these results we devise optimal constructions of 1-spanners for general tree
metrics, which are of independent interest.

∗A preliminary version of this paper appeared in ESA’10.
†Department of Computer Science, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.

E-mail: {shayso,elkinm}@cs.bgu.ac.il
Both authors are partially supported by the Lynn and William Frankel Center for Computer Sciences.

§This research has been supported by the Clore Fellowship grant No. 81265410.
‡This research has been supported by the BSF grant No. 2008430.

http://arxiv.org/abs/1108.6022v1

1 Introduction

1.1 Euclidean Spanners

Consider the weighted complete graph S = (S,
(
S
2

)
) induced by a set S of n points in R

d, d ≥ 2. The

weight of an edge (x, y) ∈
(S
2

)
, for a pair of distinct points x, y ∈ S, is defined to be the Euclidean distance

‖x− y‖ between x and y. Let G = (S,E) be a spanning subgraph of S, with E ⊆
(S
2

)
, and assume that

exactly as in S, for any edge e = (x, y) ∈ E, its weight w(e) in G is defined to be ‖x−y‖. For a parameter
ǫ > 0, the spanning subgraph G is called a (1 + ǫ)-spanner for the point set S if for every pair x, y ∈ S
of distinct points, the distance distG(x, y) between x and y in G is at most (1 + ǫ) · ‖x − y‖. Euclidean
spanners were introduced1 in 1986 by Chew [17]. Since then they evolved into an important subarea
of Computational Geometry [33, 19, 41, 34, 3, 18, 20, 4, 21, 6, 40, 1, 11, 23]. (See also the book by
Narasimhan and Smid on Euclidean spanners [37], and the references therein.) Also, Euclidean spanners
have numerous applications in geometric approximation algorithms [40, 28, 29], geometric distance oracles
[28, 30, 29], Network Design [32, 36] and in other areas.

In many of these applications one is required to construct a (1 + ǫ)-spanner G = (S,E) that satisfies
a number of useful properties. First, the spanner should contain O(n) (or nearly O(n)) edges. Second,
its weight w(G) =

∑
e∈E w(e) should not be much greater than the weight w(MST (S)) of the minimum

spanning tree MST (S) of S. Third, its diameter Λ = Λ(G) should be small, i.e., for every pair of
points x, y ∈ S there should exist a path P in G that contains at most Λ edges and has weight w(P) =∑

e∈E(P)w(e) ≤ (1+ ǫ) · ‖x− y‖. Fourth, its maximum degree (henceforth, degree) ∆(G) should be small.
In a seminal STOC’95 paper that culminated a long line of research, Arya et al. [4] devised a con-

struction of (1+ ǫ)-spanners with lightness2 O(log2 n), diameter O(log n) and constant degree. They also
devised a construction of (1 + ǫ)-spanners with diameter O(α(n)) (respectively, O(1)) and O(n) (resp.,
O(n · log∗ n)) edges, where α stands for the inverse Ackermann function. However, in the latter construc-
tion the resulting spanners may have arbitrarily large (i.e., Ω(n)) lightness and degree. There are also
a few other known constructions of (1 + ǫ)-spanners. Das and Narasimhan [20] devised a construction
with constant degree and lightness, but the diameter may be arbitrarily large. (See also [27] for a faster
implementation of a spanner construction with constant degree and lightness.) There is also another
construction by Arya et al. [4] that guarantees that both the diameter and the lightness are O(log n), but
the degree may be arbitrarily large. While these constructions address some important practical scenar-
ios, they certainly do not address all of them. In particular, they fail to address situations in which we
are prepared to compromise on one of the parameters, but cannot afford this parameter to be arbitrarily
large.

In this paper we devise a novel unified construction that trades between the degree, diameter and
weight gracefully. For a positive integer k, our construction provides a (1+ ǫ)-spanner with degree O(k),
diameter O(logk n+α(k)), lightness O(k · logk n · log n), and O(n) edges. Also, we can improve the bound
on the diameter from O(logk n+α(k)) to O(logk n), at the expense of increasing the number of edges from
O(n) to O(n · log∗ n). Note that for k = O(1) our tradeoff gives rise to degree O(1), diameter O(log n)
and lightness O(log2 n), which is one of the aforementioned results of [4]. Also, for k = n1/α(n) it gives
rise to a spanner with degree O(n1/α(n)), diameter O(α(n)) and lightness O(n1/α(n) · log n · α(n)). In the
corresponding result from [4] the spanner has the same number of edges and diameter, but its lightness
and degree may be arbitrarily large.

In addition, we can achieve lightness o(log2 n) at the expense of increasing the diameter. Specifically,
for a parameter k the second variant of our construction provides a (1 + ǫ)-spanner with degree O(1),
diameter O(k · logk n), and lightness O(logk n · log n). For example, for k = logδ n, for an arbitrarily small

constant δ > 0, we get a (1+ ǫ)-spanner with degree O(1), diameter O(log1+δ n) and lightness O(log2 n
log logn).

Our unified construction can be implemented in O(n · log n) time. This matches the state-of-the-art

1The notion “spanner” was coined by Peleg and Ullman [38], who also introduced spanners for general graphs.
2For convenience, we will henceforth refer to the normalized notion of weight Ψ(G) = w(G)

w(MST (S))
, which we call lightness.

1

[4] [4] New New New New New New

I,II I I I II II II

k 1 logδ n 2
√
logn n1/α(n) logδ n 2

√
logn nζ

∆ 1 n logδ n 2
√
logn n1/α(n) 1 1 1

Λ log n α(n) logn
log logn

√
log n α(n) log1+δ n 2O(

√
logn) nζ

Ψ log2 n n log2+δ n 2O(
√
logn) nO(1/α(n)) log2 n

log logn log3/2 n log n

Table 1: A concise comparison of previous and new results. Each column corresponds to a set of parameters that can
be achieved simultaneously. For each column the first row indicates whether the result is new or due to [4]. (The first
column is due to [4], but can also be achieved from both our tradeoffs.) For new results, the second row indicates whether
it is obtained by the first (I) or the second (II) tradeoff. (The first tradeoff is degree O(k), diameter O(logk n+ α(k)), and
lightness O(k · logk n · log n). The second tradeoff is degree O(1), diameter O(k · logk n) and lightness O(logk n · log n).) The
third row indicates the value of k that is substituted in the corresponding tradeoff. The next three rows indicate the resulting
degree (∆), diameter (Λ) and lightness (Ψ). The number of edges used in all constructions is O(n). To save space, the O
notation is omitted everywhere except for the exponents. The letters δ and ζ stand for arbitrarily small positive constants.

running time of the aforementioned constructions [4, 27]. See Table 1 for a concise comparison of previous
and new results.

Note that in any construction of spanners with degree O(k), the diameter is Ω(logk n). Also, Chan and
Gupta [11] showed that any (1+ ǫ)-spanner with O(n) edges must have diameter Ω(α(n)). Consequently,
our upper bound of O(logk n + α(k)) on the diameter is tight under the constraints that the degree is
O(k) and the number of edges is O(n). If we allow O(n · log∗ n) edges in the spanner, then our bound on
the diameter is reduced to O(logk n), which is again tight under the constraint that the degree is O(k).

In addition, Dinitz et al. [23] showed that for any construction of spanners, if the diameter is at most
O(logk n), then the lightness is at least Ω(k · logk n) and vice versa, if the lightness is at most O(logk n),
then the diameter is at least Ω(k · logk n). This lower bound implies that the bound on lightness in both
our tradeoffs cannot possibly be improved by more than a factor of log n. The same slack of log n is
present in the result of [4] that guarantees lightness O(log2 n), diameter O(log n) and constant degree.

1.1.1 Euclidean Spanners for Random Point Sets

For random point sets in the d-dimensional unit cube (henceforth, unit cube), we “shave” a factor of log n
from the lightness bound in both our tradeoffs, and show that the first (respectively, second) variant of our
construction achieves maximum degree O(k) (resp., O(1)), diameter O(logk n+α(k)) (resp., O(k · logk n))
and lightness that is with high probability (henceforth, w.h.p.) O(k · logk n) (resp., O(logk n)). Note that
for k = O(1) both these tradeoffs give rise to degree O(1), diameter O(log n) and lightness (w.h.p.)
O(log n). In addition to these tradeoffs, we can get a construction of (1 + ǫ)-spanners with diameter
O(log n) and lightness (w.h.p.) O(1).

1.1.2 Spanners for Doubling Metrics

The doubling dimension of a metric (X, δ) is the smallest value ζ such that every ball B in the metric
can be covered by at most 2ζ balls of half the radius of B. The metric (X, δ) is called doubling if
its doubling dimension ζ is constant. Spanners for doubling metrics have received much attention in
recent years (see, e.g., [12, 31, 11, 26]). In particular, Chan et al. [12] showed that for any doubling
metric (X, δ) there exists a (1 + ǫ)-spanner with constant maximum degree, but this spanner may have
arbitrarily large diameter. In addition, Chan and Gupta [11] devised a construction of (1 + ǫ)-spanners
for doubling metrics that achieves the optimal tradeoff between the number of edges and diameter, but
these spanners may have arbitrarily large degree. We present a single construction of O(1)-spanners for
doubling metrics that achieves the optimal tradeoff between the degree, diameter and number of edges in
the entire range of parameters. Specifically, for a parameter k, our construction provides an O(1)-spanner
with maximum degree O(k), diameter O(logk n+α(k)), and O(n) edges. Also, we can improve the bound

2

on the diameter from O(logk n + α(k)) to O(logk n), at the expense of increasing the number of edges
from O(n) to O(n · log∗ n). More generally, we can achieve the same optimal tradeoff between the number
of edges and diameter as the spanners of [11] do, while also having the optimal maximum degree. The
drawback is, however, that the stretch of our spanners is O(1) rather than 1 + ǫ.

1.2 Spanners for Tree Metrics

Let ϑn be the metric induced by n points v1, v2, . . . , vn lying on the x-axis with coordinates 1, 2, . . . , n,
respectively. In a classical STOC’82 paper [48], Yao showed that there exists a 1-spanner3 G = (V,E)
for ϑn with diameter O(α(n)) and O(n) edges, and that this is tight. Chazelle [15] extended the result
of [48] to arbitrary tree metrics. Other proofs of Chazelle’s result appeared in [2, 8, 47, 43]. Thorup [47]
also devised an efficient parallel algorithm for computing this 1-spanner. The problem was also studied
for planar metrics [46], general metrics [45] and even for general graphs [7]. (See also Chapter 12 in [37]
for an excellent survey on this problem.) The problem is also closely related to the extremely well-studied
problem of computing partial-sums. (See the papers of Tarjan [44], Yao [48], Chazelle and Rosenberg
[16], Pătraşcu and Demaine [39], and the references therein.) For a discussion about the relationship
between these two problems see the introduction of [1].

In all constructions [48, 15, 2, 8, 47, 43] of 1-spanners for tree metrics, the degree and lightness of the
resulting spanner may be arbitrarily large. Moreover, the constraint that the diameter is O(α(n)) implies
that the degree must be nΩ(1/α(n)). A similar lower bound on the lightness follows from the result of [23].

En route to our tradeoffs for Euclidean spanners, we have extended the results of [48, 15, 2, 8, 47, 43]
and devised a construction that achieves the optimal (up to constant factors) tradeoff between all involved
parameters. Specifically, consider an n-vertex tree T of degree ∆(T), and let k be a positive integer. Our
construction provides a 1-spanner for the tree metric MT induced by T with degree O(∆(T)+k), diameter
O(logk n + α(k)), lightness O(k · logk n), and O(n) edges. We can also get a spanner with diameter
O(logk n), O(n · log∗ n) edges, and the same degree and lightness as above. For the complementary range
of diameter, the second variant of our construction provides a 1-spanner with degree O(∆(T)), diameter
O(k · logk n), lightness O(logk n), and O(n) edges. As was mentioned above, both these tradeoffs are
optimal up to constant factors.

We show that this general tradeoff between various parameters of 1-spanners for tree metrics is useful
for deriving new results (and improving existing results) in the context of Euclidean spanners and spanners
for doubling metrics. We anticipate that this tradeoff would be found useful in the context of partial
sums problems, and for other applications.

