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Abstract. In this paper we propose and study a new complexity model for ap-
proximation algorithms. The main motivation are practicalproblems over large
data sets that need to be solved many times for different scenarios, e.g., many
multicast trees that need to be constructed for different groups of users. In our
model we allow a preprocessing phase, when some informationof the input graph
G = (V,E) is stored in a limited size data structure. Next, the data structure en-
ables processing queries of the form “solve problem A for an inputS ⊆ V ”. We
consider problems like STEINER FOREST, FACILITY LOCATION, k-MEDIAN,
k-CENTER and TSP in the case when the graph induces a doubling metric. Our
main results are data structures of near-linear size that are able to answer queries
in time close to linear in|S|. This improves over typical worst case reuniting
time of approximation algorithms in the classical setting which is Ω(|E|) in-
dependently of the query size. In most cases, our approximation guarantees are
arbitrarily close to those in the classical setting. Additionally, we present the first
fully dynamic algorithm for the Steiner tree problem.

1 Introduction

Motivation The complexity and size of the existing communication networks has grown
extremely in the recent times. It is now hard to imagine that agroup of users willing
to communicate sets up a minimum cost communication networkor a multicast tree
according to an approximate solution to STEINER TREEproblem. Instead we are forced
to use heuristics that are computationally more efficient but may deliver suboptimal
results [27,20]. It is easy to imagine other problems that inprinciple can be solved with
constant approximation factors using state of art algorithms, but due to immense size of
the data it is impossible in timely manner. However, in many applications the network
is fixed and we need to solve the problem many times for different groups of users.

Here, we propose a completely new approach that exploits this fact to overcome
the obstacles stemming from huge data sizes. It is able to efficiently deliver results
that have good approximation guarantee thanks to the following two assumptions. We
assume that the network can be preprocessed beforehand and that the group of users that
communicates is substantially smaller than the size of the network. The preprocessing
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step is independent of the group of users and hence afterwards we can, for example,
efficiently compute a Steiner tree for any set of users.

More formally, in the STEINER TREE problem the algorithm is given a weighted
graphG = (V,E) onn vertices and is allowed some preprocessing. The results of the
preprocessing step need to be stored in limited memory. Afterwards, the setS ⊆ V of
terminals is defined and the algorithm should generate as fast as possible a Steiner tree
for S, i.e., a tree inG of low weight which contains all vertices inS. Given the query
setS of k vertices we should compute the Steiner treeT in time depending only (or,
mostly) onk.

The trivial approach to this problem is to compute the metricclosureG∗ of G and
then answer each query by solving the STEINER TREE problem onG∗[S]. This ap-
proach delivers results with constant approximation ratio, but requiresO(n2) space of
the data structure and̃O(k2) query time. Hence it is far from being practical. In this
work we aim at solutions that substantially improve both of these bounds; more for-
mally the data structure space should be close toO(n), while the query time should be
close toO(k). Since in a typical situation probablyk = O(log n), so even aO(k logn)
query time is not considered fast enough, as thenk logn = θ(k2). Note that theO(n)
bound on the structure size is very restrictive: in a way, this bound is sublinear in the
sense that we are allowed neither to store the whole distancematrix, nor (ifG is dense)
all the edges ofG. This models a situation when during the preprocessing one can use
vast resources (e.g., a huge cluster of servers), but the resources are not granted forever
and when the system processes the queries the available space is much smaller.

New Model In our model, computations are divided into two stages: the preprocess-
ing stage and the query stage. In the preprocessing stage, the input is a weighted graph
G = (V,E) and we should compute our data structure in polynomial time and space.
Apart from the graphG some additional, problem-specific information may be also
provided. In the query stage the algorithm is given the data structure computed in the
preprocessing stage, but notG itself, and a setS of points ofV (the query — possibly
a set of pairs of points fromV , or a weighted set of points fromV , etc.) and com-
putes a solution for the setS. The definition of “the solution for the setS” depends on
the specific problem. In this work we consider so-called metric problems, soG corre-
sponds to a metric space(V, d) whered can be represented as the full distance matrix
M . One should keep in mind that the functiond cannot be quickly computed (e.g. in
constant time) without theΩ(n2) size matrixM . In particular, we assume that there is
no distance oracle available in the query stage.

Hence, there are three key parameters of an algorithm withinour model: the size of
the data structure, the query time and the approximation ratio. Less important, but not
irrelevant is the preprocessing time. Let us note that though our model is inspired by
large datasets, in this work we ignore streaming effects, external memory issues etc.

Above we have formulated the STEINER TREE problem in our model, now we de-
scribe the remaining problems. In STEINER FORESTproblem the algorithm is allowed
to preprocess a weighted graphG = (V,E), whereas the query is composed of the set
S ⊆ V × V of pairs. The algorithm should generate the Steiner forest forS, i.e., a sub-
graphH of G of small weight such that each pair inS is connected inH . In FACILITY

LOCATION problem the algorithm is given in the preprocessing phase a weighted graph



with facility opening costs in the nodes. We consider two variants of this problem in our
model. In the variantwith unrestricted facilities, the query is a setS ⊆ V of clients for
which we should open facilities. The goal is to open a subsetF ⊆ V of facilities, and
connect each city to an open facility so that the sum of the total opening and connection
costs is minimized. In the other variant, one withrestricted facilities, the facilities that
can be opened are given as a part of query (together with theiropening costs).

Our Results In this paper we restrict our attention to doubling metric spaces which
include growth-restricted metric spaces and constant dimensional Euclidean spaces. In
other words we assume that the graphG induces a doubling metric and the algorithms
are given the distance matrixG∗ as an input or compute it at the beginning of the prepro-
cessing phase. This restriction is often assumed in the routing setting [12,7] and hence it
is a natural question to see how it can impact the multicast problems. Using this assump-
tion we show that solutions with nearly optimal bounds are possible. The main result of
the paper is the data structure that requiresO(n log n) memory and can find a constant
ratio approximate Steiner tree over a given set of sizek in O(k(log k+log logn)) time.
Moreover, we show data structures with essentially the samecomplexities for solving
STEINER FOREST, both versions of FACILITY LOCATION, k-MEDIAN and TSP. The
query bound is optimal, up tolog k andlog log n factors, as no algorithm can answer
queries in time less than linear ink as it needs to read the input. For the exact approxi-
mation ratios of our algorithms refer to Sections 3.2 and E.

All of these results are based on a new hierarchical data structure for representing a
doubling metric that approximates original distances with(1 + ǫ)-multiplicative factor.
The concept of a hierarchical data structure for representing a doubling metric is not
novel – it originates from the work of Clarkson [8] and was then used in a number of
papers, in particular our data structure is based on the one due to Jia et al. [16]. Our
main technical contribution here is adapting and extendingthis data structure so that for
any subsetS ⊂ V a substructure corresponding toS can be retrieved inO(k(log k +
log logn)) using only the information in the data structure, without a distance oracle.
The substructure is then transformed to a pseudo-spanner described above. Note that our
complexity bounds do not depend on the stretch of the metrics, unlike in many previous
works (e.g. [17]). Another original concept in our work is anapplication of spanners (or,
more precisely, pseudo-spanners) to improve working time of approximation algorithms
for metric problems. As a result, the query times for the metric problems we consider
areO(k(polylogk + log logn)).

Astonishingly, our hierarchical data structure can be usedto obtain dynamic al-
gorithms for the STEINER TREE problem. This problem attracted considerable atten-
tion [3,5,11,4] in the recent years. However, due to the hardness of the problem none of
these papers has given any improvement in the running time over the static algorithms.
Here, we give first fully dynamic algorithm for the problem inthe case of doubling
metric. Our algorithm is given a static graph and then maintains information about
the Steiner tree built on a given setX of nodes. It supports insertion of vertices in
O(log5 k + log logn) time, and deletion inO(log5 k) time, wherek = |X |.

Related WorkThe problems considered in this paper are related to severalalgorithmic
topics studied extensively in recent years. Many researchers tried to answer the question



whether problems in huge networks can be solved more efficiently than by processing
the whole input. Nevertheless, the model proposed in this paper has never been consid-
ered before. Moreover, we believe that within the proposed framework it is possible to
achieve complexities that are close to being practical. We present such results only in
the case of doubling metric, but hope that the further study will extend these results to
a more general setting. Our results are related to the following concepts:

– Universal Algorithms — this model does not allow any processing in the query
time, we allow it and get much better approximation ratios,

– Spanners and Approximate Distance Oracles — although a spanner of a subspace of
a doubling metric can be constructed inO(k log k)-time, the construction algorithm
requires a distance oracle (i.e. the fullΘ(n2)-size distance matrix).

– Sublinear Approximation Algorithms — here we cannot preprocess the data, al-
lowing it we can get much better approximation ratios,

– Dynamic Spanning Trees — most existing results are only applicable to dynamic
MST and not dynamic Steiner tree, and the ones concerning thelatter work in
different models than ours.

Due to space limitation of this extended abstract an extensive discussion of the related
work is attached in Appendix A and will be included in the fullversion of the paper.

2 Space partition tree

In this section we extend the techniques developed by Jia et al. [16]. Several statements
as well as the overall construction are similar to those given by Jia et al. However,
our approach is tuned to better suit our needs, in particularto allow for a fast subtree
extraction and a spanner construction – techniques introduced in Sections 2 and 3 that
are crucial for efficient approximation algorithms.

Let (V, d) be a finite doubling metric space with|V | = n and a doubling constant
λ, i.e., for everyr > 0, every ball of radius2r can be covered with at mostλ balls of
radiusr. By stretch we denote the stretch of the metricd, that is, the largest distance
in V divided by the smallest distance. We use space partition schemes for doubling
metrics to create a partition tree. In the next two subsections, we show that this tree can
be stored inO(n logn) space, and that a subtree induced by any subsetS ⊂ V can be
extracted efficiently.

Let us first briefly introduce the notion of a space partition tree, that is used in the
remainder of this paper. Precise definitions and proofs (in particular a proof of existence
of such a partition tree) can be found in Appendix B.

