arXiv:0911.1626v2 [cs.DS] 17 Jun 2010

Fast Approximation in Subspaces by Doubling Metric
Decomposition*

Marek Cygan, Lukasz Kowalik, Marcin Mucha,
Marcin PilipczuKk and Piotr Sankowski?

! Institute of Informatics, University of Warsaw, Poland
2 Dipartimento di Informatica e Sistemistica, Sapienza -Vdrsity of Rome, Italy

Abstract. In this paper we propose and study a new complexity modelder a
proximation algorithms. The main motivation are practipedblems over large
data sets that need to be solved many times for differentasicen e.g., many
multicast trees that need to be constructed for differeatigs of users. In our
model we allow a preprocessing phase, when some informatidre input graph
G = (V, E) is stored in a limited size data structure. Next, the datasire en-
ables processing queries of the form “solve problem A fompuiS C V. We
consider problems like 8:INER FOREST, FACILITY LOCATION, k-MEDIAN,
k-CENTERand TSP in the case when the graph induces a doubling metric. O
main results are data structures of near-linear size teailgle to answer queries
in time close to linear ifS|. This improves over typical worst case reuniting
time of approximation algorithms in the classical settingich is 2(|E|) in-
dependently of the query size. In most cases, our approkimgtarantees are
arbitrarily close to those in the classical setting. Aduitilly, we present the first
fully dynamic algorithm for the Steiner tree problem.

1 Introduction

Motivation The complexity and size of the existing communication neksdas grown
extremely in the recent times. It is now hard to imagine thgtaup of users willing
to communicate sets up a minimum cost communication netwoik multicast tree
according to an approximate solution toESNER TREE problem. Instead we are forced
to use heuristics that are computationally more efficieritrbay deliver suboptimal
results[[27,20]. It is easy to imagine other problems thaftrinciple can be solved with
constant approximation factors using state of art algoritfbut due to immense size of
the data it is impossible in timely manner. However, in mapplizations the network
is fixed and we need to solve the problem many times for diffiegeoups of users.
Here, we propose a completely new approach that explossféist to overcome
the obstacles stemming from huge data sizes. It is able twiesftly deliver results
that have good approximation guarantee thanks to the foitpitwo assumptions. We
assume that the network can be preprocessed beforehartaatitetgroup of users that
communicates is substantially smaller than the size of étevark. The preprocessing

* This work was partially supported by the Polish Ministry afiéhce grant N206 355636. E-
mail addressescygan, kowalik, mucha,malcin, sank}@mimuw.edu.pl.

http://arxiv.org/abs/0911.1626v2

step is independent of the group of users and hence afteswardan, for example,
efficiently compute a Steiner tree for any set of users.

More formally, in the SEINER TREE problem the algorithm is given a weighted
graphG = (V, E) onn vertices and is allowed some preprocessing. The resultseof t
preprocessing step need to be stored in limited memoryradtels, the sef C V of
terminals is defined and the algorithm should generate aasgsossible a Steiner tree
for S, i.e., a tree inG of low weight which contains all vertices ifi. Given the query
setS of k vertices we should compute the Steiner t7/eée time depending only (or,
mostly) onk.

The trivial approach to this problem is to compute the matiosureG* of G and
then answer each query by solving theeBNER TREE problem onG*[S]. This ap-
proach delivers results with constant approximation rdtid requiresD(n?) space of
the data structure an@(k?) query time. Hence it is far from being practical. In this
work we aim at solutions that substantially improve bothha#se bounds; more for-
mally the data structure space should be cloge(te), while the query time should be
close toO(k). Since in a typical situation probably= O(logn), so even @ (k logn)
query time is not considered fast enough, as thegn = 6(k?). Note that theD(n)
bound on the structure size is very restrictive: in a ways tfound is sublinear in the
sense that we are allowed neither to store the whole distaatéX, nor (ifG is dense)
all the edges of7. This models a situation when during the preprocessing anaise
vast resources (e.g., a huge cluster of servers), but thaness are not granted forever
and when the system processes the queries the availabkispaach smaller.