1.3 Our and Previous Techniques

The starting point for our construction is the construction of Arya et al. [4] that achieves diameter
O(log n), lightness O(log2 n) and constant degree. The construction of [4] is built in two stages. First, a
construction for the 1-dimensional case is devised. Then the 1-dimensional construction is extended to
arbitrary constant dimension. For 1-dimensional spaces Arya et al. [4] start with devising a construction
of 1-spanners with diameter, lightness and degree all bounded by O(log n). This construction is quite
simple; it is essentially a flattened version of a deterministic skip-list. Next, by a more involved argument
they show that the degree can be reduced to O(1), at the expense of increasing the stretch parameter
from 1 to 1 + ǫ. Finally, the generalization of their construction to point sets in the plane (or, more
generally, to R

d) is far more involved. Specifically, to this end Arya et al. [4] employed two main tools.
The first one is the dumbbell trees, the theory of which was developed by Arya et al. in the same paper [4].
(See also Chapter 11 of [37].) The second one is the bottom-up clustering technique that was developed
by Frederickson [25] for topology trees. Roughly speaking, the Dumbbell Theorem of [4] states that for

3The graph G is said to be a 1-spanner for ϑn if for every pair of distinct vertices vi, vj ∈ V , the distance between them
in G is equal to their distance ‖i− j‖ in ϑn. Yao stated this problem in terms of partial sums. However, the two statements
of the problem are equivalent.

3

every point set S, one can construct a forest D of O(1) dumbbell trees, in which there exists a tree T ∈ D
for every pair x, y of points from S, such that the distance distT (x, y) between x and y in T is at most
(1+ ǫ) times their Euclidean distance ‖x− y‖. Arya et al. employ Frederickson’s clustering technique on
each of these O(1) dumbbell trees to obtain their ultimate spanner.

Similarly to [4], we start with devising a construction of 1-spanners for the 1-dimensional case. How-
ever, our construction achieves both diameter and lightness at most O(log n), in conjunction with the
optimal degree of at most 3.4 (Note that [4] paid for decreasing the degree from O(log n) to O(1) by
increasing the stretch of the spanner from 1 to 1 + ǫ. Our construction achieves stretch 1 in conjunction
with logarithmic diameter and lightness, and with the optimal degree.) Moreover, our construction is
far more general, as it provides the entire suite of all possible values of diameter, lightness and degree,
and it is optimal up to constant factors in the entire range of parameters. We then proceed to extending
it to arbitrary tree metrics. Finally, we employ the dumbbell trees of Arya et al. [4]. Specifically, we
construct our 1-spanners for the metrics induced by each of these dumbbell trees, and return their union
as our ultimate spanner. As a result we obtain a unified construction of Euclidean spanners that achieves
near-optimal tradeoffs in the entire range of parameters. We remark that it is unclear whether the con-
struction of Arya et al. [4] can be extended to provide additional combinations between the diameter and
lightness other than O(log n) and O(log2 n), respectively; roughly speaking, the logarithms there come
from the number of levels in Frederickson’s topology trees. In particular, the construction of Arya et
al. [4] that achieves diameter O(α(n)) and arbitrarily large lightness and degree is based on completely
different ideas. On the other hand, our construction yields a stronger result (diameter O(α(n)), lightness
and degree nO(1/α(n))), and this result is obtained by substituting a different parameter into one of our
tradeoffs. Moreover, our construction is much simpler and more modular than that of [4]. In particular,
it does not employ Frederickson’s bottom-up clustering technique, but rather constructs 1-spanners for
dumbbell trees directly.

Also, our construction of 1-spanners for tree metrics (that we use for dumbbell trees) is fundamentally
different from the previous constructions due to [48, 15, 2, 8, 47, 43]. In particular, the techniques of
[15, 2, 8, 47, 43] for generalizing constructions of 1-spanners from 1-dimensional metrics to general tree
metrics ensure that the diameter of the resulting spanners is not (much) greater than the diameter in the
1-dimensional case. However, the degree and/or lightness of spanners for tree metrics that are obtained
by these techniques may be arbitrarily large. To overcome this obstacle we adapt the techniques of
[15, 2, 8, 43] to our purposes. Next, we overview this adaptation. A central ingredient in the generalization
techniques of [15, 2, 8, 43] is a tree decomposition procedure. Given an n-vertex rooted tree (T, rt) and
a parameter k, this procedure computes a set C of O(k) cut vertices. This set has the property that
removing all vertices of C from the tree T decomposes T into a collection F of trees, so that each tree
τ ∈ F contains O(n/k) vertices. This decomposition induces a tree Q = Q(τ, C) over the vertex set
C ∪ {rt} in a natural way: a cut vertex w ∈ C is defined to be a child of its closest ancestor in T that
belongs to C ∪ {rt}. For our purposes, it is crucial that the degree of the tree Q will not be (much)
greater than the degree of T . In addition, it is essential that each tree τ ∈ F will be incident to at most
O(1) cut vertices. We devise a novel decomposition procedure that guarantees these two basic properties.
Intuitively, our decomposition procedure “slices” the tree in a “path-like” fashion. This path-like nature
of our decomposition enables us to keep the degree and lightness of our construction for general tree
metrics (essentially) as small as in the 1-dimensional case.

1.4 Structure of the Paper

In Section 2 we describe our construction of 1-spanners for tree metrics. Therein we start (Section 2.1)
with outlining our basic scheme. We proceed (Section 2.2) with describing our 1-dimensional construction.
In Section 2.3 we extend this construction to general tree metrics. Our tree decomposition procedure
(which is in the heart of this extension) is described in Section 2.3.1. In Section 3 we derive our results

4Observe that any graph (not necessarily 1-spanner) with maximum degree 2 must have diameter at least n−1
2

.

4

for Euclidean spanners and spanners for doubling metrics.

1.5 Preliminaries

An n-point metric space M = (V, dist) can be viewed as the complete graph G(M) = (V,
(
V
2

)
, dist)

in which for every pair of points x, y ∈ V , the weight of the edge e = (x, y) in G(M) is defined by
w(x, y) = dist(x, y). Let G be a spanning subgraph of M . We say that G is a t-spanner for M if for
every pair x, y ∈ V of distinct points, there exists a path in G between x and y whose weight (i.e., the
sum of all edge weights in it) is at most t · dist(x, y). Such a path is called a t-spanner path. The stretch
of G is the minimum number t, such that G is a t-spanner for M . Let T be an arbitrary tree, and denote
by V (T) the vertex set of T . For any two vertices u, v in T , their (weighted) distance in T is denoted by
distT (u, v). The tree metric MT induced by T is defined as MT = (V (T), distT). The size of T , denoted
|T |, is the number of vertices in T . Finally, for a positive integer n, we denote the set {1, 2, . . . , n} by [n].

2 1-Spanners for Tree Metrics

2.1 The Basic Scheme

Consider an arbitrary n-vertex (weighted) rooted tree (T, rt), and let MT be the tree metric induced by
T . Clearly, T is both a 1-spanner and an MST of MT , but its diameter may be arbitrarily large. We
would like to reduce the diameter of this 1-spanner by adding to it some edges. On the other hand, the
number of edges of the resulting spanner should still be linear in n. Moreover, the lightness and the
maximum degree of the resulting spanner should also be reasonably small.

Let H be a spanning subgraph of MT . The monotone distance between any two points u and v in
H is defined as the minimum number of edges in a 1-spanner path in H connecting them. Two points
in MT are called comparable if one is an ancestor of the other in the underlying tree T . The monotone
diameter (respectively, comparable monotone diameter) of H, denoted Λ(H) (resp., Λ̄(H)), is defined as
the maximum monotone distance in H between any two points (resp., any two comparable points) in
MT . Observe that if any two comparable points are connected via a 1-spanner path that consists of at
most h edges, then any two arbitrary points are connected via a 1-spanner path that consists of at most
2h edges. Consequently, Λ̄(H) ≤ Λ(H) ≤ 2 · Λ̄(H). We henceforth restrict the attention to comparable
monotone diameter in the sequel.

Let k ≥ 2 be a fixed parameter. The first ingredient of the algorithm is to select a set of O(k)
cut vertices whose removal from T partitions it into a collection of subtrees of size O(n/k) each. (As
mentioned in the last paragraph of Section 1.3, we also require this set to satisfy several additional
properties.) Having selected the cut vertices, the next step of the algorithm is to connect the cut vertices
via O(k) edges, so that the monotone distance between any pair of comparable cut vertices will be
small. (This phase does not involve a recursive call of the algorithm.) Finally, the algorithm calls itself
recursively for each of the subtrees.

We insert all edges of the original tree T into our final spanner H. These edges connect between cut
vertices and subtrees in the spanner. We remark that the spanner contains no other edges that connect
between cut vertices and subtrees. Moreover, the spanner contains no edges that connect between different
subtrees.

2.2 1-Dimensional Spaces

In this section we devise an optimal construction of 1-spanners for ϑn. (Recall that ϑn is the metric
induced by n points v1, v2, . . . , vn lying on the x-axis with coordinates 1, 2, . . . , n, respectively.) Our
argument extends easily to any 1-dimensional space.

Denote by Pn the path (v1, v2), (v2, v3), . . . , (vn−1, vn) that induces the metric ϑn. We remark that
the edges of Pn (henceforth, path-edges) belong to all spanners that we construct.

5

2.2.1 Selecting the Cut-Vertices

Let k ≥ 2 be a fixed parameter. The task of selecting the cut vertices in the 1-dimensional case is trivial.
(We assume for simplicity that n is an integer power of k.) In addition to the two endpoints v1 and
vn of the path, we select the k − 1 points r1, r2, . . . , rk−1 to be cut vertices, where for each i ∈ [k − 1],
ri = vi(n/k). Indeed, by removing the k+1 cut vertices r0 = v1, r1, . . . , rk−1, rk = vn from the path (along
with their incident edges), we are left with k intervals I1, I2, . . . , Ik of length at most n/k each. The two
endpoints v1 and vn of the path are called the sentinels, and they play a special role in the construction.
(See Figure 1 for an illustration for the case k = 2.)

r0 = v1
r2 = vnr1

H ′

2(n)

H ′

2
(n/2) H ′

2
(n/2)

Figure 1: The construction for k = 2. Only the first level of the recursion is illustrated. (Path-edges are not depicted in the
figure.) The cut vertex r1 = vn/2 is connected via edges to the two sentinels v1 and vn. The construction proceeds recursively
for each of the two intervals I1 and I2.

2.2.2 1-Spanners with Low Diameter

In this section we devise a construction Hk(n) of 1-spanners for ϑn with comparable monotone diameter
Λ̄(n) = Λ̄(Hk(n)) in the range Ω(α(n)) = Λ̄(n) = O(log n). In Section 2.2.3 we turn our attention to
spanners with larger monotone diameter.

First, the algorithm connects the k + 1 cut vertices r0 = v1, r1, . . . , rk−1, rk = vn via one of the
aforementioned constructions of 1-spanners from [48, 15, 2, 8, 47, 43] (henceforth, list-spanner). In other
words, O(k) edges between cut vertices are added to the spanner Hk(n) to guarantee that the monotone
distance in the spanner between any two cut vertices5 will be O(α(k)). Then the algorithm adds to
the spanner Hk(n) edges that connect each of the two sentinels to all other k cut vertices. Finally,
the algorithm calls itself recursively for each of the intervals I1, I2, . . . , Ik. At the bottom level of the
recursion, i.e., when n ≤ k, the algorithm uses the list-spanner to connect all points, and, in addition, it
adds to the spanner edges that connect each of the two sentinels v1 and vn to all the other n− 1 points.
(See Figure 2 for an illustration.)

Denote by E(n) the number of edges in Hk(n), excluding edges of Pn. Clearly, E(n) satisfies the
recurrence E(n) ≤ O(k) + k · E(n/k), with the base condition E(q) = O(q), for all q ≤ k, yielding
E(n) = O(n). Denote by ∆(n) the maximum degree of a vertex in Hk(n), excluding edges of Pn. Clearly,
∆(n) satisfies the recurrence ∆(n) ≤ max{k,∆(n/k)}, with the base condition ∆(q) ≤ q − 1, for all
q ≤ k, yielding ∆(n) ≤ k. Including edges of Pn, the number of edges increases by n − 1 units, and the
maximum degree increases by at most two units.

Denote by w(n) the weight of Hk(n), excluding edges of Pn. Note that at most O(k) edges are added
between cut vertices. Each of these edges has weight at most n−1. The total weight of all edges within an
interval Ii is at most w(n/k). Hence w(n) satisfies the recurrence w(n) ≤ O(n·k)+k·w(n/k), with the base
condition w(q) = O(q2), for all q ≤ k. It follows that w(n) = O(n ·k · logk n) = O(k · logk n) ·w(MST (ϑn)).
Including edges of Pn, the weight increases by w(Pn) = n− 1 units.

Next, we show that the comparable monotone diameter Λ̄(n) of Hk(n) is at most O(logk n + α(k)).
The monotone radius R(n) of Hk(n) is defined as the maximum monotone distance in Hk(n) between
one of the sentinels (either v1 or vn) and some other point in ϑn. Let vj be a point in ϑn, and let i be
the index such that vj ∈ {ri}∪ Ii. (In other words, i is the index such that i(n/k) ≤ j < (i+1)(n/k).) If

5In the 1-dimensional case any two points are comparable.