The basic idea is to construct a sequenceS0, S1, . . . , SM of partitions ofV . We
require thatS0 = {{v} : v ∈ V }, andSM = {V }, and in general the diameters of the
sets inSk are growing exponentially ink. We also maintain the neighbourhoodstructure
for eachSk, i.e., we know which sets inSk are close to each other (this is explained
in more detail later on). Notice that the partitions together with the neighbourhood
structure are enough to approximate the distance between any two pointsx, y — one
only needs to find the smallestk, such that the sets inSk containingx andy are close
to each other (or are the same set).



There are two natural parameters in this sort of scheme. One of them is how fast
the diameters of the sets grow, this is controlled byτ ∈ R, τ ≥ 1 in our constructions.
The faster the set diameters grow, the smaller the number of partitions is. The second
parameter is how distant can the sets in a partition be to be still considered neighbours,
this is controlled by a nonnegative integerη in our constructions. The smaller this pa-
rameter is, the smaller the number of neighbours is. Manipulating these parameters
allows us to decrease the space required to store the partitions, and consequently also
the running time of our algorithms. However, this also comesat a price of lower quality
approximation.

In what follows, eachSk is a subpartition ofSk+1 for k = 0, . . . ,M−1. That is, the
elements of these partitions form a tree, denoted byT, with S0 being the set of leaves
andSM being the root. We say thatS ∈ Sj is achild of S∗ ∈ Sj+1 in T if S ⊂ S∗.

Let r0 be smaller than the minimal distance between points inV and letrj = τ jr0.
We show (in Appendix B) thatSk-s andT satisfying the following properties can be
constructed in polynomial time:

(1) Exponential growth: EveryS ∈ Sj is contained in a ball of radiusrjτ2−η/(τ−1).
(2) Small neighbourhoods:For everyS ∈ Sj , the union

⋃

{Brj (v) : v ∈ S} crosses
at mostλ3+η setsS′ from the partitionSj — we say thatS knowstheseS′. We also
extend this notation and say that ifS knowsS′, then everyv ∈ S knowsS′.

(3) Small degrees:For everyS∗ ∈ Sj+1 all children ofS∗ know each other and,
consequently, there are at mostλη+3 children ofS∗.

(4) Distance approximation:If v, v∗ ∈ V are different points such thatv ∈ S1 ∈ Sj ,
v ∈ S2 ∈ Sj+1 andv∗ ∈ S∗

1 ∈ Sj , v∗ ∈ S∗
2 ∈ Sj+1 andS2 knowsS∗

2 butS1 does
not knowS∗

1 , then

rj ≤ d(v, v∗) <
(

1 +
4τ2−η

τ − 1

)

τrj ;

For anyε > 0, the τ andη constants can be adjusted so that the last condition
becomesrj ≤ d(v, v∗) ≤ (1 + ε)rj (see Remark 32).

Remark 1.We note that not all values ofτ andη make sense for our construction. We
omit these additional constraints here.

2.1 The compressed treêT and additional information at nodes

Let us now show how to efficiently compute and store the treeT. Recall that the leaves
of T are one point sets and, while going up in the tree, these sets join into bigger sets.

Note that ifS is an inner node ofT and it has only one childS′ then both nodesS
andS′ represent the same set. NodesS andS′ can differ only by their sets of acquain-
tances, i.e. the sets of nodes known to them. If these sets areequal, there is some sort
of redundancy inT. To reduce the space usage we store only a compressed versionof
the treeT.

Let us introduce some useful notation. For a nodev of T let set(v) denote the set
corresponding tov and letlevel(v) denote the level ofv, where leaves are at level
zero. LetSa, Sb be a pair of sets that know each other at leveljab and do not know each
other at leveljab − 1. Then the triple(Sa, Sb, jab) is called ameetingof Sa andSb at
level jab.



Definition 2 (Compressed tree).The compressed version ofT, denoted̂T, is obtained
fromT by replacing all maximal paths such that all inner nodes haveexactly one child
by a single edge. For each nodev of T̂ we storelevel(v) (the lowest level ofset(v)
in T) and a list of all meetings ofset(v), sorted by level.

ObviouslyT̂ has at most2n − 1 nodes since it has exactlyn leaves and each in-
ner node has at least two children but we also have to ensure that the total number of
meetings is reasonable.

Note that the sets at nodes ofT̂ are pairwise distinct. To simplify the presentation we
will identify nodes and the corresponding sets. Consider a meetingm = (Sa, Sb, jab).
Letpa (resp.pb) denote the parent ofSa (resp.Sb) in T̂. We say thatSa is responsiblefor
the meetingmwhenlevel(pa) ≤ level(pb) (whenlevel(pa) = level(pb), bothSa

andSb are responsible for the meetingm). Note that ifSa is responsible for a meeting
(Sa, Sb, jab), thenSa knowsSb at levellevel(pa)−1. From this and Property 2 of the
partition tree we get the following.

Lemma 3. Each set in̂T is responsible for at mostλ3+η meetings.

Corollary 4. There are≤ (2n− 1)λ3+η meetings stored in the compressed treeT̂, i.e.
T̂ takesO(n) space.

Lemma 5. One can augment the treêT with additional information of sizeO(nλ3+η),
so that for any pair of nodesx, y of T̂ one can decide ifx andy know each other, and
if that is the case the level of the meeting is returned. The query takesO(η logλ) time.

Proof. For each nodev in T̂ we store all the meetings it is responsible for, using a
dictionaryD(m) — the searches takeO(log(λ3+η)) = O(η logλ) time. To process the
query it suffices to check if there is an appropriate meeting in D(x) or in D(y). ⊓⊔

In order to give a fast subtree extraction algorithm, we needto define the following
operationmeet. Let u, v ∈ T̂ be two given nodes. Letv(j) denote the node inT on
the path fromv to the root at levelj, similarly defineu(j). The value ofmeet(u, v)
is the lowest level, such thatv(j) andu(j) know each other. Such level always exists,
because in the end all nodes merge into root and nodes know each other at one level
before they are merged (see Property 3 of the partition tree). A technical proof of the
following lemma is moved to Appendix C due to space limitations.

Lemma 6. The treeT̂ can be augmented so that themeet operation can be performed
in O(η logλ log logn) time. The augmentedT tree can be stored inO(λ3+ηn logn)
space and computed in polynomial time.

2.2 Fast subtree extraction

For any subsetS ⊆ V we are going to define anS-subtreeof T̂, denoted̂T(S). Intu-
itively, this is the subtree of̂T induced by the leaves corresponding toS. Additionally
we store all the meetings in̂T between the nodes corresponding to the nodes ofT̂(S).



More precisely, the set of nodes ofT̂(S) is defined as{A ∩ S : A ⊆ V andA is
a node ofT̂}. A nodeQ of T̂(S) is an ancestor of a nodeR of T̂(S) iff R ⊆ Q. This
defines the edges of̂T(S). Moreover, for two nodesA, B of T̂ such that bothA andB
intersectS, if A knowsB at levelj, we say thatA∩ S knowsB ∩ S in T̂(S) at levelj.
A triple (Q,R, jQR), wherejQR is a minimal level such thatQ knowsR at leveljQR,
is called ameeting. Thelevelof a nodeQ of T̂(S) is the lowest level of a nodeA of T̂
such thatQ = A ∩ S. Together with each nodeQ of T̂(S) we store its level and a list
of all its meetings(Q,R, jQR). A nodeQ is responsiblefor a meeting(Q,R, l) when
level(parent(Q)) ≤ level(parent(R)).

Remark 7.The subtreêT(S) is not necessarily equal to any compressed tree for the
metric space(S, d|S2).

In this subsection we describe how to extractT̂(S) from T̂ efficiently. The extraction
runs in two phases. In the first phase we find the nodes and edgesof T̂(S) and in the
second phase we find the meetings.

Finding the nodes and edges of̂T(S) We construct the extracted tree in a bottom-up
fashion. Note that we can not simply go up the tree from the leaves corresponding toS
because we could visit a lot of nodes ofT̂ which are not the nodes of̂T(S). The key
observation is that ifA andB are nodes of̂T, such thatA ∩ S andB ∩ S are nodes of
T̂(S) andC is the lowest common ancestor ofA andB, thenC ∩ S is a node of̂T(S)
and it has levellevel(C).

1. Sort the leaves of̂T corresponding to the elements ofS according to their inorder
value inT̂, i.e., from left to right.

2. For all pairs(A,B) of neighboring nodes in the sorted order, insert into a dictionary
M a key-value pair where the key is the pair(level(lca

T̂
(A,B)), lca

T̂
(A,B))

and the value is the pair(A,B). The dictionaryM may contain multiple elements
with the same key.

3. Insert all nodes fromS to a second dictionaryP , where nodes are sorted according
to their inorder value from the treêT.

4. whileM contains more than one element
(a) Letx = (l, C) be the smallest key inM .
(b) Extract fromM all key-value pairs with the keyx, denote those values as

(A1, B1), . . . , (Am, Bm).
(c) SetP = P \

⋃

i{Ai, Bi}.
(d) Create a new nodeQ, make the nodes erased fromP the children ofQ. Storel

as the level ofQ.
(e) InsertC intoP . Setorigin(Q) = C.
(f) If C is not the smallest element inP (according to the inorder value) letCl

be the largest element inP smaller thanC and add a key-value pair toM
where the key is equal to(level(lca

T̂
(Cl, C)), lca

T̂
(Cl, C)) and the value is

(Cl, C).



(g) If C is not the largest element inP let Cr be the smallest element inP larger
thanC and add a key-value pair toM where the key is given by the pair
(level(lca

T̂
(C,Cr)), lcaT̂(C,Cr)) and the value is the pair(C,Cr).

Note that in the above procedure, for each nodeQ of T̂(S) we compute the corre-
sponding node in̂T, namelyorigin(Q). Observe thatorigin(Q) is the lowest com-
mon ancestor of the leaves corresponding to elements ofQ, andorigin(Q) ∩ S = Q.