New Model In our model, computations are divided into two stages: ttepmcess-
ing stage and the query stage. In the preprocessing stagiaptlt is a weighted graph
G = (V, E) and we should compute our data structure in polynomial tintespace.
Apart from the graphG' some additional, problem-specific information may be also
provided. In the query stage the algorithm is given the datectire computed in the
preprocessing stage, but r@titself, and a sef of points of V' (the query — possibly

a set of pairs of points fron, or a weighted set of points fro, etc.) and com-
putes a solution for the sét The definition of “the solution for the sét’ depends on
the specific problem. In this work we consider so-called ogiroblems, sa~ corre-
sponds to a metric spa¢¥, d) whered can be represented as the full distance matrix
M. One should keep in mind that the functidreannot be quickly computed (e.g. in
constant time) without th€(n?) size matrix)/. In particular, we assume that there is
no distance oracle available in the query stage.

Hence, there are three key parameters of an algorithm watlnimmodel: the size of
the data structure, the query time and the approximatido. la¢ss important, but not
irrelevant is the preprocessing time. Let us note that thoug model is inspired by
large datasets, in this work we ignore streaming effectereal memory issues etc.

Above we have formulated ther8 NER TREE problem in our model, now we de-
scribe the remaining problems. IT&INER FORESTproblem the algorithm is allowed
to preprocess a weighted gragh= (V, E), whereas the query is composed of the set
S C V x V of pairs. The algorithm should generate the Steiner fomess fi.e., a sub-
graphH of G of small weight such that each pair this connected irf7. In FACILITY
LocATION problem the algorithm is given in the preprocessing phaseighied graph

with facility opening costs in the nodes. We consider twadasats of this problem in our
model. In the varianvith unrestricted facilitiesthe query is a sef C V of clients for
which we should open facilities. The goal is to open a subsét V' of facilities, and
connect each city to an open facility so that the sum of the tqgening and connection
costs is minimized. In the other variant, one widistricted facilities the facilities that
can be opened are given as a part of query (together withdpeining costs).

Our Results In this paper we restrict our attention to doubling metriacgs which
include growth-restricted metric spaces and constantmimeal Euclidean spaces. In
other words we assume that the grapinduces a doubling metric and the algorithms
are given the distance matiix* as an input or compute it at the beginning of the prepro-
cessing phase. This restriction is often assumed in thenwgsietting[12,17] and hence it
is a natural question to see how it can impact the multicadilpms. Using this assump-
tion we show that solutions with nearly optimal bounds argsfiale. The main result of
the paper is the data structure that requidés log n) memory and can find a constant
ratio approximate Steiner tree over a given set of sigeO (k(log k + log logn)) time.
Moreover, we show data structures with essentially the ssomgplexities for solving
STEINER FOREST, both versions of ECILITY LOCATION, k-MEDIAN and TSP. The
query bound is optimal, up tlwg & andloglog n factors, as no algorithm can answer
queries in time less than linear inas it needs to read the input. For the exact approxi-
mation ratios of our algorithms refer to Sectiénd 3.2[ahd E.

All of these results are based on a new hierarchical datateneifor representing a
doubling metric that approximates original distances With- €)-multiplicative factor.
The concept of a hierarchical data structure for represgraidoubling metric is not
novel — it originates from the work of Clarksanl [8] and wasrthesed in a number of
papers, in particular our data structure is based on the oadalJia et al.[[16]. Our
main technical contribution here is adapting and extenthiregdata structure so that for
any subset C V a substructure corresponding$ocan be retrieved i® (k(log k +
loglogn)) using only the information in the data structure, withoutistahce oracle.
The substructure is then transformed to a pseudo-spans@ilaied above. Note that our
complexity bounds do not depend on the stretch of the metridike in many previous
works (e.g.[[17]). Another original concept in our work isaplication of spanners (or,
more precisely, pseudo-spanners) to improve working tifagproximation algorithms
for metric problems. As a result, the query times for the mogtroblems we consider
areO(k(polylogk + loglogn)).