6

j = i(n/k) then vj is the cut vertex ri; in this case the 1-spanner path Π = Π(v1, vj) in Hk(n) connecting
the sentinel v1 and the point vj will consist of the single edge (v1, vj). Otherwise, j > i(n/k) and vj ∈ Ii.
In this case the path Π will start with the two edges (v1, vi(n/k)), (vi(n/k), vi(n/k)+1). The point vi(n/k)+1

is a sentinel of the ith interval Ii. Hence, the path Π will continue recursively, from vi(n/k)+1 to vj . It
follows that the monotone radius R(n) satisfies the recurrence R(n) ≤ 2+R(n/k), with the base condition
R(q) = 1, for all q ≤ k, yielding R(n) = O(logk n). It is easy to verify that Λ̄(n) satisfies the recurrence
Λ̄(n) ≤ max{Λ̄(n/k), O(α(k)) + 2R(n/k)}, with the base condition Λ̄(q) = O(α(q)), for all q ≤ k. Hence
Λ̄(n) = O(logk n+ α(k)).

Denote the worst-case running time of the algorithm by t(n), excluding the time needed to add the
edges of Pn to the spanner. We remark that the list-spanner of [48, 15, 2, 8, 47, 43] can be implemented in
linear time. By construction, t(n) satisfies the recurrence t(n) ≤ O(k)+k ·t(n/k), with the base condition
t(q) = O(q), for all q ≤ k, yielding t(n) = O(n). Hence, the overall running time of the algorithm is O(n).

Finally, we remark that the maximum degree of this construction can be easily reduced from k + 2
to k + 1, without increasing any of the other parameters by more than a constant factor; the details of
this technical argument are omitted. In particular, for k = 2 we will get this way the optimal degree 3,
together with diameter and lightness O(log n); the same result also follows from Theorem 2.2 below.

Theorem 2.1 For any n-point 1-dimensional space and a parameter k ≥ 2, there exists a 1-spanner with
maximum degree at most k + 1, diameter O(logk n+ α(k)), lightness O(k · logk n), and O(n) edges. The
running time of this construction is O(n).

Hk(n/k)r1 rk = vnr0 = v1 rk−1r2 Hk(n/k)Hk(n/k)

Hk(n)

H ′

k(n/k)r1 rk = vnr0 = v1 rk−1r2 H ′

k(n/k)H ′

k(n/k)

H ′

k(n)

list-spanner

Figure 2: The constructions Hk(n) and H ′
k(n) for a general parameter k, k ≥ 2. Only the first level of the recursion is

illustrated. (Path-edges are not depicted in the figure.) For Hk(n), all the cut vertices are connected via the list-spanner, and, in
addition, each of the two sentinels is connected to all other k cut vertices. For H ′

k(n), each cut vertex ri−1 is connected to the
next cut vertex ri in line, i ∈ [k].

2.2.3 1-Spanners with High Diameter

In this section we devise a construction H ′
k(n) of 1-spanners for ϑn with comparable monotone diameter

Λ̄′(n) = Λ̄(H ′
k(n)) in the range Λ̄′(n) = Ω(log n).

The algorithm connects the k+1 cut vertices r0 = v1, r1, . . . , rk−1, rk = vn via a path of length k, i.e.,
it adds the edges (r0, r1), (r1, r2), . . . , (rk−1, rk) into the spanner. In addition, it calls itself recursively for
each of the intervals I1, I2, . . . , Ik. At the bottom level of the recursion, i.e., when n ≤ k, the algorithm
adds no additional edges to the spanner. (See Figures 1 and 2 for an illustration.)

7

Denote by ∆′(n) the maximum degree of a vertex in H ′
k(n), excluding edges of Pn. Clearly, ∆′(n)

satisfies the recurrence ∆′(n) ≤ max{2,∆′(n/k)}, with the base condition ∆′(q) = 0, for all q ≤ k,
yielding ∆′(n) ≤ 2. Including edges of Pn, the maximum degree increases by at most two units, and so
∆(H ′

k(n)) ≤ 4. Consequently, the number of edges in H ′
k(n) is no greater than 2n.

Denote by w′(n) the weight of H ′
k(n), excluding edges of Pn. Note that the weight of the path

connecting all k+1 cut vertices is equal to n− 1. The total weight of all edges within an interval Ii is at
most w′(n/k). Hence w′(n) satisfies the recurrence w′(n) ≤ n− 1 + k · w′(n/k), with the base condition
w′(q) ≤ q − 1, for all q ≤ k. It follows that w′(n) = O(n · logk n) = O(logk n) · w(MST (ϑn)). Including
edges of Pn, the weight increases by w(Pn) = n− 1 units.

Note that the monotone radius R′(n) of H ′
k(n) satisfies the recurrence R′(n) ≤ k+R′(n/k), with the

base condition R′(q) ≤ q − 1, for all q ≤ k. Hence, R′(n) = O(k · logk n). Using reasoning similar to that
of Section 2.2.2, we get that the comparable monotone diameter Λ̄′(n) = Λ̄(H ′

k(n)) of H
′
k(n) satisfies the

recurrence Λ̄′(n) ≤ max{Λ̄′(n/k), k + 2R′(n/k)}, with the base condition Λ̄′(q) ≤ q − 1, for all q ≤ k. It
follows that Λ̄′(n) = O(k · logk n).

We remark that the spanner H ′
k(n) is a planar graph.

Denote the worst-case running time of the algorithm by t′(n), excluding the time needed to add the
edges of Pn to the spanner. It is easy to see that t′(n) satisfies the recurrence t′(n) ≤ O(k) + k · t′(n/k),
with the base condition t′(q) = O(1), for all q ≤ k, yielding t′(n) = O(n). Hence, the overall running
time of the algorithm is O(n).

Finally, similarly to the construction of Section 2.2.2, the maximum degree of this construction can
be reduced from 4 to 3, without increasing any of the other parameters by more than a constant factor.

Theorem 2.2 For any n-point 1-dimensional space and a parameter k, there exists a 1-spanner with
maximum degree 3, diameter O(k · logk n), and lightness O(logk n). Moreover, this 1-spanner is a planar
graph. The running time of this construction is O(n).

2.3 General Tree Metrics

In this section we extend the constructions of Section 2.2 from line metrics to general tree metrics.

2.3.1 Selecting the Cut-Vertices

In this section we present a procedure for selecting, given a tree T , a subset of O(k) vertices whose
removal from the tree partitions it into subtrees of size O(|T |/k) each. This subset will also satisfy
several additional useful properties.

Let (T, rt) be a rooted tree. For an inner vertex v in T with ch(v) children, we denote its children, from
left to right, by c1(v), c2(v), . . . , cch(v)(v). Suppose without loss of generality that the size of the subtree
Tc1(v) of v is no smaller than the size of any other subtree of v, i.e., |Tc1(v)| ≥ |Tc2(v)|, |Tc3(v)|, . . . , |Tcch(v)(v)|.
(This assumption can be guaranteed by a straightforward procedure that runs in linear time.) We say
that the vertex c1(v) is the left-most child of v. Also, an edge in T is called left-most if it connects a
vertex v in T and its left-most child c1(v). We denote by P (v) = (v, c1(v), . . . , l(v)) the path of left-most
edges leading down from v to some leaf l(v) in the subtree Tv of T rooted at v; the leaf l(v) is referred
to as the left-most vertex in Tv. Also, let l(T) = l(rt) denote the left-most vertex in the entire tree T .
An inner vertex v in T is called d-balanced, for d ≥ 1, or simply balanced if d is clear from the context, if
|Tc1(v)| ≤ |T | − d. The first (i.e., closest to v) balanced vertex along P (v) is denoted by b(v); if no vertex
along P (v) is balanced, we write b(v) = NULL. Observe that for |T | ≥ 2d, we have |T | − d ≥ d ≥ 1;
in this case the one-before-last vertex along P (v) (namely, the parent π(l(v)) of l(v) in T) is balanced.
Hence, in this case b(v) 6= NULL.

Next, we present the Procedure CV (standing for cut vertices) that accepts as input a rooted tree
(T, rt) and a parameter d ≥ 1, and returns as output a subset of V (T). If |T | < 2d, the procedure returns
the empty set ∅. Otherwise |T | ≥ 2d, and so the first balanced vertex b = b(rt) along P (rt) satisfies

8

b 6= NULL. In this case for each child ci(b) of b, i ∈ [ch(b)], the procedure recursively constructs the

subset Ci = CV ((Tci(b), ci(b)), d), and then returns as output the vertex set
⋃ch(b)

i=1 Ci ∪ {b}. (See Figure
3 for an illustration.)

v7

v4v3

v6

v1 = rt

v14 v17 v18v16

v8

v5

v2

v11

v15

v10v9

v13v12 = l(rt)

T

Figure 3: A rooted tree (T, rt) with n = |T | = 18 vertices v1 = rt, v2, . . . , v18. The edges of P (rt) are depicted by bold lines.
The first 6-balanced vertex along P (rt) is v2. The procedure CV on input (T, rt) and d = 6 returns the subset {v2, v8}.

It is easy to see that the running time of this procedure is linear in |T |.
Let (T, rt) be an n-vertex rooted tree, and let d ≥ 1 be a fixed parameter. For convenience, we define

ni = |Tci(b)|, for each i ∈ [ch(b)]. Next, we analyze the properties of the set C = CV ((T, rt), d) of cut
vertices.

Observe that for n < 2d, C = ∅, and for n ≥ 2d, C is non-empty.
Next, we provide an upper bound on |C| in the case n ≥ 2d.

Lemma 2.3 For n ≥ 2d, |C| ≤ (n/d)− 1.

Proof: The proof is by induction on n = |T |.
Basis: 2d ≤ n < 3d. Fix an index i ∈ [ch(b)]. Since b is balanced, we have

ni ≤ n1 ≤ n− d < 2d,

implying that Ci = ∅. It follows that C =
⋃ch(b)

i=1 Ci ∪ {b} = {b}, and so |C| = 1 ≤ (n/d)− 1.
Induction Step: We assume the correctness of the statement for all smaller values of n, n ≥ 3d, and prove
it for n. Let I be the set of all indices i in [ch(b)] for which ni ≥ 2d. Observe that for each i ∈ [ch(b)] \ I,
Ci = ∅, and by the induction hypothesis, for each i ∈ I, |Ci| ≤ (ni/d) − 1. By construction, the vertex

sets C1, C2, . . . , Cch(b) and {b} are pairwise disjoint, and C =
⋃ch(b)

i=1 Ci ∪ {b}. Hence

|C| =

ch(b)∑

i=1

|Ci|+ 1 =
∑

i∈I
|Ci|+ 1 ≤

∑

i∈I
((ni/d)− 1) + 1. (1)

The analysis splits into three cases depending on the value of |I|.
Case 1: |I| = 0. Equation (1) yields |C| ≤ 1 ≤ (n/d) − 1.
Case 2: |I| = 1. By construction, n1 ≥ ni, for each i ∈ [ch(b)], implying that I = {1}. Since b is
balanced, n1 ≤ n− d, and so (1) yields

|C| ≤ (n1/d)− 1 + 1 ≤ (n− d)/d = (n/d) − 1.

Case 3: |I| ≥ 2. Clearly,
∑

i∈I ni ≤ n− 1, and so (1) yields

|C| ≤
∑

i∈I
((ni/d)− 1) + 1 =

∑

i∈I
(ni/d)− |I|+ 1 ≤ (n− 1)/d − 2 + 1 ≤ (n/d)− 1.

9

�

Let b = b(rt), and let Tb be the subtree of T obtained by removing the subtree Tb from T . We use
the following claim to prove Lemma 2.5.

Claim 2.4 |Tb| < d.

Proof: If b = rt, then Tb is empty and the assertion of the claim is immediate. Otherwise, consider
the parent π(b) of b in T . Since b is the first (i.e., closest to rt) balanced vertex along P (rt), π(b) is
non-balanced, and so |Tb| = |Tc1(π(b))| > n− d. Hence |Tb| = n− |Tb| < d, and we are done. �

For a subset U of V (T), we denote by T \U the forest obtained from T by removing all vertices in U
along with the edges that are incident to them.

Lemma 2.5 The size of any subtree in the forest T \ C is smaller than 2d.