Lemma 8. The treêT can be augmented so that the above procedure runs inO(k log k)
time and when it ends the only key inM is the root of the extracted tree

Proof. All dictionary operations can be easily implemented inO(log k) time whereas
the lowest common ancestor can be found inO(1) time after anO(n)-time preprocess-
ing (see [2]). This preprocessing requiresO(n) space and has to be performed whenT̂

is constructed. Since we performO(k) of such operationsO(k log k) is the complexity
of our algorithm. ⊓⊔

Finding the meetings inT̂(S) We generate meetings in a top-down fashion. We con-
sider the nodes of̂T(S) in groups. Each group corresponds to a single level. Now as-
sume we consider a group of nodesu1, . . . , ut at some levelℓ. Letv1, . . . , vt′ be the set
of children of all nodesui in T̂(S). For each nodevi, i = 1, . . . , t′ we are going to find
all the meetings it is responsible for. Any such meeting (vi, x, j) is of one of two types:

1. parent(x) ∈ {u1, . . . , ut}, possiblyparent(x) = parent(vi), or
2. parent(x) 6∈ {u1, . . . , ut}, i.e.level(parent(x)) > ℓ.

The meetings of the first kind are generated as follows. Consider the following set
of nodes of̂T (drawn as grey disks in Figure 1).

L = {x : x is the first node on the path in̂T from origin(ui) to origin(vj),

for somei = 1, . . . , t, j = 1, . . . , t′}

We mark all the nodes ofL. Next, we identify all pairs of nodes ofL that know each
other. By Lemma 3 there are at mostλ3+ηt′ = O(t′) such pairs and these pairs can be
easily found by scanning, for eachx ∈ L, all the meetingsx is responsible for and such
that the nodex meets is inL. In this way we identify all pairs of children(vi, vj) such
thatvi knowsvj , namely ifx, y ∈ L andx knowsy in T̂, thenx∩S knowsy∩S in T̂(S).
Then, if vi knowsvj , the level of their meeting can be found inO(τ logλ log logn)
time using operationmeet(origin(vi), origin(vj)) from Lemma 6. Hence, finding
the meetings of the first type takesO(λ3+η logλ τt′ log logn) time for one group of
nodes, andO(λ3+η logλ τk log logn) time in total.

Finding the meetings of the second type is easier. Consider any second type meeting
(vi, w, l). Letuj be the parent ofvi. Then there is a meeting(uj , w, level(uj)) stored
in uj . Hence it suffices to consider, for eachuj all its meetings at levellevel(uj).
For every such meeting(uj , w, level(uj)), and for every childvi of uj we can apply
meet(origin(vi), origin(w)) from Lemma 6 to find the meeting ofvi andw. For



level(ui)

Fig. 1. Extracting meetings. The figure contains a part of treeT̂. Nodes corresponding
to the nodes of̂T(S) are surrounded by dashed circles. The currently processed group
of nodes (ui, i = 1, . . . , k) are filled with black. Nodes from the setL are filled with
gray. The nodes below the gray nodes are the the nodesvj , i.e. the children of nodesui

in T̂(S).

the time complexity, note that by Property 2 of the partitiontree, a nodeuj meets
λ3+η = O(1) nodes at levellevel(uj). Since we can store the lists of meetings sorted
by levels, we can extract all those meetings inO(λ3+η) time. For each meeting we
iterate over the children ofuj (Property 3 of the partition tree) and apply Lemma 6. This
results inO(λ3+η logλ τ log logn) time per a child, henceO(λ3+η logλ τk log logn)
time in total.

After extracting all the meetings, we sort them by levels inO(k log k) time.
We can claim now the following theorem.

Theorem 9. For a given setS ⊆ V (|S| = k) we can extract theS-subtree of the com-
pressed treêT in timeO(λ3+η logλ τk(log k+ log logn)) = O(k(log k+ log logn)).

3 Pseudospanner construction and applications in approximation

In this section we use the subtree extraction procedure described in the previous section,
to construct for any setS ⊆ V , a graph that is essentially a small constant stretch span-
ner forS. We then use it to give fast approximations algorithms for several problems.

3.1 Pseudospanner construction

Definition 10. LetG = (V,EG) be an undirected connected graph with a weight func-
tion wG : EG → R+. A graphH = (V,EH), EH ⊆ EG with a weight function
wH : EH → R+ is anf -pseudospannerfor G if for every pair of verticesu, v ∈ V
we havedG(u, v) ≤ dH(u, v) ≤ f · dG(u, v), wheredG anddH are shortest path met-
rics induced bywG andwH . The numberf in this definition is called thestretchof the



pseudospanner. A pseudospanner for a metric space is simplya pseudospanner for the
complete weighted graph induced by the metric space.

Remark 11.Note the subtle difference between the above definition and the classical
spanner definition. A pseudospannerH is a subgraph ofG in terms of vertex sets and
edge sets but it does not inherit the weight functionwG. We cannot construct spanners
in the usual sense without maintaining the entire distance matrix, which would require
prohibitive quadratic space. However, pseudospanners constructed below become clas-
sical spanners when provided the original weight function.

Also note, that it immediately follows from the definition ofa pseudospanner that
for all uv ∈ EH we havewG(u, v) ≤ wH(u, v).

In the remainder of this section we let(V, d) be a metric space of sizen, where
d is doubling with doubling constantλ. We also usêT to denote the hierarchical tree
data structure corresponding to(V, d), andη andτ denote the parameters ofT̂. For any
S ⊂ V , we usêT(S) to denote the subtree ofT̂ corresponding toS, as described in the

previous section. Finally, we define a constantC(η, τ) =

(

1 +
(

τ
τ−1

)2

23−η

)

τrj .

Theorem 12. GivenT̂ and setS ⊆ V , where|S| = k, one can construct aC(η, τ)-
pseudospanner forS in timeO(k(log k + log logn)). This spanner has sizeO(k).

The proof is in the appendix.

Remark 13.Similarly to Property 4 of the partition tree, we can argue that the above
theorem gives a(1+ ε)-pseudospanner for anyε > 0. Here, we need to takeτ = 1+ ε

3
andη = O( 1

ε3 ).

Remark 14.It is of course possible to store the whole distance matrix ofV and con-
struct a spanner for any given subspaceS using standard algorithms. However, this
approach has a prohibitiveΘ(n2) space complexity.

3.2 Applications in Approximation

Results of the previous subsection immediately give several interesting approximation
algorithms. In all the corollaries below we assume the treeT̂ is already constructed.

Corollary 15 (Steiner Forest).Given a set of pointsS ⊆ V , |S| = k, together with
a set of requirementsR consisting of pairs of elements ofS, a Steiner forest with total
edge-length at most2C(η, τ)OPT=(2 + ε)OPT, for anyε > 0 can be constructed in
timeO(k(log2 k + log log n)).

Proof. We use theO(m log2 n) algorithm of Cole et al. [9] (wherem is the number
of edges) on the pseudospanner guaranteed by Theorem 12. This algorithm can give a
guarantee2 + ǫ for an arbitrarily smallε. ⊓⊔

Similarly by using the MST approximation for TSP we get



Corollary 16 (TSP). Given a set of pointsS ⊆ V , |S| = k, a Hamiltonian cycle forS
of total length at most2C(η, τ)OPT=(2 + ε)OPT for anyε > 0 can be constructed in
timeO(k(log k + log logn)).

Currently, the best approximation algorithm for the facility location problem is the
1.52-approximation of Mahdian, Ye and Zhang [18]. A fast implementation using Tho-
rup’s ideas [22] runs in deterministicO(m logm) time, wherem = |F | · |C|, and if
the input is given as a weighted graph ofn vertices andm edges, inÕ(n + m) time,
with high probability (i.e. with probability≥ 1 − 1/nω(1)). In an earlier work, Tho-
rup [23] considers also thek-center andk-median problems in the graph model. When
the input is given as a weighted graph ofn vertices andm edges, his algorithms run in
Õ(n+m) time, w.h.p. and have approximation guarantees of2 for thek-center problem
and12 + o(1) for thek-median problem. By using this latter algorithm with our fast
spanner extraction we get the following corollary.

Corollary 17 (Facility Location with restricted facilitie s). Given two sets of points
C ⊆ V (cities) andF ⊆ V (facilities) together with opening costfi for each facility
i ∈ F , for anyε > 0, a (1.52+ε)-approximate solution to the facility location problem
can be constructed in timeO((|C| + |F |)(logO(1)(|C|+ |F |) + log log |V |)), w.h.p.

The application of our results to the variant of FACILITY LOCATION with unre-
stricted facilities is not so immediate. We were able to obtain the following.

Theorem 18 (Facility Location with unrestricted facilities). Assume that for each
point of n-point V there is assigned an opening costf(x). Given a set ofk points
C ⊆ V , for anyε > 0, a(3.04+ε)-approximate solution to the facility location problem
with cities’ setC and facilities’ setV can be constructed in timeO(k log k(logO(1) k+
log logn)), w.h.p.

The above result is described in Appendix E. Our approach there is a reduction to
the variant with restricted facilities. The general, roughidea is the following: during the
preprocessing phase, for every pointx ∈ V we compute a small setF (x) of facilities
that seem a good choice forx, and when processing a query for a set of citiesC, we
just apply Corollary 17 to cities’ setC and facilities’ set

⋃

c∈C F (c).

Corollary 19 (k-center andk-median). Given a set of pointsC ⊆ V and a number
r ∈ N, for anyε > 0, one can construct:

(i) a (2 + ε)-approximate solution to ther-center problem, or
(ii) a (12 + ε)-approximate solution to ther-median problem

in timeO(|C|(log |C|+ log log |V |)), w.h.p.

4 Dynamic Minimum Spanning Tree and Steiner Tree

In this section we give one last application of our hierarchical data structure. It has a dif-
ferent flavour from the other applications presented in thispaper since it is not based on



constructing a spanner, but uses the data structure directly. We solve the Dynamic Min-
imum Spanning Tree / Steiner Tree (DMST/DST) problem, wherewe need to maintain
a spanning/Steiner tree of a subspaceX ⊆ V throughout a sequence of vertex additions
and removals to/fromX .

The quality of our algorithm is measured by the total cost of the tree produced
relative to the optimum tree, and time required to add/delete vertices. Let|V | = n,
|X | = k. Our goal is to give an algorithm that maintains a constant factor approximation
of the optimum tree, while updates are polylogarithmic ink, and do not depend (or
depend only slightly) onn. It is clear that it is enough to find such an algorithm for
DMST. Due to space limitations, in this section we only formulate the results. Precise
proofs are gathered in Appendix F.

Theorem 20. Given the compressed treeT̂(V ), we can maintain anO(1)-approximate
Minimum Spanning Tree for a subsetX subject to insertions and deletions of vertices.
The insert operation works inO(log5 k+log log n) time and the delete operation works
in O(log5 k) time,k = |X |. Both times are expected and amortized.
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A Related Work

In the next few paragraphs we review different approaches tothis problem, state the
differences and try to point out the advantage of the resultspresented here.

Universal Algorithms In the case of STEINER TREE and TSP results pointing in the
direction studied here have been already obtained. In the socalled, universal approxi-
mation algorithms introduced by Jiaet. al [16], for each element of the request we need
to fix an universal solution in advance. More precisely, in the case of STEINER TREE

problem for eachv ∈ V we fix a pathπv, and a solution toS is given as{πv : v ∈ S}.
Using universal algorithms we need very small space to remember the precomputed
solution and we are usually able to answer queries efficiently, but the corresponding ap-
proximation ratios are relatively weak, i.e, for STEINER TREE the approximation ratio
is O(log4 n/ log logn). Moreover, there is no direct way of answering queries inÕ(k)
time, and in order to achieve this bound one needs to use similar techniques as we use
in Section 2.2. In our model we loosen the assumption that thesolution itself has to
be precomputed beforehand, but the data output of the preprocessing is of roughly the
same size (up to polylogarithmic factors). Also, we allow the algorithm slightly more
time for answering the queries and, as a result are able to improve the approximation
ratio substantially — from polylogarithmic to a constant.

Spanners and Distance OraclesThe question whether the graph can be approximately
represented using less space than its size was previously captured by the notion of
spanners and approximate distance oracles. Both of these data structures represent the
distances in the graphs up to a given multiplicative factorf . The difference is that the
spanner needs to be a subgraph of the input graph hence distances between vertices
are to be computed by ourselves, whereas the distance oraclecan be an arbitrary data
structure that can compute the distances when needed. However, both are limited in
size. For general graphs(2t− 1)-spanners (i.e., the approximation factor isf = 2t− 1)
are of sizeO(n1+1/t) and can be constructed in randomized linear time as shown by
Baswana and Sen [1]. On the other hand, Thorup and Zwick [24] have shown that the
(2t − 1)-approximate oracles of sizeO(tn1+1/t), can be constructed inO(tmn1+1/t)
time, and are able to answer distance queries inO(t) time. It seems that there is no
direct way to obtain, based on these results, an algorithm that could answer our type of
queries faster thenO(k2).

The construction of spanners can be improved in the case of doubling metric. The
papers [12,7] give a construction of(1 + ǫ)-spanners that have linear size in the case
whenǫ and the doubling dimension of the metric are constant. Moreover, Har-Peled
and Mendel [12] giveO(n log n) time construction of such spanners. A hierarchical
structure similar to that of [17] and the one we use in this paper was also used by
Roditty [19] to maintain a dynamic spanner of a doubling metric, with aO(log n) up-
date time. However, all these approaches assume the existence of a distance oracle.
When storing the whole distance matrix, these results, combined with known approxi-
mation algorithms in the classical setting [18,22,23,9], imply a data-structure that can
answer STEINER TREE, FACILITY LOCATION with restricted facilities andk-MEDIAN

queries inO(k log k) time. However, it does not seem to be easy to use this approach



to solve the variant of FACILITY LOCATION with unrestricted facilities. To sum up,
spanners seem to be a good solution in our model in the case when aO(n2) space is
available for the data structure. The key advantage of our solution is the low space re-
quirement. On the other hand, storing the spanner requires nearly linear space, but then
we needÕ(n) time to answer each query. The distance matrix is unavailable and we
will need to process the whole spanner to respond to a query ona given set of vertices.

Sublinear Approximation AlgorithmsAnother way of looking at the problem is the at-
tempt to devise sublinear algorithm that would be able to solve approximation problems
for a given metric. This study was started by Indyk [15] who gave constant approxima-
tion ratio O(n)-time algorithms for: FURTHEST PAIR, k-MEDIAN (for constantk),
M INIMUM ROUTING COST SPANNING TREE, MULTIPLE SEQUENCE ALIGNMENT,
MAXIMUM TRAVELING SALESMAN PROBLEM, MAXIMUM SPANNING TREE and
AVERAGE DISTANCE. Later on B̆adoiuet. al[6] gave anO(n log n) time algorithm for
computing the cost of the uniform-cost metric FACILITY LOCATION problem. These al-
gorithms work much faster that theO(n2)-size metric description. However, the paper
contains many negative conclusions as well. The authors show that for the following
problemsO(n)-time constant approximation algorithms do not exists: general metric
FACILITY LOCATION, M INIMUM -COST MATCHING andk-MEDIAN for k = n/2. In
contrary, our results show that if we allow the algorithm to preprocess partial, usually
fixed, data we can answer queries in sublinear time afterwards.

Dynamic Spanning TreesThe study of online and dynamic Steiner tree was started in
the paper of [14]. However, the model considered there was not taking the computation
time into account, but only minimized the number of edges changed in the Steiner
tree. More recently the Steiner tree problem was studied in asetting more related to
ours [3,5,4,11]. The first three of these paper study the approximation ratio possible
to achieve when the algorithm is given an optimal solution together with the change
of the data. The efficiency issue is only raised in [11], but the presented algorithm in
the worst case can take the same as computing the solution from scratch. The problem
most related to our results is the dynamic minimum spanning tree (MST) problem. The
study of this problem was finished by showing deterministic algorithm supporting edge
updates in polylogarithmic time in [13]. The dynamic Steiner tree problem is a direct
generalization of the dynamic MST problem, and we were able to show similar time
bounds. However, there are important differences between the two problems that one
needs to keep in mind. In the case of MST, by definition, the setof terminals remains
unchanged, whereas in the dynamic Steiner tree we can changeit. On the other hand
we cannot hope to get polylogarithmic update times if we allow to change the edge
weights, because this would require to maintain dynamic distances in the graph. The
dynamic distance problem seems to require polynomial time for updates [10].

B Partition tree — precise definitions and proofs

To start with, let us recall partition and partition scheme definitions.



Definition 21 (Jia et al [16], Definition 1).A (r, σ, I)-partition is a partition ofV into
disjoint subsetsSi such thatdiam Si ≤ rσ for all i and for all v ∈ V , the ballBr(v)
intersects at mostI sets in the partition.

A (σ, I) partition scheme is an algorithm that produces(r, σ, I)-partition for arbi-
trary r ∈ R, r > 0.

Lemma 22 (similar to Jia et al [16], Lemma 2).Let η ≥ 0 be a nonnegative integer.
For V being a doubling metric space with doubling constantλ, there exists(2−η, λ3+η)
partition scheme that works in polynomial time. Moreover, for everyr the generated
partition Sr has the following property: for everyS ∈ Sr there existsleader(S) ∈ S
such thatS ⊂ B2−η−1r(leader(S)).

Proof. Take arbitraryr. Start withV0 = V . At stepi for i = 0, 1, . . . take anyvi ∈ Vi

and takeSi = B2−η−1r(vi)∩Vi. SetVi+1 = Vi\Si and proceed to next step. Obviously,
Si ⊂ B2−η−1r(vi), sodiam Si < 2−ηr and we setleader(Si) = vi.

Take anyv ∈ V and consider all setsSi crossed by ballBr(v). Every such set is
contained inB(1+2−η)r(v) ⊂ B2r(v), which can be covered by at mostλ3+η balls of
radius2−η−2r. But for everyi 6= j, d(vi, vj) > 2−η−1r, so every leader of set crossed
byBr(v) must be in a different ball. Therefore there are at mostλ3+η sets crossed.⊓⊔

Let us define the space partition treeT.

Algorithm 23 Assume we have doubling metric space(V, d) and(2−η, λ3+η) partition
scheme form Lemma 22. Let us assumeη ≥ 2 and letτ be a real constant satisfying:

– 2 τ2−η

τ−1 ≤ 1, i.e,τ ≥ 1
2η−1−1 + 1.

– τ ≤ 2η.

Then construct space partition treeT as follows:

1. Start with partitionS0 = {{v} : v ∈ V }, andr0 < min{d(u, v) : u, v ∈ V, u 6=
v}. For every{v} ∈ S0 let leader({v}) = v. LetS′0 = S0.

2. Letj := 0.
3. WhileSj has more than one element do:

(a) Fix rj+1 := τrj = τ jr0.
(b) LetS′j+1 be a partition of the setLj = {leader(S) : S ∈ Sj} generated by

given partition scheme forr = 2rj+1.
(c) LetSj+1 := {

⋃

{S : leader(S) ∈ S′} : S′ ∈ S′j+1}.
(d) Setleader(

⋃

{S : leader(S) ∈ S′}) = leader(S′) for anyS′ ∈ S′j+1.
(e) j := j + 1.

Note that for everyj, Sj is a partition ofV . We will denote byleaderj(v) the
leader of setS ∈ Sj thatv ∈ S.

Definition 24. We will say thatS∗ ∈ Sj+1 is a parent ofS ∈ Sj if leader(S) ∈ S∗

(equallyS ⊂ S∗). This allows us to consider setsSj generated by Algorithm 23 as
nodes of a treeT with root being the setV .



Lemma 25. For everyj and for everyv ∈ S the following holds:

d(v, leaderj(v)) <
τ2−η

τ − 1
rj .

Proof. Note that

d(v, leaderj(v)) ≤

j
∑

i=1

d(leaderi(v), leaderi−1(v))

We use bound from Lemma 22:

j
∑

i=1

d(leaderi(v), leaderi−1(v)) ≤

j
∑

i=1

2−η−1 · 2τ ir0 = 2−ητ
τ j − 1

τ − 1
r0 <

τ2−η

τ − 1
rj .

⊓⊔

Lemma 26. For everyj, for everyS ∈ Sj , the union of balls
⋃

{Brj(v) : v ∈ S}
crosses at mostλ3+η sets from the partitionSj .

Proof. For j = 0 this is obvious, sincer0 is smaller than anyd(u, v) for u 6= v. Let us
assumej > 0.