Proof: The proof is by induction on n = |T |. The basis n < 2d is trivial.
Induction Step: We assume the correctness of the statement for all smaller values of n, n ≥ 2d, and prove
it for n. First, note that b = b(rt) ∈ C. Also, observe that for n ≥ 2d,

T \ C =

ch(b)⋃

i=1

(Tci(b) \ Ci) ∪ {Tb}. (2)

Consider a subtree T ′ in the forest T \C. By (2), either T ′ = Tb, or it belongs to the forest Tci(b) \Ci, for
some index i ∈ [ch(b)]. In the former case, the size bound follows from Claim 2.4, whereas in the latter
case it follows from the induction hypothesis. �

Any subset U of V (T) induces a forest Q(T,U) over U in the natural way: a vertex v ∈ U is defined
to be a child of its closest ancestor in T that belongs to U . Define Q = Q(T,C). Observe that for n < 2d,
C = ∅, and so Q = ∅. Also, for n ≥ 2d, C is non-empty and b = b(rt) 6= NULL.

Lemma 2.6 For n ≥ 2d, Q is a spanning tree of C rooted at b = b(rt), such that for each vertex v in
C, the number of children of v in Q, denoted chQ(v), is no greater than the corresponding number ch(v)
in T .

Remark: This lemma implies that ∆(Q) ≤ ∆(T).
Proof: The proof is by induction on n = |T |.
Basis: 2d ≤ n < 3d. In this case C = {b}, and so Q consists of a single root vertex b.
Induction Step: We assume the correctness of the statement for all smaller values of n, n ≥ 3d, and prove
it for n. Let I be the set of all indices i in [ch(b)] for which ni ≥ 2d, and write I = {i1, i2, . . . , i|I|}.
Observe that for each index i ∈ [ch(b)]\I, Ci = ∅, and so Q(Tci(b), Ci) is an empty tree. By the induction
hypothesis, for each i ∈ I, Qi = Q(Tci(b), Ci) is a spanning tree of Ci rooted at bi = b(ci(b)) 6= NULL in
which the number of children of each vertex is no greater than the corresponding number in Tci(b). By def-
inition, the only children of b in Q are the roots bi1 , bi2 , . . . , bi|I| of the non-empty trees Qi1 ,Qi2 , . . . ,Qi|I| ,
respectively, and so chQ(b) = |I| ≤ ch(b). In addition, b has no parent in Q, and so it is the root of Q. �

For a tree τ , the root rt(τ) of τ and its left-most vertex l(τ) are called the sentinels of τ . The next
lemma shows that each subtree in the forest T \ C is incident to at most two cut vertices. The proof of
this lemma follows similar lines as those in the proof of Lemma 2.5, and is thus omitted.

Lemma 2.7 For any subtree T ′ in the forest T \ C, no other vertex in T ′ other than its two sentinels
rt(T ′) and l(T ′) is incident to a vertex from C. Moreover, both rt(T ′) and l(T ′) are incident to at most
one vertex from C; specifically, rt(T ′) is incident to its parent in T , unless rt(T ′) is the root of T , and
l(T ′) is incident to its left-most child in T , unless l(T ′) is a leaf in T .

10

Similarly to the 1-dimensional case, we add the two sentinels rt(T) and l(T) of the original tree T to
the set C of cut vertices. From now on we refer to the appended set C̃ = C ∪ {rt(T), l(T)} as the set
of cut vertices. Intuitively, Lemma 2.7 shows that the Procedure CV “slices” the tree in a “path-like”
fashion, i.e., in a way that is analogous to the decomposition of ϑn into intervals described in Section
2.2.1. (See Figure 4 for an illustration.)

rt(T)

T1l(T1) T2

T3 T4

T6

T5

rt(T6)

l(T6)

T

rt(T1)

T7

l(T)

rt(T2)

l(T2)

l(T3)

rt(T3) rt(T4)

l(T4)

rt(T5)

l(T5)

rt(T7)

l(T7) T8

rt(T8)

l(T8) T9 T10

rt(T9)

l(T9)

rt(T10)

l(T10)

Figure 4: A “path-like” decomposition of the tree T into subtrees T1, T2, . . . , T10. The 5 cut vertices of C̃ (i.e., the 3
vertices of C and the 2 sentinels rt(T) and l(T) of T) are depicted in the figure by empty dots, whereas the 20 sentinels
of the subtrees T1, T2, . . . , T10 are depicted by filled dots. Similarly to the 1-dimensional case, each subtree Ti is incident
to at most two cut vertices. Edges in T that connect sentinels of subtrees with cut vertices are depicted by dashed lines.

Lemmas 2.3, 2.5, 2.6 and 2.7 imply the following corollary, which summarizes the properties of the
set C̃ of cut vertices.

Corollary 2.8 1. For n ≥ 2d, |C̃| ≤ (n/d) + 1.

2. The size of any subtree in the forest T \ C̃ is smaller than 2d.

3. Q̃ = Q(T, C̃) is a spanning tree of C̃ rooted at rt(T), with ∆(Q̃) ≤ ∆(T).

4. For any subtree T ′ in the forest T \ C̃, only the two sentinels rt(T ′) and l(T ′) of T ′ are incident
to a vertex from C̃. Moreover, both rt(T ′) and l(T ′) are incident to at most one vertex from C̃;
specifically, rt(T ′) is incident to its parent in T , and l(T ′) is incident to its left-most child in T ,
unless l(T ′) is a leaf in T .

Remark: The running time of the Procedure CV is O(n). Hence the set C̃ of cut vertices can be
computed in linear time.

2.3.2 1-Spanners with Low Diameter

Consider an n-vertex (weighted) tree T , and let MT be the tree metric induced by T . In this section we
devise a construction Hk(n) of 1-spanners for MT with comparable monotone diameter Λ̄(n) = Λ̄(Hk(n))
in the range Ω(α(n)) = Λ̄(n) = O(log n). Both in this construction and in the one of Section 2.3.3, all
edges of the original tree T are added to the spanner.

Let k be a fixed parameter such that 4 ≤ k ≤ n/2 − 1, and set d = n/k. (Observe that n ≥ 2k + 2
and d > 2.) To select the set C̃ of cut vertices, we invoke the procedure CV on the input (T, rt) and d.
Set C = CV ((T, rt), d) and C̃ = C ∪{rt(T), l(T)}. Since k ≥ 4, it holds that 2d = 2n/k < n. Denote the

11

subtrees in the forest T \ C̃ by T1, T2, . . . , Tp. By Corollary 2.8, |C̃| ≤ (n/d)+1 = k+1, and each subtree
Ti in T \ C̃ has size less than 2d = 2n/k. Observe that

∑p
i=1 |Ti| = n− |C̃| ≥ n− k− 1, implying that

the number p of subtrees in T \ C̃ satisfies

p ≥ n− k − 1

2n/k
≥ k/4. (3)

(The last inequality holds for k ≤ n/2− 1.)
To connect the set C̃ of cut vertices, the algorithm first constructs the tree Q̃ = Q(T, C̃). Observe

that Q̃ inherits the tree structure of T , that is, for any two points u and v in C̃, u is an ancestor of v in Q̃
if and only if it is its ancestor in T . Consequently, any 1-spanner path for the tree metric MQ̃ induced by

Q̃ between two arbitrary comparable6 points is also a 1-spanner path for the original tree metric MT . The
algorithm proceeds by building a 1-spanner for Q̃ via one of the aforementioned generalized constructions
from [15, 2, 47, 43] (henceforth, tree-spanner). In other words, O(k) edges between cut vertices are
added to the spanner Hk(n) to guarantee that the monotone distance in the spanner between any two
comparable cut vertices will be O(α(k)). Then the algorithm adds to the spanner Hk(n) edges that
connect each of the two sentinels to all other cut vertices. (In fact, the leaf l(T) needs not be connected
to all cut vertices, but rather only to those which are its ancestors in T .) Finally, the algorithm calls
itself recursively for each of the subtrees T1, T2, . . . , Tp of T . At the bottom level of the recursion, i.e.,
when n < 2k + 2, the algorithm uses the tree-spanner to connect all points, and, in addition, it adds to
the spanner edges that connect each of the two sentinels rt(T) and l(T) to all the other n− 1 points.

We denote by E(n) the number of edges in Hk(n), excluding edges of T . Clearly, E(n) satisfies the
recurrence E(n) ≤ O(k) +

∑p
i=1 E(|Ti|), with the base condition E(q) = O(q), for all q < 2k + 2. Recall

that for each i ∈ [p], |Ti| ≤ 2d = 2n/k < n, and by Equation (3), we have p ≥ k/4. Also, since C̃ is non-
empty, it holds that

∑p
i=1 |Ti| = n−|C̃| ≤ n−1. Next, we prove by induction on n that E(n) ≤ 4c(n−1),

for a sufficiently large constant c. The basis n < 2k + 2 is immediate. For n ≥ 2k + 2, the induction
hypothesis implies that

E(n) ≤ c · k + 4c ·
p∑

i=1

(|Ti| − 1) = c · k − 4c · p+ 4c ·
p∑

i=1

|Ti| ≤ c(k − 4p) + 4c(n − 1) ≤ 4c(n − 1).

(The last inequality holds as p ≥ k/4.)
Denote by ∆(n) the maximum degree of a vertex in Hk(n), excluding edges of T . Since |C̃| ≤ k + 1,

∆(n) satisfies the recurrence ∆(n) ≤ max{k,∆(2n/k)}, with the base condition ∆(q) ≤ 2k, for all
q < 2k + 2. It follows that ∆(n) ≤ 2k. Including edges of the tree T , the number of edges increases by
at most n− 1 units and the maximum degree increases by at most ∆(T) units.

Next, we show that the lightness Ψ(Hk(n)) of the spanner Hk(n) satisfies Ψ(Hk(n)) = O(k · logk n).
To this end, we extend the notion of load defined in [1]7 for 1-dimensional spaces to general tree metrics.
Consider an edge e′ = (v,w) connecting two arbitrary points in MT , and an edge e ∈ E(T). The edge e′

is said to load e if the unique path in T between the endpoints v and w of e′ traverses e. For a spanning
subgraph H of MT , the number of edges e′ ∈ E(H) that load an edge e ∈ E(T) is called the load of e by
H, and is denoted by χ(e) = χH(e). The load of H (with respect to T), χ(H) = χT (H), is the maximum
load of an edge of T by H. By double-counting,

w(H) =
∑

e′∈E(H)

w(e′) =
∑

e′∈E(H)

∑

{e∈E(T) : e loaded by e′}
w(e) =

∑

e∈E(T)

∑

{e′∈E(H) : e′ loads e}
w(e)

=
∑

e∈E(T)

χH(e) · w(e) ≤ χ(H) ·
∑

e∈E(T)

w(e) = χ(H) · w(T), (4)

6This may not hold true for two points that are not comparable, as their least common ancestor may not belong to Q̃.
7Agarwal et al. [1] used a slightly different notion which they called covering. The notion of load as defined above was

introduced in [23], but the two notions are very close.

12

implying that Ψ(H) = w(H)/w(T) ≤ χ(H). Thus it suffices to provide an upper bound of O(k · logk n)
on the load χ(Hk(n)) of Hk(n). Denote by χ(n) the load of Hk(n), excluding edges of T . After the first
level of recursion, Hk(n) contains only O(k) edges that connect cut vertices. These edges contribute O(k)
units of load to each edge of T . In particular, after the first level of recursion, each subtree in the forest
T \ C̃ is loaded by at most O(k) edges. Hence χ(n) satisfies the recurrence χ(n) ≤ O(k) + χ(2n/k), with
the base condition χ(q) = O(q), for all q < 2k + 2, yielding χ(n) = O(k · logk n). Including edges of the
tree T , the load increases by one unit, and we are done.

Next, we show that Λ̄(n) = Λ̄(Hk(n)) = O(logk n+α(k)). The leaf radius R̂(n) of Hk(n) is defined as
the maximum monotone distance between the left-most vertex l(T) in T and one of its ancestors in T . By
Corollary 2.8, similarly to the 1-dimensional case, R̂(n) satisfies the recurrence R̂(n) ≤ 2+ R̂(2n/k), with
the base condition R̂(q) = 1, for all q < 2k + 2. Hence, R̂(n) = O(logk n). Similarly, we define the root
radius Ř(n) as the maximum monotone distance between the root rt(T) of T and some other point in T .
By the same argument we get Ř(n) = O(logk n). Applying again Corollary 2.8 and reasoning similar to
the 1-dimensional case, we get that Λ̄(n) ≤ max{Λ̄(2n/k), O(α(k)) + Ř(2n/k) + R̂(2n/k)}, with the base
condition Λ̄(q) = O(α(q)), for all q < 2k + 2. It follows that Λ̄(n) = O(logk n+ α(k)).

Finally, we argue that the worst-case running time of the algorithm, denoted t(n), is O(n · logk n).
The algorithm starts by invoking the decomposition procedure for selecting the set C̃ of cut vertices. As
was mentioned above, this step requires O(n) time. Next, the algorithm builds the tree Q̃, which can
be carried out in time O(|Q̃|) = O(k). The algorithm proceeds by building the tree-spanner for Q̃. The
tree-spanner of [15, 2, 47, 43] can be built within linear time. Hence, building the tree-spanner for Q̃
requires O(k) time. Next, the algorithm adds to the spanner edges that connect each of the two sentinels
to all other cut vertices, which can be carried out within time O(k) as well. Finally, the algorithm calls
itself recursively for each of the subtrees T1, T2, . . . , Tp of T , which requires at most

∑p
i=1 t(|Ti|) time. At

the bottom level of the recursion, i.e., when n < 2k + 2, the algorithm uses the tree-spanner to connect
all points, and in addition, it adds to the spanner edges that connect each of the two sentinels of the
tree to all the other n − 1 points. Hence, the running time of the algorithm at the bottom level of the
recursion is O(n). It follows that t(n) satisfies the recurrence t(n) ≤ O(n) +

∑p
i=1 t(|Ti|), with the base

condition t(q) = O(q), for all q < 2k + 2. Recall that k ≥ 4, and for each i ∈ [p], |Ti| ≤ 2n/k < n. We
conclude that t(n) = O(n · logk n).

Theorem 2.9 For any tree metric MT and a parameter k, there exists a 1-spanner with maximum degree
at most ∆(T)+2k, diameter O(logk n+α(k)), lightness O(k · logk n), and O(n) edges. The running time
of this construction is O(n · logk n).

We remark that the maximum degree ∆(H) of the spanner H = Hk(n) cannot be in general smaller
than the maximum degree ∆(T) of the original tree. Indeed, consider a unit weight star T with edge
set {(rt, v1), (rt, v2), . . . , (rt, vn−1)}. Obviously, any spanner H for MT with ∆(H) < n − 1 distorts the
distance between the root rt and some other vertex.

2.3.3 1-Spanners with High Diameter

In this section we devise a construction H′
k(n) of 1-spanners for MT with comparable monotone diameter

Λ̄′(n) = Λ̄(H′
k(n)) in the range Λ̄′(n) = Ω(log n).

The algorithm starts with constructing the tree Q̃ = Q(T, C̃) that spans the set C̃ of cut vertices. All
edges of Q̃ are inserted intoH′

k(n). (This step is analogous to taking the edges (r0, r1), (r1, r2), . . . , (rk−1, rk)
in the 1-dimensional construction of Section 2.2.3.) Observe that the depth of Q̃ is at most k, implying
that any two comparable cut vertices are connected via a 1-spanner path in Q̃ that consists of at most
k edges; since Q̃ inherits the tree structure of T , this path is also a 1-spanner path for the original tree
metric MT . Then the algorithm calls itself recursively for each of the subtrees T1, T2, . . . , Tp of T . At
the bottom level of the recursion, i.e., when n < 2k + 2, the algorithm adds no additional edges to the
spanner.

13

Similarly to Section 2.3.2 it follows that the number of edges in H′
k(n) is O(n). Next, we analyze

the maximum degree of this construction. Denote by ∆′(n) the maximum degree of a vertex in H′
k(n),

excluding edges of T , and let ∆0 = ∆(T) denote the maximum degree of the original tree T . By the third
assertion of Corollary 2.8, ∆(Q̃) ≤ ∆0, and so ∆′(n) satisfies the recurrence ∆′(n) ≤ max{∆0,∆

′(2n/k)},
with the base condition ∆′(q) = 0, for all q < 2k + 2, yielding ∆′(n) ≤ ∆0. It follows that the maximum
degree ∆(H′

k(n)) of H′
k(n) is at most 2 ·∆0 = 2 ·∆(T).

Next, we show that the load χ(H′
k(n)) of H′

k(n) is O(logk n), which, by (4), implies that Ψ(H′
k(n)) =

O(logk n). Denote by χ′(n) the load of H′
k(n), excluding edges of T . After the first level of recursion,

H′
k(n) contains just the edges of the tree Q̃. We argue that each edge e = (u, v) of T is loaded by at most

one edge of Q̃. Indeed, if both u and v are cut vertices, then e is also an edge of Q̃, and so it is loaded
by itself. Otherwise, either u or v (or both of them) belongs to some subtree Ti in the forest T \ C̃. In
this case, the fourth assertion of Corollary 2.8 implies that e is loaded by at most one edge in Q̃, namely,
the edge connecting the parent of rt(Ti) in T and the left-most child of l(Ti) in T , if exists. In particular,
after the first level of recursion, each subtree in the forest T \ C̃ is loaded by at most one edge. Hence
χ′(n) satisfies the recurrence χ′(n) ≤ 1 + χ′(2n/k), with the base condition χ′(q) = 0, for all q < 2k + 2.
It follows that χ′(n) = O(logk n). Including edges of T , the load increases by one unit, and we are done.

By Corollary 2.8, similarly to the 1-dimensional case, the leaf radius R̂′(n) of H′
k(n) satisfies the

recurrence R̂′(n) ≤ k + R̂′(2n/k), with the base condition R̂′(q) ≤ q − 1, for all q < 2k + 2, yielding
R̂′(n) = O(k · logk n). Similarly, we get that Ř′(n) = O(k · logk n). Applying Corollary 2.8 and reasoning
similar to the 1-dimensional case, we get that the comparable monotone diameter Λ̄′(n) = Λ̄(H′

k(n)) of

H′
k(n) satisfies the following recurrence Λ̄′(n) ≤ max{Λ̄′(2n/k), k + Ř′(2n/k) + R̂′(2n/k)}, with the base

condition Λ̄′(q) ≤ q − 1, for all q < 2k + 2. It follows that Λ̄′(n) = O(k · logk n).
We remark that H′

k(n) is a planar graph.
Finally, by employing an argument very similar to the one used in Section 2.3.2, we get that the

worst-case running time of the algorithm is O(n · logk n).

Theorem 2.10 For any tree metric MT and a parameter k, there exists a 1-spanner with maximum
degree at most 2 · ∆(T), diameter O(k · logk n), lightness O(logk n), and O(n) edges. Moreover, this
1-spanner is a planar graph. The running time of this construction is O(n · logk n).

3 Euclidean Spanners

In this section we demonstrate that our 1-spanners for tree metrics can be used for constructing Euclidean
spanners and spanners for doubling metrics.

We start with employing the Dumbbell Theorem of [4] in conjunction with our 1-spanners for tree
metrics to construct Euclidean spanners.

Theorem 3.1 (“Dumbbell Theorem”, Theorem 2 in [4]) Given a set S of n points in R
d and a parameter

ǫ > 0, a forest D consisting of O(1) rooted binary trees of size O(n) each can be built in time O(n · log n),
having the following properties:

1. For each tree in D, there is a 1-1 correspondence between the leaves of this tree and the points of S.

2. Each internal vertex in the tree has a unique representative point, which can be selected arbitrarily
from the points in any of its descendant leaves.

3. Given any two points u, v ∈ S, there is a tree in D, so that the path formed by walking from
representative to representative along the unique path in that tree between these vertices, is a (1+ǫ)-
spanner path for u and v.

For each dumbbell tree in D, we use the following representative assignment from [4]. Leaf labels are
propagated up the tree. An internal vertex chooses to itself one of the propagated labels and propagates

14

the other one up the tree. Each label is used at most twice, once at a leaf and once at an internal vertex.
Any label assignment induces a weight function over the edges of the dumbbell tree in the obvious way.
(The weight of an edge is set to be the Euclidean distance between the representatives corresponding to
the two endpoints of that edge.) Arya et al. [4] proved that the lightness of dumbbell trees is always
O(log n), regardless of which representative assignment is chosen for the internal vertices.

Next, we describe our construction of Euclidean spanners with diameter in the range Ω(α(n)) = Λ =
O(log n).

We remark that each dumbbell tree has size O(n). For each (weighted) dumbbell tree DTi ∈ D, denote
by Mi the O(n)-point tree metric induced by DTi. To obtain our construction of (1 + ǫ)-spanners with
low diameter, we set k = n1/Λ, and build the 1-spanner construction Hi = Hi

k(O(n)) that is guaranteed
by Theorem 2.9 for each of the tree metrics Mi. Then we translate each Hi to be a spanning subgraph
H̆i of S in the obvious way. (Each edge in Hi is replaced with an edge that connects the representatives
corresponding to the endpoints of that edge.) Finally, let Ek(n) be the spanner obtained from the union
of all the graphs H̆i.

Theorem 2.9 implies that each graph H̆i contains only O(n) edges. By the Dumbbell Theorem, Ek(n)
is the union of a constant number of such graphs. Thus the total number of edges in Ek(n) is O(n).

We proceed by showing that Ek(n) is a (1 + ǫ)-spanner for S with diameter Λ = Λ(Ek(n)) at most
O(logk n + α(k)). By the Dumbbell Theorem, for any pair u, v of points in S, there is a dumbbell
tree DTi, so that the unique path Pu,v connecting u and v in DTi is a (1 + ǫ)-spanner path for them.
Theorem 2.9 implies that there is a 1-spanner path P in Hi between u and v that consists of at most
O(logk n+ α(k)) edges. By the triangle inequality, the weight of the corresponding translated path P̆ in
H̆i is no greater than the weight of Pu,v. Hence, P̆ is a (1 + ǫ)-spanner path for u and v that consists of
at most O(logk n+ α(k)) edges.

Next, we show that the maximum degree ∆(Ek(n)) of Ek(n)) is O(k). Since each dumbbell tree DTi

is binary, Theorem 2.9 implies that ∆(Hi) = O(k). Recall that each label is used at most twice in DTi,
and so ∆(H̆i) ≤ 2 ·∆(Hi) = O(k). The union of O(1) such graphs will also have maximum degree O(k).

We argue that the lightness Ψ(Ek(n)) of Ek(n) isO(k·logk n·log n). Consider an arbitrary dumbbell tree
DTi. Recall that the lightness of all dumbbell trees is O(log n), and so w(DTi) = O(log n) ·w(MST (S)).
By Theorem 2.9, the weight w(Hi) of Hi is at most O(k·logk n)·w(DTi) = O(k·logk n·log n)·w(MST (S)).
By the triangle inequality, the weight of each edge in H̆i is no greater than the corresponding weight in Hi,
implying that the weight w(H̆i) of the graph H̆i satisfies w(H̆i) ≤ w(Hi) = O(k·logk n·log n)·w(MST (S)).
The union of O(1) such graphs will also have weight O(k · logk n · log n) · w(MST (S)).

Finally, we bound the running time of this construction. By the Dumbbell Theorem, the forest D
of dumbbell trees can be built in O(n · log n) time. Theorem 2.9 implies that we can compute each of
the graphs Hi in time O(n · logk n) = O(n · log n). Moreover, as each graph Hi contains only O(n)
edges, translating it into a graph H̆i as described above can be carried out in O(n) time. Since there is
a constant number of such graphs, it follows that the overall time needed to compute our construction
Ek(n) of Euclidean spanners is O(n · log n).

To obtain our construction of Euclidean spanners for the complementary range Λ = Ω(log n), we use
our 1-spanners for tree metrics from Theorem 2.10 instead of Theorem 2.9.

Corollary 3.2 For any set S of n points in R
d, any ǫ > 0 and a parameter k, there exists a (1 + ǫ)-

spanner with maximum degree O(k), diameter O(logk n+ α(k)), lightness O(k · logk n · log n), and O(n)
edges. There also exists a (1+ǫ)-spanner with maximum degree O(1), diameter O(k ·logk n), and lightness
O(logk n · log n). Both these constructions can be implemented in time O(n · log n).

In Appendix A we show that the lightness of well-separated pair constructions for random point sets
in the unit cube is (w.h.p.) O(1). Also, the lightness of well-separated pair constructions provides an
asymptotic upper bound on the lightness of dumbbell trees. We derive the following result as a corollary.

15

Corollary 3.3 For any set S of n points that are chosen independently and uniformly at random from
the unit cube, any ǫ > 0 and a parameter k, there exists a (1 + ǫ)-spanner with maximum degree O(k),
diameter O(logk n+ α(k)), lightness (w.h.p.) O(k · logk n), and O(n) edges. There also exists a (1 + ǫ)-
spanner with maximum degree O(1), diameter O(k · logk n), and lightness (w.h.p.) O(logk n). Both these
constructions can be implemented in time O(n · log n).