Let v ∈ S ∈ Sj , v∗ ∈ S∗ ∈ Sj , S 6= S∗ andd(v, v∗) < rj . Then, using Lemma 25,

d(leaderj(v), leaderj(v
∗)) ≤ d(leaderj(v), v)+d(v, v∗)+d(v∗, leaderj(v

∗)) <

< rj

(

1 + 2
τ2−η

τ − 1
rj

)

< 2rj

Since, by partition properties,B2rj (leaderj(v)) crosses at mostC sets fromS′j and
leaderj(v

∗) ∈ B2rj (leaderj(v)), this finishes the proof. ⊓⊔

Definition 27. We say that a setS ∈ Sj knowsa setS′ ∈ Sj if
⋃

{Brj(v) : v ∈
S} ∩ S′ 6= ∅. We say thatv ∈ V knowsS′ ∈ Sj if v ∈ S ∈ Sj andS knowsS′ or
S = S′.

Note that Lemma 26 implies the following:

Corollary 28. A set (and therefore a node too) at a fixed levelj has at mostλ3+η

acquaintances.

Lemma 29. LetS ∈ Sj be a child ofS∗ ∈ Sj+1 and letS knowS′ ∈ Sj . Then either
S′ ⊂ S∗ or S∗ knows the parent ofS′.

Proof. Assume thatS′ is not a child (subset) ofS∗ and letS∗∗ ∈ Sj+1 be the parent
of S′. SinceS knowsS′, there existv ∈ S, v′ ∈ S′ satisfyingd(v, v′) < rj . But
rj < rj+1 andv ∈ S∗ andv′ ∈ S∗∗. ⊓⊔

Lemma 30. SetS∗ ∈ Sj has at mostλ3+η children in the treeT.



Proof. By construction of levelj, let S ∈ Sj−1 be such a set thatleader(S) =
leader(S∗) (in construction step we divided sets of leadersLj−1 into partitionS′j ).
Let S′ ∈ Sj−1 be another child ofS∗. Then, by construction and assumption that
τ ≤ 2η:

d(leader(S′), leader(S)) < 2rj · 2
−η−1 = 2−ηrj ≤ rj−1.

However, by Lemma 26,Brj−1
(leader(S)) crosses at mostλ3+η sets at levelj−1.

That finishes the proof. ⊓⊔

Lemma 31. Let v, v∗ ∈ V be different points such thatv ∈ S1 ∈ Sj , v ∈ S2 ∈ Sj+1

andv∗ ∈ S∗
1 ∈ Sj , v∗ ∈ S∗

2 ∈ Sj+1 andS2 knowsS∗
2 butS1 does not knowS∗

1 . Then

rj ≤ d(v, v∗) <
(

1 +
4τ2−η

τ − 1

)

τrj .

For τ = 2 andη = 2 this impliesrj ≤ d(v, v∗) ≤ 6rj .

Proof. SinceS1 andS∗
1 do not know each other,v andv∗ are in distance at leastrj .

SinceS2 knowsS∗
2 , there existu ∈ S2 andu∗ ∈ S∗

2 such thatd(u, u∗) < rj+1.
Therefore

d(v, v∗) ≤

≤ d(v, leader(S2)) + d(leader(S2), u) + d(u, u∗)+

+d(leader(S∗
2 ), u

∗) + d(leader(S∗
2 ), v

∗) <

< 4 ·
τ2−η

τ − 1
rj+1 + rj+1 =

(

1 +
4τ2−η

τ − 1

)

τrj .

⊓⊔

Remark 32.Imagine we want in Lemma 31 to obtain boundrj ≤ d(v, v∗) ≤ (1+ ε)rj

for some small1 > ε > 0. Takeτ = 1 + ε
3 . We want here the following:4τ2

−η

τ−1 < ε
3 ,

i.e.,2−η < ε2

12(1+ε) <
ε2

24 . Then we have

d(v, v∗) <
(

1 +
4τ2−η

τ − 1

)

τrj <
(

1 +
ε

3

)2

rj < (1 + ε)rj .

Note, that to obtain this we need2η = O( 1
ε2 ). Note, that conditions in Algorithm 23

for η andτ are much weaker than we assumed here.

C Implementation of the meet and jump operations

In this section we provide realizations ofmeet andjump operations that work fast, i.e.,
roughly inO(log logn) time.

Let us now recall the semantics of themeet operation, which was used in the fast
subtree extraction in Section 2.2. For nodesu andv, by u(j) andv(j) we denote the
ancestor ofu (resp.v) in the tree at levelj. Themeet(v, u) operation returns the lowest



level j such thatu(j) andv(j) knows each other. This operation can be performed in
O(λη+3 log logn) time.

Operationjump is used by the dynamic algorithms in Section 4, and its semantics
is as follows. In the compressed tree, for each setS we store a list of all meetings ofS,
sorted by level. Thejump(v, i), given nodev and leveli outputs the setS and a meeting
(S, S′, j) such thatv ∈ S andj is the lowest possible level such thati ≤ j. Informally
speaking, it looks for the first meeting of a set containingv such that its level is at least
i. Thejump operation works inO(log logn + log log log stretch). If we require that
there is some meeting at leveli somewhere, maybe distant fromv, in the tree, the time
reduces toO((log η + log logλ) log logn).

C.1 Path partition

In order to implement thejump andmeet operations efficiently we need to store addi-
tional information concerning the structure ofT̂, namely a path partition. The following
lemma defines the notion.

Lemma 33. The set of edges of the treêT can be partitioned into a set of pathsP =
{P1, . . . , Pm} such that each path starts at some node ofT̂ and goes down the tree only
and for each nodev of the treêT the path fromv to the root contains edges from at most
⌈log2 n⌉ paths of the path decompositionP. MoreoverP can be foundO(n) time.

Proof. We use a concept similar to the one used by Sleator and Tarjan in [21]. We start
from the root and each edge incident to the root is a beginningof a new path. We then
proceed to decompose each subtree of the root recursively. When considering a subtree
rooted at a nodev we lengthen the path going down from the parent ofv by one edge
going to the subtree containing the largest number of nodes (breaking ties arbitrarily).
Each of the remaining edges leavingv starts a new path.

It is easy to see that each path goes down the tree only. Now consider a nodev.
When we go up fromv to the root, every time we reach an end of some path fromP, the
size of the subtree rooted at the node we move into doubles. This ends the proof since
there are at most2n− 1 vertices. ⊓⊔

We now describe additional information related to the path decomposition that we
need to store. Each nodev of T̂ maintains a setpaths, where(i, level) ∈ paths(v) if
the path fromv to the root contains at least one edge of the pathPi, and the lowest such
edge has its bottom endpoint at levellevel. In other words,Pi enters the path fromv to
the root at levellevel. We use two different representations of the setpaths simultane-
ously. One is a dictionary implemented as a hash table, and the other is an array sorted
by level. Because of the properties of the path decompositionP from Lemma 33 for
each nodev we have|paths(v)| ≤ ⌈log2(n)⌉.

LetPi ∈ P be a path with vertices{v1, . . . , vt} (given in order of increasing level).
We defineinterior(Pi) to be the set{v1, . . . , vt−1}, i.e. we exclude the top vertex of
Pi. We also definetoplevel(Pi) to be the level ofvt−1, i.e. the highest level among
interior nodes ofPi.



C.2 Themeet operation

In order to benefit from the path decomposition to implementmeet operation, we also
need to store adjacency information for paths, similar to the information we store for
single nodes. LetPa, Pb ∈ P be two paths, such that their interior nodes know each
other at leveljab, but not at leveljab − 1. Then the triple(Pa, Pb, jab) is called a
meetingof Pa andPb at leveljab. We also say thatPa andPb meetat leveljab), or that
they know each other. This definition is just a generalisation of a similar definition for
pairs of nodes ofT. We may also define a notion ofresponsibilityfor paths which is
analogous to the definition for nodes and formulate a lemma analogous to Lemma 5.

Lemma 34. One can augment the treêT with additional information of sizeO(nλ3+η),
so that for any pair of pathsPx, Py ∈ P one can decide ifPx and Py know each
other, and if that is the case the level of the meeting is returned. The whole query takes
O(η logλ) time.

Now, suppose we are given two nodesu, v ∈ T̂ and we are to computemeet(u, v).
The following lemma provides a crucial insight into how thiscan be done.

Lemma 35. Let (i, j) ∈ paths(u), which means that the pathPi reaches the path
from u to the root at levelj and assume that nodesu, v start to know each other at
leveljuv = meet(u, v), wherejuv ≤ toplevel(Pi). Then either(i, ℓ) ∈ paths(v) for
someℓ, or there existsi′, such that pathsPi andPi′ know each other,Pi is responsible
for their meeting, and(i′, ℓ) ∈ paths(v) for someℓ. Moreover, this condition can be
checked inO(λη+3) time.

Proof. Sincejuv ≤ toplevel(Pi) we know that at leveltoplevel(Pi) paths fromu
to the root and fromv to the root either merged, or else nodes on those paths at level
toplevel(Pi) know each other. If those paths merged, thanPi intersects the path from
v to the root, and we know that(i, ∗) ∈ paths(v). This can be checked in hash table
for paths(v) in O(1) time.

Otherwise asi′ we takePi to be the lowest pathPi′′ ∈ P, such that(i′′, ℓ) ∈
paths(v) for someℓ, andtoplevel(P ′′

i ) ≥ toplevel(Pi). To check if this occurs,
we takeSi — the interior node ofPi with the highest level, and iterate over allS′

i known
by Si and look for path containingS′

i in the hashtable forpaths(v). As Si knows at
mostλη+3 sets, the bound follows. ⊓⊔

Now, using Lemma 35 we can do a binary search over the elementsof paths(u),
and find a pair(iu, ju) ∈ paths(u) such thatmeet(u, v) ≤ toplevel(Piu) and
meet(u, v) ≥ ju. Namely, we look for the lowest path inpaths(u) that satisfies
Lemma 35. Similarly, we can find(iv, jv) ∈ paths(v). Since pathsPiu andPiv know
each other, we simply use Lemma 34 to find the exact levelj where they meet,and as
the result ofmeet(u, v) returnmax(ju, jv, j). We need to take the maximum of those
values, because pathsPiu andPiv could possibly meet before they enter the paths from
u andv to the root.