Arya et al. [4] devised a well-separated pair construction of (1 + ǫ)-spanners with both diameter and
lightness at most O(log n). In addition, Lenhof et al. [35] showed that there exist point sets for which
any well-separated pair construction must admit lightness at least Ω(log n). While this existential bound
holds true in the worst-case scenario, our probabilistic upper bound of O(1) on the lightness of well
separated pair constructions for random point sets implies that on average one can do much better.

Corollary 3.4 For any set S of n points that are chosen independently and uniformly at random from
the unit cube, there exists a (1 + ǫ)-spanner with diameter O(log n), lightness (w.h.p.) O(1), and O(n)
edges. This construction can be implemented in O(n · log n) time.

Chan et al. [12] showed that for any doubling metric (X, δ) there exists a (1 + ǫ)-spanner with
constant maximum degree. On the way to this result they proved the following lemma, which we employ
in conjunction with our 1-spanners for tree metrics to construct spanners for doubling metrics.

Lemma 3.5 (Lemma 3.1 in [12]) For any doubling metric (X, δ), there exists a collection T of m =
O(1) spanning trees for (X, δ), T = {τ1, τ2, . . . , τm}, that satisfies the following two properties:

1. For each index i ∈ [m], the maximum degree ∆(τi) of the tree τi is constant, i.e., ∆(τi) = O(1).

2. For each pair of points x, y ∈ X there exists an index i ∈ [m], such that distτi(x, y) = O(1) · δ(x, y).

To obtain our spanners for doubling metrics we start with constructing the collection T = {τ1, τ2, . . . , τm}
of spanning trees with properties listed in Lemma 3.5. Next, we apply Theorem 2.9 with some parameter
k to construct a 1-spanner Zi = Zi

k(n) for the tree metric induced by the ith tree τi in T , for each i ∈ [m].
Notice that, in general, edge weights in the graphs Zi, i ∈ [m], may be greater than the corresponding
metric distances; for each i ∈ [m], let Z̆i be the graph obtained from Zi, by assigning weight δ(x, y) to
each edge (x, y) ∈ Zi. Our spanner Z is set to be the union of all the graphs Z̆i, i.e., Z =

⋃m
i=1 Z̆i.

By Theorem 2.9, each of the graphs Z̆i contains only O(n) edges. Hence, the number of edges in Z
is at most m · O(n) = O(n).

To argue that Z is an O(1)-spanner for (X, δ) consider a pair of points x, y ∈ X. By Lemma 3.5,
there exists an index i ∈ [m], such that distτi(x, y) = O(1) · δ(x, y). Since Zi is a 1-spanner for the metric
induced by τi, it follows that distZi(x, y) = distτi(x, y). Also, we have distZ̆i(x, y) ≤ distZi(x, y). Finally,

since Z̆i ⊆ Z, we conclude that distZ(x, y) ≤ distZ̆i(x, y) ≤ distZi(x, y) = distτi(x, y) = O(1) · δ(x, y).
Observe also that Λ(Zi) = O(logk n+ α(k)), and so there is a path between x and y in Zi that consists
of at most Λ(Zi) edges and has length at most distZi(x, y). Consequently, Λ(Z) = O(logk n+ α(k)).

By Theorem 2.9, the maximum degree of each graph Z̆i satisfies ∆(Z̆i) ≤ ∆(τi) + 2k. By Lemma
3.5, for each index i ∈ [m], ∆(τi) = O(1). Hence ∆(Z̆i) = O(k). Since m = O(1), it follows that
∆(Z) ≤ ∑m

i=1∆(Z̆i) ≤ m · O(k) = O(k), and we are done.

Corollary 3.6 For any n-point doubling metric (X, δ) and a parameter k, there exists an O(1)-spanner
with maximum degree O(k), diameter O(logk n+ α(k)), and O(n) edges.

4 Acknowledgments

We are grateful to Sunil Arya, David Mount and Michiel Smid for helpful discussions.

16

References

[1] P. K. Agarwal, Y. Wang, and P. Yin. Lower bound for sparse Euclidean spanners. In Proc. of 16th SODA,
pages 670–671, 2005.

[2] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Manuscript, 1987.
[3] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete

& Computational Geometry, 9:81–100, 1993.
[4] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Smid. Euclidean spanners: short, thin, and lanky.

In Proc. of 27th STOC, pages 489–498, 1995.
[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate

nearest neighbor searching in fixed dimensions. J. ACM, 45(6):819–923, 1998.
[6] S. Arya and M. H. M. Smid. Efficient construction of a bounded degree spanner with low weight. Algorithmica,

17(1):33–54, 1997.
[7] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P. Woodruff. Transitive-closure spanners.

In Proc. of 20th SODA, pages 932–941, 2009.
[8] H. L. Bodlaender, G. Tel, and N. Santoro. Trade-offs in non-reversing diameter. Nord. J. Comput., 1(1):111–

134, 1994.
[9] P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point-sets with applications to

k-nearest-neighbors and n-body potential fields. In Proc. of 24th STOC, pages 546–556, 1992.
[10] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higher dimensions.

In Proc. of 4th SODA, pages 291–300, 1993.
[11] H. T.-H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling metrics. In Proc. of 17th

SODA, pages 70–78, 2006.
[12] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in doubling metrics. In Proc.

of 16th SODA, pages 762–771, 2005.
[13] T. M. Chan. Well-separated pair decomposition in linear time? Inf. Process. Lett., 107(5):138–141, 2008.
[14] B. Chandra. Constructing sparse spanners for most graphs in higher dimensions. Inf. Process. Lett., 51(6):289–

294, 1994.
[15] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica, 2:337–361, 1987.
[16] B. Chazelle and B. Rosenberg. The complexity of computing partial sums off-line. Int. J. Comput. Geom.

Appl., 1:33–45, 1991.
[17] L. P. Chew. There is a planar graph almost as good as the complete graph. In Proc. of 2nd SOCG, pages

169–177, 1986.
[18] G. Das, P. J. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional euclidean space. In

Proc. of 9th SOCG, pages 53–62, 1993.
[19] G. Das and D. Joseph. Which triangulations approximate the complete graph? In Proc. of the International

Symp. on Optimal Algorithms, volume 401 of Lecture Notes in Computer Science, pages 168–192, 1989.
[20] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. In Proc. of 10th

SOCG, pages 132–139, 1994.
[21] G. Das, G. Narasimhan, and J. S. Salowe. A new way to weigh malnourished euclidean graphs. In Proc. of

6th SODA, pages 215–222, 1995.
[22] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and

Applications, third edition. Springer-Verlag, Heidelberg, 2008.
[23] Y. Dinitz, M. Elkin, and S. Solomon. Low-light trees, and tight lower bounds for Euclidean spanners. Discrete

& Computational Geometry, 43(4):736–783, 2010.
[24] J. Fischer and S. Har-Peled. Dynamic well-separated pair decomposition made easy. In Proc. of 17th CCCG,

pages 235–238, 2005.
[25] G. N. Frederickson. A data structure for dynamically maintaining rooted trees. In Proc. of 4th SODA, pages

175–184, 1993.
[26] L. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric spaces. In Proc. of 16th ESA,

pages 478–489, 2008.
[27] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for constructing sparse geo-

metric spanners. SIAM J. Comput., 31(5):1479–1500, 2002.
[28] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate distance oracles for

geometric graphs. In Proc. of 13th SODA, pages 828–837, 2002.
[29] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate distance oracles for

geometric spanners. ACM Transactions on Algorithms, 4(1), 2008.

17

[30] J. Gudmundsson, G. Narasimhan, and M. H. M. Smid. Fast pruning of geometric spanners. In Proc. of 22nd
STACS, pages 508–520, 2005.

[31] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and their applications. In
Proc. of 21st SOCG, pages 150–158, 2005.

[32] Y. Hassin and D. Peleg. Sparse communication networks and efficient routing in the plane. In Proc. of 19th
PODC, pages 41–50, 2000.

[33] J. M. Keil. Approximating the complete euclidean graph. In Proc. of 1st SWAT, pages 208–213, 1988.
[34] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete euclidean graph. Discrete &

Computational Geometry, 7:13–28, 1992.
[35] H. P. Lenhof, J. S. Salowe, and D. E. Wrege. New methods to mix shortest-path and minimum spanning

trees. manuscript, 1994.
[36] Y. Mansour and D. Peleg. An approximation algorithm for min-cost network design. DIMACS Series in

Discr. Math and TCS, 53:97–106, 2000.
[37] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, 2007.
[38] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput., 18(4):740–747,

1989.
[39] M. Pǎtraşcu and E. D. Demaine. Tight bounds for the partial-sums problem. In Proc. of 15th SODA, pages

20–29, 2004.
[40] S. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”. In Proc. of 30th

STOC, pages 540–550, 1998.
[41] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph. In Proc. of 3rd CCCG,

pages 207–210, 1991.
[42] M. H. M. Smid. Private communication.
[43] S. Solomon. An optimal-time construction of sparse euclidean spanners with tiny diameter. In Proc. of 22st

SODA, pages 820–839, 2011.
[44] R. E. Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–715, 1979.
[45] M. Thorup. On shortcutting digraphs. In Proc. of 18th WG, pages 205–211, 1992.
[46] M. Thorup. Shortcutting planar digraphs. Combinatorics, Probability & Computing, 4:287–315, 1995.
[47] M. Thorup. Parallel shortcutting of rooted trees. J. Algorithms, 23(1):139–159, 1997.
[48] A. C. Yao. Space-time tradeoff for answering range queries. In Proc. of 14th STOC, pages 128–136, 1982.

18

Appendix

A Well-Separated Pair Constructions for Random Point Sets

In this appendix we show that for any set S of points that are chosen independently and uniformly at
random from the unit square, the lightness of well-separated pair constructions is (w.h.p.) O(1). Our
argument also extends to higher constant dimensions.

The following lemma from [37] provides a lower bound on the weight of MST (S).

Lemma A.1 (Lemma 15.1.6 in [37]) For a set S of n points that are chosen independently and uni-
formly at random from the unit square, there are constants c > 0 and 0 < ρ < 1, such that
Pr(w(MST (S)) < c · √n) ≤ ρn.

The following statement shows that the lightness of well-separated pair constructions for S is (w.h.p.)
O(1).

Proposition A.2 For any set S of n points in the unit square, the weight of well-separated pair con-
structions is O(

√
n).

Before we prove Proposition A.2, we provide (Appendix A.1) the relevant background and introduce some
notation. The proof of Proposition A.2 appears in Appendix A.2.

Remark: After communicating this result to Michiel Smid, he [42] pointed out the following alter-
native argument for obtaining this probabilistic bound of O(1) on the lightness of well-separated pair
constructions. First, Chandra [14] showed that for random point sets in the unit cube, any edge set that
satisfies the gap property has lightness (w.h.p.) O(1). Second, consider the edge set E of the dumbbell
trees of [4]. As shown in [4] this set can be partitioned into E = E′ ∪ E′′, such that E′ satisfies the gap
property and w(E′′) = O(w(E′)). Finally, use the observation that the lightness of well-separated pair
constructions is asymptotically equal to that of dumbbell trees. On the other hand, our proof employs
a simple, self-contained, combinatorial argument for analyzing the lightness of well-separated pair con-
structions directly. Hence we believe that our approach is advantageous, since, in particular, it does not
take a detour through the heavy dumbbell trees machinery of [4].

A.1 Background and Notation

In what follows, let s > 0 be a real fixed number.
We say that two point sets in the plane A and B are well-separated with respect to s if A and B

can be enclosed in two circles of radius r, such that the distance between the two circles is at least s · r.
The number s is called the separation ratio of A and B. A well-separated pair decomposition (WSPD)
for a point set P in the plane with respect to s is a set {{A1, B1}, {A2, B2}, . . . , {Am, Bm}} of pairs of
nonempty subsets of P , for some integer m, such that: 1) For each i ∈ [m], Ai and Bi are well-separated
with respect to s, 2) For any two distinct points p and q of P , there is exactly one index i in [m], such
that either p ∈ Ai and q ∈ Bi, or p ∈ Bi and q ∈ Ai.

Next, we describe a well-known algorithm due to Callahan and Kosaraju [9] for computing a WSPD
for P with respect to s. The algorithm consists of two phases. In the first phase, we construct a split tree,
that is, a tree that corresponds to a hierarchical decomposition of P into rectangles of bounded aspect
ratio, where rectangles serve as vertices of the tree, each being split into smaller rectangles as long as
it contains more than one point of P . Observe that the split tree does not depend on s. In the second
phase, we employ the split tree to construct the WSPD itself.

There are many variants of a split tree, and we outline below the fair split tree due to Callahan and
Kosaraju [9]. Place a smallest-possible rectangle R(P) about the point set P . The root of the fair split
tree is R(P). Choose the longer side of R(P) and divide it into two equal parts, thus splitting R(P) into
two smaller rectangles of equal size, Rl and Rr. The left and right subtrees of the root R(P) are the

i

fair split trees that are constructed recursively for the point sets Rl ∩ P and Rr ∩ P , respectively. This
recursive process is repeated until a single point remains, in which case the split tree consists of just a
single vertex that stores this point. Following Arya et al. [4], we consider a fair split tree in an ideal form,
henceforth the idealized box split tree. In this tree rectangles are squares, each split recursively into four
identical squares of half the side length. In other words, the idealized box split tree is a quadtree. (Refer
to Chapter 14 of [22] for the definition of quadtree.) While actual constructions will be performed using
the fair split tree or other closely related variants (see, e.g., the compressed quadtrees of [24] and [13],
and the balanced box-decomposition tree of [5]), the idealized box split tree provides a clean and elegant
way of conceptualizing the fair split tree in all its variants for purposes of analysis.

North(v)

East(v)West(v)

South(v)

v4

v2

v1

v3

Figure 5: An illustration of a typical internal vertex v in T . The vertex v has four children v1, v2, v3 and v4, each being a
square of half the side length side(v)/2. Each child vi of v, i ∈ [4], has four children of its own (unless it is a leaf), of side length
side(v)/22 each, and so on. In the illustration only the four children of v2 are depicted.

Consider the idealized box split tree T = T (P) that is constructed for P . We identify each vertex
v in the tree T with the square in the plane corresponding to it. For example, the root rt = rt(T) of
T is identified with the smallest-possible square R(P) about the point set P . Thus referring to, e.g.,
the side length of a vertex v in T , is well-defined. Suppose without loss of generality that the sides
of the square rt are parallel to the x and y axes. Consequently, each vertex v of T is a square whose
sides are parallel to the x and y axes. Denote the four sides of v by North(v), South(v), East(v)
and West(v), with North(v) and South(v) (respectively, East(v) and West(v)) being parallel to the
x-axis (resp., y-axis). Denote the four children of an internal vertex v in T by v1, v2, v3 and v4, each
being a square of half the side length of v, where v1, v2, v3 and v4 are the North-Eastern, South-
Eastern, South-Western and North-Western parts of v, respectively. The side length of v is denoted
by side(v). Notice that each child of rt has side length side(rt)

2 , each grandchild of rt has side length
side(rt)

22
, etc. More generally, a vertex v in T of level8 L(v), 0 ≤ L(v) ≤ depth(T), has side length

side(v) = side(rt)

2L(v) . (See Figure 5 for an illustration.) Define P (v) = v ∩ P . The vertex v is called empty
if P (v) = ∅. Otherwise, it is non-empty. The depth of a vertex v in T is defined as the depth of the
subtree Tv of T rooted at v. For any two vertices u and v in T , we denote by dist(u, v) the distance
of closest approach between u and v, i.e., the minimum distance between a point lying on the boundary
of u and a point lying on the boundary of v. Also, we denote by distMax(P (u), P (v)) the maximum
distance between a point in P (u) and a point in P (v). Clearly, distMax(P (u), P (v)) is no smaller than
dist(u, v). On the other hand, it is bounded from above by the distance of furthest approach between u
and v, i.e., the maximum distance between a point lying on the boundary of u and a point lying on the
boundary of v, which is, in turn, bounded from above by dist(u, v) + 2

√
2 ·max{side(u), side(v)}. Thus,

dist(u, v) ≤ distMax(P (u), P (v)) ≤ dist(u, v) + 2
√
2 ·max{side(u), side(v)}.

To compute the WSPD of P , we use a simple recursive algorithm which consists of the two proce-
dures below. (This algorithm is essentially taken from Callahan and Kosaraju [9].) We initially invoke
Procedure 1 below by making the call WSPD(rt(T)), where rt(T) = R(P). The output returned by this
call is the WSPD for P . We omit the proof of correctness, which resembles that of [9]. Notice that for

8The level of a vertex in a rooted tree is defined as its unweighted distance from the root.

ii

any pair of vertices u and v in T , both calls WSPD(u, v) and WSPD(u) return sets of well-separated
pairs of P . In what follows we write WSPD(u, v) and WSPD(u) to refer to the sets that are returned
by these calls (rather than to the calls themselves).

Procedure 1 WPSD(u) :

1: if |P (u)| ≤ 1 then
2: return ∅
3: end if
4: return

⋃
1≤i≤4WSPD(ui) ∪

⋃
1≤i<j≤4WSPD(ui, uj)

Procedure 2 WPSD(u, v) :

1: if P (u) = ∅ or P (v) = ∅ then
2: return ∅
3: end if
4: if P (u) and P (v) are well-separated then
5: return {{P (u), P (v)}}
6: end if
7: if side(u) ≥ side(v) then
8: return

⋃
1≤i≤4 WSPD(ui, v)

9: else
10: return

⋃
1≤i≤4 WSPD(u, vi)

11: end if

A representative assignment for the split tree T = T (P) is a mapping ϕ between vertices of T and
points of P , sending each vertex v in T to a point ϕ(v) in P (v). The point ϕ(v) is called the representative
of v under the mapping ϕ. We say that a pair (A,B) of nonempty sets of P belongs to T , if there are
two vertices u and v in T , such that A = P (u) and B = P (v). Given a representative assignment ϕ,
there is a natural correspondence between a well-separated pair {P (u), P (v)} that belongs to T and the
edge (ϕ(u), ϕ(v)) connecting the representatives of u and v under ϕ. In the same way, there is a natural
correspondence between a set S of well-separated pairs of P that belong to T and the edge set Eϕ(S),
where Eϕ(S) = {(ϕ(u), ϕ(v)) | {P (u), P (v)} ∈ S}. The weight w(H) of an edge set H is defined as the
sum

∑
e=(u,v)∈H w(u, v) of all edge weights in it, where w(u, v) = ‖u − v‖. Callahan and Kosaraju [10]

showed that for any representative assignment ϕ, the edge set E∗ = Eϕ(WSPD(P)) that corresponds
to WSPD(P) = WSPD(rt(T)) constitutes a (1 + ǫ)-spanner (with O(n) edges), henceforth the WSPD-
spanner of P , where ǫ is an arbitrarily small constant depending on s. (It can be easily shown that
ǫ ≤ 8

s−4 .)

A.2 Proof of Proposition A.2

In this section we prove Proposition A.2.
Let P be an arbitrary set of n points in the plane, and let T = T (P) andWSPD(P) = WSPD(rt(T))

be the idealized box split tree and the WSPD that are constructed for it, respectively. Also, fix an
arbitrary representative assignment ϕ for T . Next, we show that the weight w(E∗) of the WSPD-spanner
E∗ = Eϕ(WSPD(P)) is at most c∗ ·side(rt(T))·√n, where c∗ is a sufficiently large constant that depends
only on s. (We do not try to optimize the constant c∗.) In particular, for a point set P in the unit square
we have side(rt(T)) = 1, thus proving Proposition A.2.

Observe that for any two vertices u and v in T , both WSPD(u, v) and WSPD(u) are sets of
well-separated pairs of P that belong to T . Henceforth, we write W (u, v) and W (u) as shortcuts for
w(Eϕ(WSPD(u, v))) and w(Eϕ(WSPD(u))), respectively.

iii

Lemma A.3 Let u and v be two vertices in T , such that dist(u, v) = c ·max{side(u), side(v)}, for some
constant 1/2 ≤ c ≤

√
2. Then W (u, v) ≤ α ·max{side(u), side(v)}, where α = αs is a sufficiently large

constant that depends only on s.

Proof: From standard packing arguments, it follows that |WSPD(u, v)| ≤ α̃, where α̃ = α̃s is a suf-
ficiently large constant that depends only on s. For each pair {P (x), P (y)} in WSPD(u, v), the weight
‖ϕ(x)−ϕ(y)‖ of the corresponding edge (ϕ(x), ϕ(y)) is at most dist(u, v)+2

√
2·max{side(u), side(v)} =

(c + 2
√
2) · max{side(u), side(v)}. Define α = α̃(c + 2

√
2). It follows that W (u, v) ≤ α̃(c + 2

√
2) ·

max{side(u), side(v)} = α ·max{side(u), side(v)}. �

yb) x

z

w
a)

Figure 6: a) Two diagonal vertices w and z. b) Two adjacent vertices x and y.

We say that two vertices u and v in T of the same level are diagonal if their boundaries intersect
at a single point. (See Figure 6.a for an illustration.) For example, for any vertex v in T , its two
children v1 and v3 are diagonal. Consider two diagonal vertices u and v in T . Since by definition
they are at the same level in T , it holds that side(u) = side(v). Also, notice that dist(u, v) = 0 and
‖ϕ(u) − ϕ(v)‖ ≤ distMax(P (u), P (v)) ≤ 2

√
2 · side(u).

Lemma A.4 For any two diagonal vertices u and v in T , W (u, v) ≤ β · side(u), where β = βs is a
sufficiently large constant that depends only on s.

Proof: The proof is by induction on the sum h = depth(u) + depth(v) of depths of u and v.
Basis: h = 0. In this case both u and v are leaves, and so each one of them contains at most one point.
If either u or v is empty, then WSPD(u, v) is an empty set, and so W (u, v) = 0 < β · side(u). Otherwise,
WSPD(u, v) = {{P (u), P (v)}}, and so W (u, v) = ‖ϕ(u) − ϕ(v)‖ ≤ 2

√
2 · side(u) < β · side(u).

Induction Step: We assume the correctness of the statement for all smaller values of h, h ≥ 1, and prove
it for h. If either u or v is empty, then WSPD(u, v) is an empty set, and so W (u, v) = 0 < β · side(u).
Otherwise, if P (u) and P (v) are well-separated then WSPD(u, v) = {{P (u), P (v)}}, and so W (u, v) =
‖ϕ(u) − ϕ(v)‖ ≤ 2

√
2 · side(u) < β · side(u). We henceforth assume that P (u) and P (v) are not well-

separated. In this case WSPD(u, v) =
⋃

1≤i≤4 WSPD(ui, v), and so W (u, v) =
∑

1≤i≤4 W (ui, v). Since
u and v are diagonal, the intersection of v and exactly one child of u consists of a single point, whereas
all the other children of u are disjoint from v. Suppose without loss of generality that the child of u that
intersects v is u1. (See Figure 7.a for an illustration.) Observe that dist(u2, v) = dist(u4, v) =

1
2 · side(v)

and dist(u3, v) =
1√
2
·side(v). Hence, by Lemma A.3, for each 2 ≤ i ≤ 4, W (ui, v) ≤ α ·side(v). Next, we

bound W (u1, v). If u1 is empty, then WSPD(u1, v) is an empty set, and so W (u1, v) = 0. Also, if P (u1)
and P (v) are well-separated, then WSPD(u1, v) = {{P (u1), P (v)}}, and so W (u1, v) = ‖ϕ(u1)−ϕ(v)‖ ≤
2
√
2 · side(v). Otherwise, WSPD(u1, v) =

⋃
1≤i≤4WSPD(u1, vi), and so W (u1, v) =

∑
1≤i≤4W (u1, vi).

Observe that dist(u1, v2) = dist(u1, v4) = side(u1) and dist(u1, v1) =
√
2 · side(u1). Hence, by Lemma

A.3, for each i 6= 3, W (u1, vi) ≤ α · side(u1) = α
2 · side(u). Notice that u1 and v3 are diagonal, and so by

the induction hypothesis, W (u1, v3) ≤ β · side(u1) = β
2 · side(u). Set β = 9α. Altogether,

W (u, v) =
∑

2≤i≤4

W (ui, v) +W (u1, v) ≤ 3α · side(v) +
∑

1≤i≤4,i 6=3

W (u1, vi) +W (u1, v3)

≤ 3α · side(v) + 3 · α
2
· side(u) + β

2
· side(u) = side(u) ·

(
9α

2
+

β

2

)
= β · side(u).

iv

�

v4

v2

v1

v3

u4

u2

u1

u3

b)a)

u

v

u4

u2

u1

u3

u

v4

v2

v1

v3

v

Figure 7: a) An illustration of two diagonal vertices u and v. The vertex u1 is diagonal to both u3 and v3. The vertices u1

and v3 intersect at the same point as their respective parents u and v do. b) An illustration of two adjacent vertices u and v.
The vertex u1 is adjacent to u2, u4 and v4. The vertices u1 and v4 intersect at a single side, which is the upper half of the side
at which their respective parents u and v intersect.