Lemma 36 (Lemma 6 restated).The treeT̂ can be augmented so that themeet op-
eration can be performed inO(η logλ log logn) time. The augmentedT tree can be
stored inO(λ3+ηn logn) space and computed in polynomial time.



Proof. Since |paths(u)| ≤ ⌈log2 n⌉ we performO(log logn) steps of the binary
search. During each step we performO(λη+3) searches in a hash table, thus we can
find the result ofmeet(u, v) in O(log logn) time.

The space bound follows from Corollary 4 (the additionallogn factor in the space
bound comes from the size ofpaths(x) for each nodex). Now we need only to describe
how to obtain running time independent of the stretch of the metric. In order to compute
theT̂ tree (without augmentation) we can slightly improve our construction algorithm:
instead of going into the next level, one can compute the smallest distance between
current sets and jump directly to the level when some pair of sets merges or begins to
know each other. ⊓⊔

Remark 37.We could avoid storingpaths in arrays by maintaining, for each path inP,
links to paths distant by powers of two in the direction of theroot (i.e. at mostlog logn
links for each path).

Also, to obtain better space bound, we could use a balanced tree instead of the hash
tables to keep the first copy ofpaths. If we use persistent balanced trees, we can get
anO(n log logn) total space bound. However, in that case the search time would be
increased toO((log logn)2) for one call to themeet operation.

C.3 Thejump operation

Lemma 38. The compressed treêT can be enhanced with additional information of
sizeO(λη+3n logn) in such a way that thejump(v, i) operation can be performed in
O(log logn+log log log stretch) time, wherestretch denotes the stretch of the met-
ric. If we require that there is some meeting at leveli somewhere in the tree (possibly not
involvingv), thejump operation can be performed inO((log η + log logλ) log logn)
time.

Proof. To calculatejump(v, i), we first look atpaths(v) and binary search lowest
pathP ∈ paths(v) such that the highest node inP has level greater thani. If P =
{v1, . . . , vt} (given in order of increasing level), that means thatlevel(v1) ≤ i <
level(vt). This step takesO(log logn) time.

To finish thejump operation, we need, among meetings on pathP , find the lowest
one with the level not smaller thani. As levels are numbered from0 to log stretch,
this can be done using y-Fast Tree data structure [25,26]. The y-Fast Tree uses linear
space and answers predecessor queries inO(log log u) time, whereu is the size of the
universe, hereu = log stretch.

To erase dependency onstretch, note that according to Corollary 4, where are
at mostM := (2n − 1)λη+3 meetings in treêT. Therefore, we can assign to every
level j, where some meeting occurs, a number0 ≤ n(j) < M and for two such levels
j andj′, j < j′ iff n(j) < n(j′). The mappingn(·) can be implemented as a hash
table, thus calculatingn(j) takesO(1) time. Instead of using y-Fast Trees with level
numbers as universe, we use numbersn(· · · ). This requiresO(log logn+log logM) =
O((log η + log logλ) log logn) time, but we need to have the keyi in the hash table,
i.e., there needs to be some meeting at leveli somewhere in the tree. ⊓⊔



D Omitted Proofs

Proof (of Theorem 12).
Recall that nodes of̂T(S) are simply certain subsets ofS, in particular all single-

element subsets ofS are nodes of̂T(S). Associate with every nodeA of T̂(S), an
elementa of A, which we will callleader(A), so that:

– if A = {a} (which meansA is a leaf inT̂(S)), thenleader(A) = a,
– if A has sonsA1, . . . , Am in T̂(S), then letleader(A) be any ofleader(Ai),
i = 1, . . . ,m.

If two nodesA,B in T̂(S) know each other, we will also say that their leadersleader(A)
andleader(B) know each other. Also, ifA is the parent ofB, anda 6= b, where
a = leader(A) andb = leader(B), we will say thata is the parent ofb. We will also
say thata beatsb at levelL, whereL is the level at whichA appears as a node — this
is exactly the level whereb stops being a leader, and is just an ordinary element of a set
wherea is a leader.

Now we are ready do define the pseudospanner. LetH = (S,E), whereE contains
all edgesuv, u 6= v such that:

1. v is the father ofu, or
2. u andv know each other.

We cannot assign to these edges their real weights, because we do not know them.
Instead, we definewH(u, v) to be an upper bound ond(u, v), which is also a good
approximation ofd(u, v). In particular:

1. If u is a son ofv andv beatsu at levelj, we putwH(u, v) = 2 τ2−η

τ−1 rj .

2. If u andv first meet each other at levelj, we putwH(u, v) =
(

1 + 4τ2−η

τ−1

)

τrj .

We claim thatH is aC(η, τ)-spanner forV of sizeO(n).
It easily follows from Lemmas 25 and 31 thatd(u, v) ≤ wH(u, v), hence also for

anyu, v ∈ V we haved(u, v) ≤ dH(u, v), wheredH is the shortest distance metric in
H .

Now, we only need to prove that for every pair of verticesv, v∗ ∈ X , we have
dH(v, v∗) ≤ C(η, τ)d(v, v∗). The proof is similar to that of Lemma 31. As before, let
v ∈ S1 ∈ Sj , v ∈ S2 ∈ Sj+1 andv∗ ∈ S∗

1 ∈ Sj , v∗ ∈ S∗
2 ∈ Sj+1 and assumeS2

knowsS∗
2 but S1 does not knowS∗

1 (all that is assumed to hold in̂T, not in T̂(S)).
Then, sinceS1 andS∗

1 do not know each other,v andv∗ are at distance at leastrj . On
the other hand, sinceS2 knowsS∗

2 in T̂, we also have thatS2 ∩ S knowsS∗
2 ∩ S in

T̂(S). Letu = leader(S2 ∩ S), u∗ = leader(S∗
2 ∩ S). It follows from the definition

of H , thatuu∗ is an edge inH and it has weightwH(u, u∗) ≤
(

1 + 4τ2−η

τ−1

)

τrj .

Now consider the path fromv to S2 ∩ S in T̂(S). Initially, v is the leader of the
singleton set{v}, then it might get beaten by some other vertexv1, thenv1 can get



beaten by some other vertexv2, and so on. Finally, at some levelu emerges as a leader.
This gives a pathv = v0, v1, . . . , vm = u in H . We have

wH(vivi+1) = 2
τ2−η

τ − 1
rli+1

,

whereli+1 is the level at whichvi+1 beatsvi. Since all these levels are different and all
of them are at mostj + 1, we get:

dH(v, u) ≤
m−1
∑

i=0

wH(vi, vi+1) ≤ 2
τ2−η

τ − 1
r0

j
∑

i=0

τ i ≤

≤ 2
τ2−η

τ − 1

τ j+1 − 1

τ − 1
r0 ≤

2τ

τ − 1
·
τ2−η

τ − 1
τrj .

We can argue in the same way forv∗ andu∗. Joining all 3 bounds we get:

dH(v, v∗) ≤ dH(v, u) + wH(u, u∗) + dH(u∗, v∗) ≤

≤
(

1 +
8τ2−η

τ − 1

)

τrj + 2 ·
2τ

τ − 1
·
τ2−η

τ − 1
τrj .

and finally

dH(v, v∗) ≤

(

1 +

(

τ

τ − 1

)2

23−η

)

τrj ≤ C(τ, η)d(v, v∗).

Since every edge of the spanner either corresponds to a father-son edge in̂T(S) or to
a meeting of two nodes in̂T(S), it follows from Lemma 4 thatH has sizeO(n). The
time complexity of constructingH is essentially the same as that of constructingT̂(S),
i.e.O(k(log k + log logn)). ⊓⊔

E Facility location with unrestricted facilities

In this section we study the variant of FACILITY LOCATION with unrestricted facilities
(see Introduction). We show that our data structure can be augmented to process such
queries inÕ(k(log k+ log logn)) time, with the approximation guarantee of3.04+ ε.

Our approach here is a reduction to the problem solved in Corollary 17. The general
idea is roughly the following: during the preprocessing phase, for every pointx ∈ V
we compute a small setF (x) of facilities that seem a good choice forx, and when
processing a query for a set of citiesC, we just apply Corollary 17 to cities’ setC and
facilities’ set

⋃

c∈C F (c). In what follows we describe the preprocessing and the query
algorithm in more detail, and we analyze the resulting approximation guarantee.

In this section we consider a slightly different representation of treeT̂. Namely,
we replace each edge(v, parent(v)) of the originalT̂ with a path containing a node
for each meeting ofv. The nodes on the path are sorted by level, and for any of such
nodesv, level(v) denotes the level of the corresponding meeting. The new treewill
be denoted̄T.



E.1 Preprocessing

Let us denotevis(j) =
(

1+ 4τ2−η

τ−1

)

τrj , i.e.vis(j) is the upper bound from Lemma 31.

Note thatvis(j) is an upper bound on the distance between two pointsv andw such
thatv ∈ S1 andw ∈ S2 for two setsS1, S2 that know each other and belong to the same
partitionSj . For a nodev of treeT we will also denotevis(v) = vis(level(v)).

In the preprocessing, we begin with computing the compressed treeT̄. Next, for
each nodev of T̄ we compute a point in the sets whichv knows, with the smallest
opening cost among these points. Let us denote this point bycheap(v). Finally, for
eachx ∈ V consider the pathP in T̄ from the leaf corresponding to{x} to the root. Let
P = (v1, v2, . . . , v|P |) and fori = 1, . . . , |P | let xi = cheap(vi). Let p the smallest
number such thatf(xp) ≤ n/ε0 · vis(vp), whereε0 is a small constant, which we
determine later; now we just assume thatε0 ∈ (0, 1]. Let q be the smallest number such
thatq ≥ p andf(xq) ≤ ε0 · vis(vq). If p exists, we letF (x) = {vp, vp+1, . . . , vq} and
otherwiseF (x) = ∅.