We say that two vertices u and v in T of the same level are adjacent if their boundaries intersect
at a single side. (See Figure 6.b for an illustration.) For example, for any vertex v in T , its two
children v1 and v2 are adjacent. Consider two adjacent vertices u and v in T . Since by definition
they are at the same level in T , it holds that side(u) = side(v). Also, notice that dist(u, v) = 0 and
‖ϕ(u) − ϕ(v)‖ ≤ distMax(P (u), P (v)) ≤

√
5 · side(u). For a vertex v in T , define N(v) = |P (v)|.

Lemma A.5 For any two adjacent vertices u and v in T such that N(u) + N(v) ≥ 1, W (u, v) ≤
γ · side(u) · log(N(u) +N(v)), where γ = γs is a sufficiently large constant that depends only on s.

Proof: The proof is by induction on the sum h = depth(u) + depth(v) of depths of u and v.
Basis: h = 0. In this case both u and v are leaves, and so each one of them contains at most one point. If
either u or v is empty, thenWSPD(u, v) is an empty set, and soW (u, v) = 0 = γ·side(u)·log 1. Otherwise,
WSPD(u, v) = {{P (u), P (v)}}, and so W (u, v) = ‖ϕ(u) − ϕ(v)‖ ≤

√
5 · side(u) < γ · side(u) · log 2.

Induction Step: We assume the correctness of the statement for all smaller values of h, h ≥ 1, and prove
it for h. If either u or v is empty, then WSPD(u, v) is an empty set, and so W (u, v) = 0 ≤ γ · side(u) ·
log(N(u) +N(v)). Otherwise, if P (u) and P (v) are well-separated then WSPD(u, v) = {{P (u), P (v)}},
and so W (u, v) = ‖ϕ(u) − ϕ(v)‖ ≤

√
5 · side(u) < γ · side(u) · log(N(u) +N(v)). We henceforth assume

that P (u) and P (v) are not well-separated. In this case WSPD(u, v) =
⋃

1≤i≤4 WSPD(ui, v), and so
W (u, v) =

∑
1≤i≤4W (ui, v). Since u and v are adjacent, exactly two adjacent children ui and ui+1

of u intersect v, i ∈ [3], each at a single side. Suppose without loss of generality that these children
of u are u1 and u2. (See Figure 7.b for an illustration.) Observe that dist(u3, v) = dist(u4, v) =
1
2 · side(v). Hence, by Lemma A.3, W (u3, v),W (u4, v) ≤ α · side(v). Next, we bound W (u1, v). If u1
is empty, then WSPD(u1, v) is an empty set, and so W (u1, v) = 0. Also, if P (u1) and P (v) are well-
separated, then WSPD(u1, v) = {{P (u1), P (v)}}, and so W (u1, v) = ‖ϕ(u1) − ϕ(v)‖ ≤

√
5 · side(v).

Otherwise, WSPD(u1, v) =
⋃

1≤i≤4 WSPD(u1, vi), and so W (u1, v) =
∑

1≤i≤4 W (u1, vi). Observe that
dist(u1, v1) = dist(u1, v2) = side(u1). Hence, by Lemma A.3, W (u1, v1),W (u1, v2) ≤ α · side(u1) =
α
2 · side(u). Notice that u1 and v3 are diagonal, whereas u1 and v4 are adjacent. Hence, by Lemma A.4,

W (u1, v3) ≤ β · side(u1) = β
2 · side(u). Recall that u1 is non-empty, and so N(u1) +N(v4) ≥ 1. By the

induction hypothesis, W (u1, v4) ≤ γ · side(u1) · log(N(u1) + N(v4)) =
γ
2 · side(u) · log(N(u1) + N(v4)).

We get that

W (u1, v) =
∑

1≤i≤4

W (u1, vi) ≤ α · side(u) + β

2
· side(u) + γ

2
· side(u) · log(N(u1) +N(v4))

= side(u) ·
(
α+

β

2
+

γ

2
· log(N(u1) +N(v4))

)
.

v

A symmetric argument yields W (u2, v) ≤ side(u) ·
(
α+ β

2 + γ
2 · log(N(u2) +N(v3))

)
.

Observe that N(u1) + N(u2) ≤ N(u) and N(v3) + N(v4) ≤ N(v), implying that 2(N(u1) + N(v4)) ·
(N(u2) +N(v3)) ≤ (N(u) +N(v))2. Set γ = 2(4α + β). Altogether,

W (u, v) =
∑

1≤i≤4

W (ui, v) = [W (u1, v) +W (u2, v)] + [W (u3, v) +W (u4, v)]

≤
[
side(u) ·

(
2α + β +

γ

2
· (log(N(u1) +N(v4)) + log(N(u2) +N(v3)))

)]
+ [2α · side(v)]

= γ · side(u) ·
(
4α

γ
+

β

γ
+

1

2
· (log(N(u1) +N(v4)) + log(N(u2) +N(v3)))

)

= γ · side(u) ·
(
1 + log(N(u1) +N(v4)) + log(N(u2) +N(v3))

2

)

= γ · side(u) · log
√
2(N(u1) +N(v4)) · (N(u2) +N(v3)) ≤ γ · side(u) · log(N(u) +N(v)).

�

We use the following claim to prove Lemma A.7.

Claim A.6 For any positive integers n1, n2, . . . , nk, k and n, such that
∑k

i=1 ni = n,

k∑

i=1

(√
ni −

lnni

8

)
≤ f(n, k) = k ·

(√
n/k − ln(n/k)

8

)
.

Proof: The proof is by induction on k, for k ∈ [n]. The basis k = 1 is trivial.
Induction Step: We assume the correctness of the statement for all smaller values of k, k ≥ 2, and prove
it for k. By the induction hypothesis,

k−1∑

i=1

(√
ni −

lnni

8

)
≤ f(n− nk, k − 1) = (k − 1) ·



√

n− nk

k − 1
−

ln
(
n−nk
k−1

)

8


 .

It follows that

k∑

i=1

(√
ni −

lnni

8

)
≤ (k − 1) ·



√

n− nk

k − 1
−

ln
(
n−nk
k−1

)

8


+

√
nk −

lnnk

8
. (5)

Define gn,k(x) = (k − 1) ·
(√

n−x
k−1 − ln(n−x

k−1)
8

)
+

√
x− lnx

8 . Since n1, n2, . . . , nk ≥ 1 are positive integers

and
∑k

i=1 ni = n, we have that 1 ≤ nk ≤ n− k+1. Hence, the maximum value of the function gn,k(x) in
the range 1 ≤ x ≤ n − k + 1 provides an upper bound on the right-hand side of (5). It is easy to verify
that the function gn,k(x) in the range 1 ≤ x ≤ n − k + 1 is maximized at x = n/k. Hence, in the range

1 ≤ x ≤ n− k + 1, gn,k(x) ≤ gn,k(n/k) = k ·
(√

n/k − ln(n/k)
8

)
, and we are done. �

The next lemma implies that w(E∗) = W (rt) ≤ c∗ · side(rt) ·
(√

n− ln(n)
8

)
≤ c∗ · side(rt) ·√n. Hence,

for any set of n points in the unit square, the weight of the WSPD-spanner is O(
√
n), thus proving

Proposition A.2.

Lemma A.7 For any non-empty vertex u in T , W (u) ≤ c∗ · side(u) ·
(√

N(u)− ln(N(u))
8

)
.

vi

Proof: The proof is by induction on the depth h = depth(u) of u. The basis h = 0 is trivial.
Induction Step: We assume the correctness of the statement for all smaller values of h, h ≥ 1, and prove
it for h. First, suppose that 1 ≤ N(u) < 20. In this case, we have |WSPD(u)| ≤ c, for a sufficiently
large constant c. Also, the weight of every edge in the edge set that corresponds to WSPD(u) is at most√
2 · side(u), and so

W (u) ≤ c ·
√
2 · side(u) < c∗ · side(u) ·

(√
N(u)− ln(N(u))

8

)
.

We henceforth assume that N(u) ≥ 20. Hence,

WSPD(u) =
⋃

1≤i≤4

WSPD(ui) ∪
⋃

1≤i<j≤4

WSPD(ui, uj),

and so
W (u) =

∑

1≤i≤4

W (ui) +
∑

1≤i<j≤4

W (ui, uj). (6)

To bound W (u), we start with bounding the left sum
∑

1≤i≤4 W (ui) in the right-hand side of (6). Denote
by I the set of indices in [4] for which N(ui) ≥ 1. By the induction hypothesis, for each index i ∈ I,

W (ui) ≤ c∗ · side(ui) ·
(√

N(ui)− ln(N(ui))
8

)
. Also, for each index i ∈ [4] \ I, we have W (ui) = 0. It

follows that

∑

1≤i≤4

W (ui) =
∑

i∈I
W (ui) ≤

∑

i∈I
c∗ · side(ui) ·

(√
N(ui)−

ln(N(ui))

8

)

=
c∗

2
· side(u) ·

∑

i∈I

(√
N(ui)−

ln(N(ui))

8

)
. (7)

Observe that
∑

i∈I N(ui) = N(u) and 1 ≤ |I| ≤ 4. By Claim A.6,

∑

i∈I

(√
N(ui)−

ln(N(ui))

8

)
≤ f(N(u), |I|) = |I| ·

(√
N(u)/|I| − ln(N(u)/|I|)

8

)
.

It is easy to verify that the function fN(u)(x) = f(N(u), x) = x ·
(√

N(u)/x − ln(N(u)/x)
8

)
is monotone

increasing with x in the range x > 0. (The derivative f ′
N(u)(x) is strictly positive for all x > 0.) Since

|I| ≤ 4, we thus have

∑

i∈I

(√
N(ui)−

ln(N(ui))

8

)
≤ f(N(u), |I|) ≤ f(N(u), 4) = 4 ·

(√
N(u)/4 − ln(N(u)/4)

8

)

= 2 ·
√

N(u)− ln(N(u)/4)

2
. (8)

Plugging (8) into (7) yields

∑

1≤i≤4

W (ui) ≤ c∗

2
·side(u) ·

(
2 ·

√
N(u)− ln(N(u)/4)

2

)
= c∗ ·side(u) ·

(√
N(u)− ln(N(u)/4)

4

)
. (9)

We proceed with bounding the right sum
∑

1≤i<j≤4W (ui, uj) in the right-hand side of (6). Observe
that the two pairs (u1, u3) and (u2, u4) of children of u are diagonal, whereas the four other pairs
(u1, u2), (u1, u4), (u2, u3) and (u3, u4) are adjacent. By Lemma A.4, W (u1, u3),W (u2, u4) ≤ β ·side(u1) =
β
2 · side(u). Consider a pair (ui, uj) among the four pairs of adjacent children of u. If both ui and uj are
empty, then W (ui, uj) = 0. Otherwise, we have N(ui) +N(uj) ≥ 1, and so by Lemma A.5,

W (ui, uj) ≤ γ · side(ui) · log(N(ui) +N(uj)) ≤ γ · side(ui) · log(N(u)) =
γ

2
· side(u) · log(N(u)).

vii

Recall that γ = 2(4α + β), and so β ≤ γ
2 . Altogether

∑

1≤i<j≤4

W (ui, uj) ≤ β · side(u) + 2γ · side(u) · log(N(u))

≤ γ · side(u) ·
(
1

2
+ 2 log(N(u))

)
≤ 4γ · side(u) · ln(N(u)). (10)

Plugging (9) and (10) into (6) yields

W (u) =
∑

1≤i≤4

W (ui) +
∑

1≤i<j≤4

W (ui, uj)

≤ c∗ · side(u) ·
(√

N(u)− ln(N(u)/4)

4

)
+ 4γ · side(u) · ln(N(u)). (11)

It is easy to verify that for a sufficiently large constant c∗ and all n ≥ 20, the right-hand side of (11) is

no greater than c∗ · side(u) ·
(√

N(u)− ln(N(u))
8

)
, and we are done. �

viii

	1 Introduction
	1.1 Euclidean Spanners
	1.1.1 Euclidean Spanners for Random Point Sets
	1.1.2 Spanners for Doubling Metrics

	1.2 Spanners for Tree Metrics
	1.3 Our and Previous Techniques
	1.4 Structure of the Paper
	1.5 Preliminaries

	2 1-Spanners for Tree Metrics
	2.1 The Basic Scheme
	2.2 1-Dimensional Spaces
	2.2.1 Selecting the Cut-Vertices
	2.2.2 1-Spanners with Low Diameter
	2.2.3 1-Spanners with High Diameter

	2.3 General Tree Metrics
	2.3.1 Selecting the Cut-Vertices
	2.3.2 1-Spanners with Low Diameter
	2.3.3 1-Spanners with High Diameter

	3 Euclidean Spanners
	4 Acknowledgments
	A Well-Separated Pair Constructions for Random Point Sets
	A.1 Background and Notation
	A.2 Proof of Proposition ??