Lemma 39. For anyx ∈ V , |F (x)| = O(log n). ⊓⊔

Proof. Let r = p + ⌈logτ (n/ε
2
0)⌉. Note that for anyi = p, . . . , r − 1, level(vi) <

level(vi+1). Hence

vis(level(vp)) = vis(0)τlevel(vp) ≤
vis(0)τlevel(vr)

τr−p
≤

≤
ε20vis(0)τ

level(vr)

n
=

ε20
n

· vis(level(vr)).

It follows thatf(xp) ≤ ε0 · vis(level(vr)). Thenq ≤ r, sincexp ∈ set(vr). ⊓⊔

It is straightforward to see that all the setsF (x) can be found inO(n log n) time.
The intuition behind our choice ofF (x) is the following. Iff(xi) > n/ε0 ·vis(vi),

then the opening cost ofxi is too high, because even ifn cities contribute to the opening
of xi, each of them has to pay more thanvis(vi) on average (the constantε0 here is
needed to deal with some degenerate case, see further), i.e.more than an approximation
of its connection cost. Hence it is reasonable for cities inset(vi) to look a bit further
for a cheaper facility. On the other hand, whenf(xi) ≤ ε0 · vis(vi), then even if cityx
opens facilityxi alone it pays much less than its connection cost toxi. Since the possible
cheaper facilities are further thanxi, choosingxi would be a(1 + ε0)-approximation.

E.2 Query

LetC ⊆ V be a set of cities passed the query argument. Denotek = |C|. Now for each
c ∈ C we choose the set of facilities

Fk(c) = {cheap(v) : v ∈ F (c) andf(cheap(v)) ≤ k/ε0 · vis(v)}.

Similarly as in Lemma 39 we can show that|Fk(c)| = O(log k). Clearly,Fk(c) can
be extracted fromF (c) in O(log k) time: if F (c) is sorted w.r.t. the level, we just



check whetherf(cheap(v)) ≤ k/ε0 · vis(v) beginning from the highest level ver-
tex and stop when this condition does not hold. Finally, we compute the unionF (C) =
⋃

c∈C Fk(c) ∪ {cheap(root(T̄)} and we apply Corollary 17 to cities’ setC and fa-
cilities’ setF (C). Note thatF containscheap(root(T̄) – i.e. the point ofV with the
smallest opening cost — this is needed to handle some degenerate case.

E.3 Analysis

Theorem 40. Let SOL be a solution of the facility location problem for thecities’ set
C and facilities’ setV . Then, for anyε > 0, there are values of parametersτ , η andε0
such that there is a solutionSOL′ of cost at most(2 + ε)cost(SOL), which uses only
facilities from setF (C).

Proof. We constructSOL′ from SOL as follows. For each opened facilityx of SOL,
such thatx 6∈ F (C), we consider the setC(x) of all the cities connected tox in SOL.
We choose a facilityx′ ∈ F (C) and reconnect all the cities fromC(x) to x′.

Let c∗ be the city ofC(x) which is closest tox. Consider the pathP of T̄ from
the leaf corresponding toc∗ to the root. Letv be the first node on this path such thatv
knowsx and

vis(v) ≥
ε0f(x)

|C(x)|
. (1)

Note that by the first inequality of Lemma 31, for the first nodew onP that knowsx,

vis(w) ≤
(

1 +
4τ2−η

τ − 1

)

τrlevel(w) ≤
(

1 +
4τ2−η

τ − 1

)

τd(x, c∗).

On the other hand, again by Lemma 31, for the first nodeu onP such thatvis(u) ≥
ε0f(x)
|C(x)| , there isvis(u) ≤ τ ε0f(x)

|C(x)| . Hence, sincev is the higher ofw andu,

vis(v) ≤ τ max

{

ε0f(x)

|C(x)|
,
(

1 +
4τ2−η

τ − 1

)

d(x, c∗)

}

. (2)

First we consider the non-degenerate case whenFk(c
∗) 6= ∅. Let vp, . . . , vq be the sub-

path ofP which was chosen during the preprocessing. Letp′ ∈ {p, . . . , q} be the small-
est number such thatcheap(p′) ≤ k/ε0 ·vis(vp′ ). Recall thatFk(c

∗) = {cheap(vi) :
p′ ≤ i ≤ q}. If v ∈ {vp′ , . . . , vq}, thenFk(c

∗) contains a facility of opening cost at
mostf(x), at distance at mostvis(v). Otherwisev is higher thanvq onP , soFk(c

∗)
contains a facility of cost at mostvis(v), at distance at mostε0 · vis(v). To sum up,
Fk(c

∗) contains a facility of cost at mostmax{f(x), ε0 · vis(v)}, at distance at most
vis(v). Denote it byx′. We reconnect all ofC(x) to x′.



Now let us bound the cost of connectingC(x) to x′. From the triangle inequal-
ity, (2), and the fact thatc∗ is closest tox we get

∑

c∈C(x)

d(c, x′) ≤
∑

c∈C(x)

d(c, x) + |C(x)|vis(v)

≤
∑

c∈C(x)

d(c, x) + τ max







ε0f(x),
(

1 +
4τ2−η

τ − 1

)

∑

c∈C(x)

d(c, x)







≤ τε0f(x) +

(

1 + τ
(

1 +
4τ2−η

τ − 1

)

)

∑

c∈C(x)

d(c, x). (3)

Now let us expand the bound forf(x′):

f(x′) ≤ max

{

f(x), ε0τ max

{

ε0f(x)

|C(x)|
,
(

1 +
4τ2−η

τ − 1

)

d(x, c∗)

}}

≤ (1 + ε0τ)f(x) + ε0τ
(

1 +
4τ2−η

τ − 1

)

·
∑

c∈C(x)

d(c, x). (4)

From (3) and (4) together we get

f(x′)+
∑

c∈C(x)

d(c, x′) ≤ (5)

≤ (1 + 2ε0τ)f(x) +

(

1 + (τ + τε0)
(

1 +
4τ2−η

τ − 1

)

)

∑

c∈C(x)

d(c, x).

Finally, we handle the degenerate case whenFk(c
∗) = ∅. Then we just connect all

C(x) to the facilityx′ = cheap(root(T̄)), i.e. the facility with the smallest opening
cost inV . Note thatFk(c

∗) = ∅ implies that for any pointy ∈ V (and hence also for
x),

f(y) > k/ε0vis(root(T̄)) ≥ k/ε0 max
x,y∈V

d(x, y).

Hence,
∑

c∈C(x) d(c, x
′) ≤ |C(x)|maxx,y∈V d(x, y) ≤ (|C(x)|/n)ε0f(x) ≤ ε0f(x).

It follows that
f(x′) +

∑

c∈C(x)

d(c, x′) ≤ (1 + ε0)f(x). (6)

From (5) and (6), we get that

cost(SOL′) ≤

(

1 + (τ + τε0)
(

1 +
4τ2−η

τ − 1

)

)

cost(SOL).

One can easily seen that the constantsε0, τ andη can be adjusted so that the coefficient
beforecost(SOL) is arbitrarily close to 2. This proves our claim. ⊓⊔

From Theorem 40 and Corollary 17 we immediately get the following.



Corollary 41 (Facility Location with unrestricted facilit ies, Theorem 18 restated).
Assume that for each point ofn-pointV there is assigned an opening costf(x). Given
T̂ and a set ofk pointsC ⊆ V , for anyε > 0, a (3.04 + ε)-approximate solution to
the facility location problem with cities’ setC and facilities’ setV can be constructed
in timeO(k log k(logO(1) k + log logn)), w.h.p.

F Dynamic Minimum Spanning Tree and Steiner Tree —
algorithm details

In this section we give details on the proof of Theorem 20, that is, we describe an
algorithm for MST in the static setting and than we make it dynamic.

We assume we have constructed the compressed treeT̂(V ). Apart from Lemma 44,
we treatλ, η andτ as constants and omit them in the big–O notation. Recall that we are
given a subsetX ⊂ V , |V | = n, |X | = k. In the static setting, we are to give a constant
approximation of a MST for the setX in time almost linear ink. In the dynamic setting,
the allowed operations are additions and removals of vertices to/fromX and the goal is
achieve polylogarithmic times on updates.

F.1 Static Minimum Spanning Tree

We first show how the compressed treeT̂(V ) can be used to solve the static version
of the Minimum Spanning Tree problem, i.e. we are given a setX ⊆ V and we want
to find a constant approximation of the Minimum Spanning Treeof X in time almost
linear ink.

Let r (called theroot) be any fixed vertex inX and letLi(X) = {x ∈ X :

meet(x, r) = i + 1}. Also, letD(τ) =
(

1 + 4τ2−η

τ−1

)

τ . As a consequence of Prop-

erty 4 of the partition tree, we get the following:

Lemma 42. Let x, y ∈ Li(X). Thenri ≤ d(x, r) ≤ D(τ)ri. Moreover, at leveli +
1 + logτ (2D(τ)) = i+O(1) of T the sets containingx andy are equal or know each
other.

A spanning treeT of X is said to belayeredif it is a sum of spanning trees for each
of the sets{r} ∪ Li(X). The following is very similar to Lemma 8 in Jia et al. [16].

Lemma 43. There exists a layered treeTL of X with weight at mostO(1)OPT, where
OPT is the weight of the MST ofX .

Proof. LetTOPT be any minimum spanning tree ofX with cost OPT. Letm = ⌈logτ (1+
D(τ))⌉ andLj = {r}∪

⋃

{Li(X) : i mod m = j} for 0 ≤ j < m. Double the edges
of TOPT, walk the resulting graph along its Euler–tour and shortcutall vertices not be-
longing toLj . In this way we obtain the treeT j

OPT — a spanning tree ofLj with cost at
most2OPT. Clearly

⋃m−1
j=0 T j

OPT is a spanning tree forX with cost at most2mOPT.

Let xy be an edge ofT j
OPT such thatx andy belong to different layers, that is,

x ∈ Li(X), y ∈ Li′(X), i < i′. Theni′ ≥ i+m and due to Lemma 31:

d(y, r) ≥ ri′ ≥ (1 +D(τ))ri ≥ ri + d(x, r).



Therefored(x, y) ≥ ri and, asd(x, r) ≤ D(τ)ri, d(x, r) ≤ D(τ)d(x, y). Moreover:

d(y, r) ≤ d(x, y) + d(x, r) ≤ d(x, y) +D(τ)ri ≤ (1 +D(τ))d(x, y).

Therefore by replacingxy by one of the edgesxr oryr, we increase the cost of this edge
at most(1 +D(τ)) times. If we replace all such edgesxy in all T j

OPT for 0 ≤ j < m,
we obtain a layered spanning tree ofX with cost at most2m(1 +D(τ))OPT. ⊓⊔

Our strategy is to construct anO(1)-approximationTi(X) to MST for each layer
separately and connect all these trees tor, which gives anO(1)-approximation to MST
for X by the above lemma. The spanning treeTi(X) is constructed using a sparse
spanning graphGi(X) of Li(X). In order to buildGi(X) we investigate the levelsT
at which the sets containing vertices ofLi(X) meet each other. The following technical
Lemma shows that we can extract this information efficiently:

Lemma 44. Letx ∈ X and leti ≤ j be levels ofT. Then, for each level ofT in range
[i, j], we can find all sets known tox, in total timeO(log log log stretch+log logn+
λη+3(j − i)). If we are given leveli0 such that there exists a meeting (possibly not
involvingx) at leveli0, the above query takesO((log η + log logλ) log logn + |i0 −
i|+ λη+3(j − i)) time.

To perform these queries, the tree needs to be equipped with additional information
of sizeO(λ2η+6n).

Proof. First we performjump(x, i) and, starting with the returned meeting, we go up
the tree, one meeting at a time, until we reach levelj. In this way, we iterate over all
meetings ofx between levelsi andj. We store in the tree, for each meeting(S, S′, i′),
the current set of acquaintances ofS andS′. The answer to our query can be retrieved
directly from this information. Also note that this extra information takesO(λ2η+6n)
space, as there are at most(2n − 1)λη+3 meetings and each set knows at mostλη+3

other sets at any fixed level. If we are given leveli0, we may simply performjump(x, i0)
and walk the tree to leveli. ⊓⊔

Theorem 45. Given the compressed treêT(V ) and a subsetX ⊆ V one can construct
anO(1)-approximationT to MST in timeO(k(log logn+ log k).

Proof. Designate anyr ∈ X as the root of the tree. Split all the remaining vertices into
layersLi(X). For each nonempty layer pick a single edge connecting a vertex in this
layer tor and add itT . Furthermore, add toT an approximate MST for each layer,
denotedTi(X), constructed as follows.

Consider a layerLi(X) with ki > 0 elements. We construct a sparse auxiliary
graphGi(X) with Li(X) as its vertex set. We use Lemma 44 to find for each vertex
x ∈ Li(X) and every level inl ∈ [i − logτ k + 1, i + 1 + logτ (2D(i))] all the sets
known tox at levell in T. Using leveli + 1 = meet(x, r) as the anchori0, this can be
done inO(log logn + log k) time per elementx ∈ Li(X). Using this information we
find, for everyl as above and every setS at levell known to at least onex ∈ Li(X), a
bucketBl,S . This bucket contains allx ∈ Li(X) that knowS at levell. Note that the
total size of the buckets isO(ki log k), because we are scanningO(log k) levels, and a
vertex can only knowO(1) sets at each level. Now we are ready to define the edges of



E(Gi(X)). For every bucketBl,S , we add toE(Gi(X)) an arbitrary path through all
elements inBl,S . We also assign to each edge on this path a weight of2D(τ)rl−1.

Since the total size of the buckets isO(ki log k), we also have thatGi(X) has
O(ki log k) edges. We letTi(X) be the MST ofGi(X). Note thatTi(X) can be found in
timeO(ki log k) by the following adjustment of the Kruskal’s algorithm. If we consider
buckets ordered in the increasing order ofl, the edges on the paths are given in the
increasing order of their lengths. At every step of Kruskal’s algorithm, we keep current
set of connected components ofTi(X) as an array, where everyx ∈ Li(X) knows
the ID of its component. We also keep the size of each component. Whenever two
components are joined by a new edge, the new component inherits ID from the bigger
subcomponent. This ensures that for everyx ∈ Li(X)we change its ID at most⌈log ki⌉
times.

We now claim that

Lemma 46. The total weight ofTi(X) is O(1)(OPTLi(X) + ri), where OPTLi(X) is
the weight of the MST forLi(X).

Proof (Proof of Lemma 46).First, note that the Kruskal’s algorithm connects the whole
bucketBl,S when considering edges of length2D(τ)rl−1. Therefore we may modify
graphGi(X) to G′

i(X) such that all pairs of vertices inBl,S are connected by edges
of length2D(τ)rl−1, without changing the weight of the MST. Letdi be the metric
in G′

i(X). By Lemma 31,di(x, y) ≥ d(x, y), as the sets containingx andy at level,
wherex andy are not placed in the same bucket, do not know each other. Ifd(x, y) <
ri−logτ k, thendi(x, y) = 2D(τ)ri−logτ k = 2D(τ)ri/k, as bothx andy meet in some
bucket at leveli − logτ k + 1. Otherwise, ifd(x, y) ≥ ri−logτ k, by Lemma 31 again,
di(x, y) ≤ 2D(τ)d(x, y), as bothx andy knowS at levell.

Let us replace metricd byd′ defined as follows: forx 6= y,d′(x, y) = 2D(τ)d(x, y)
if d(x, y) ≥ ri−logτ k andd′(x, y) = ri−logτ k otherwise. Clearlyd(x, y) ≤ di(x, y) ≤
d′(x, y). Note thatd′ satisfies the following condition: for eachx, y, x′, y′ ∈ Li(X),
d(x, y) ≤ d(x′, y′) iff d′(x, y) ≤ d′(x′, y′). Therefore, the Kruskal’s algorithm for
MST in (Li(X), d) chooses the same treeTOPT as when run on(Li(X), d′). Letd(TOPT)
(di(TOPT), d′(TOPT)) denote the weight ofTOPT with respect to metricd (resp.di and
d′). Let us now boundd′(TOPT). TOPT consists ofki − 1 edges, so the total cost of
edgesxy such thatd(x, y) < ri−logτ k is at most(ki − 1)2D(τ) rik < 2D(τ)ri. Other
edges cost at mostD(τ) times more than when using metricd, so in totald′(TOPT) ≤
2D(τ)(ri + d(TOPT)). As di(TOPT) ≤ d′(TOPT), and Kruskal’s algorithm finds mini-
mum MST with respect todi, the lemma is proven. ⊓⊔

Now we are ready to prove thatT is anO(1)-approximation of MST forX . Let
OPT be the weight of MST forX , and OPTL be the weight of the optimal layered MST
of X . We know that OPTL ≤ O(1)OPT by Lemma 43.

The optimal solution has to connectr with the vertexx ∈ X which is the furthest
from r. We haved(r, x) ≥ rmax, wherermax = ri for the biggesti with non-empty
Li(X). It follows that OPT≥ rmax ≥ O(1)

∑

i ri, because theri-s form a geometric
sequence. Thus, the cost of connecting all layers tor is bounded byO(1)OPT.



Moreover, Lemma 46 implies that sum of the weights of allTi(X)-s is bounded by:

O(1)
∑

i

(

ri + OPTLi(X)

)

≤ O(1) (OPT+ OPTL) ≤ O(1)OPT.

Thus the constructed treeT is anO(1)-approximation of the MST ofX . ⊓⊔

F.2 Dynamic Minimum Spanning Tree

The dynamic approximation algorithm for MST builds on the ideas from the previous
subsection. However, we tackle the following obstacles:

– we do not have a fixed root vertex around which the layers couldbe constructed,
– the number of distance levels considered when building auxiliary graphs is depen-

dent onk, and as such can change during the execution of the algorithm, and finally,
– we need to compute the minimum spanning trees in auxiliary graphs dynamically.

The following theorem shows that all of these problems can besolved successfully.

Theorem 47 (Theorem 20 restated).Given the compressed treêT(V ), we can main-
tain anO(1)-approximate Minimum Spanning Tree for a subsetX subject to insertions
and deletions of vertices. The insert operation works inO(log5 k + log logn) time and
the delete operation works inO(log5 k) time,k = |X |. Both times are expected and
amortized.

Proof. The basic idea is to maintain the layers and the auxiliary graphs described in the
proof of Theorem 45. However, since we are not guaranteed that any vertex is going to
permanently stay inX , we might need to occasionally recompute the layers and graphs
from scratch, namely when our current root is removed. However, if we always pick
root randomly, the probability of this happening as a resultof any given operation is
≤ 1

k and so it will not affect our time bounds. It does, however, make them randomized.
The number of distance levels considered for each layer islogτ k + O(1) and so

it might change during the execution of the algorithm. This can be remedied in many
different ways, for example we might recompute all the data structures from scratch
every timek changes by a given constant factor.

The above remarks should make it clear that we can actually maintain the layer
structure and the auxiliary graph (as a collection of paths in non–empty bucketsBl,S)
for each layer with low cost (expected and amortized) per update. We now need to show
how to use these structures to dynamically maintain a spanning tree. We use the algo-
rithm of de Lichtenberg, Holm and Thorup (LHT) [13] that maintains a minimum span-
ning tree in a graph subject to insertions and deletions of edges, both in timeO(log4 n),
wheren is the number of vertices.

We are going to use the LHT algorithm for each auxiliary graphseparately. Note
that inserting or deleting a vertex corresponds to inserting or deletingO(log k) edges to
this graph, as every vertex is inO(log k) buckets.

In case of insertion of a vertexx, we needO(log logn) time to performmeet(v, root)
and find the appropriate layer. Non–empty layers and their non–empty buckets may be



stored in a dictionary, so the search for a fixed layer or a fixedbucket is performed
in O(log k) time. Having appropriate layer, we insertx into all known buckets, taking
O(log4 k) time to update edges in each bucket. Therefore the insert operation works in
expected and amortized timeO(log5 k + log logn).

In case of deletion of a vertexx, we may maintain for each vertex inX a list of
its occurrences in buckets, and in this way we may fast accessincident edges. For each
occurrence, we delete two incident tox edges and connect the neighbors ofx. Therefore
the delete operation works in expected and amortized timeO(log5 k). ⊓⊔
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