Astonishingly, our hierarchical data structure can be usedbtain dynamic al-
gorithms for the SEINER TREE problem. This problem attracted considerable atten-
tion [3[5,11,4] in the recent years. However, due to the hesd of the problem none of
these papers has given any improvement in the running tireetbe static algorithms.
Here, we give first fully dynamic algorithm for the problemtime case of doubling
metric. Our algorithm is given a static graph and then maistinformation about
the Steiner tree built on a given s&t of nodes. It supports insertion of vertices in
O(log” k + loglog n) time, and deletion i (log® k) time, wherek = | X|.

Related WorkThe problems considered in this paper are related to sesig@iithmic
topics studied extensively in recent years. Many reseaschied to answer the question

whether problems in huge networks can be solved more effigitran by processing
the whole input. Nevertheless, the model proposed in thpeplaas never been consid-
ered before. Moreover, we believe that within the proposaahéwork it is possible to
achieve complexities that are close to being practical. Yésemt such results only in
the case of doubling metric, but hope that the further stuitlyewtend these results to
a more general setting. Our results are related to the foilpaoncepts:

— Universal Algorithms — this model does not allow any proaagsn the query
time, we allow it and get much better approximation ratios,

— Spanners and Approximate Distance Oracles — although aspafha subspace of
a doubling metric can be constructedk log k)-time, the construction algorithm
requires a distance oracle (i.e. the f8l{n?)-size distance matrix).

— Sublinear Approximation Algorithms — here we cannot pregss the data, al-
lowing it we can get much better approximation ratios,

— Dynamic Spanning Trees — most existing results are onlyiegige to dynamic
MST and not dynamic Steiner tree, and the ones concerningattes work in
different models than ours.

Due to space limitation of this extended abstract an exterdiscussion of the related
work is attached in Appendix]A and will be included in the fudirsion of the paper.

2 Space partition tree

In this section we extend the techniques developed by Jia[@6h Several statements
as well as the overall construction are similar to those rgibg Jia et al. However,
our approach is tuned to better suit our needs, in parti¢alatiow for a fast subtree
extraction and a spanner construction — techniques intedlin Sectiongl2 arid 3 that
are crucial for efficient approximation algorithms.

Let (V,d) be a finite doubling metric space with'| = n and a doubling constant
A, i.e., for everyr > 0, every ball of radiu@r can be covered with at moatballs of
radiusr. By stretch we denote the stretch of the metdcthat is, the largest distance
in V divided by the smallest distance. We use space partitioanseh for doubling
metrics to create a partition tree. In the next two subsestiwe show that this tree can
be stored ir0(nlog n) space, and that a subtree induced by any subsetl” can be
extracted efficiently.

Let us first briefly introduce the notion of a space partiticef that is used in the
remainder of this paper. Precise definitions and proofsditiqular a proof of existence
of such a partition tree) can be found in Apperidix B.

The basic idea is to construct a sequeBgeSy, ..., Sy, of partitions of V. We
require thaSy = {{v} : v € V}, andS,; = {V'}, and in general the diameters of the
sets inSy, are growing exponentially ik. We also maintain the neighbourhood structure
for eachSy, i.e., we know which sets i, are close to each other (this is explained
in more detail later on). Notice that the partitions togethvith the neighbourhood
structure are enough to approximate the distance betweetwanpointsx, y — one
only needs to find the smallekt such that the sets %, containingz andy are close
to each other (or are the same set).

There are two natural parameters in this sort of scheme. ®tleem is how fast
the diameters of the sets grow, this is controlledrby R, 7 > 1 in our constructions.
The faster the set diameters grow, the smaller the numbeartifipns is. The second
parameter is how distant can the sets in a partition be talbeatsidered neighbours,
this is controlled by a nonnegative integem our constructions. The smaller this pa-
rameter is, the smaller the number of neighbours is. Maatmg these parameters
allows us to decrease the space required to store the astitand consequently also
the running time of our algorithms. However, this also comues price of lower quality
approximation.

In what follows, eacl$;, is a subpartition o8;; fork =0,..., M —1. Thatis, the
elements of these partitions form a tree, denote bwith Sy being the set of leaves
andS,, being the root. We say th&te S; is achildof S* € S; 4, inTif S C S*.

Letro be smaller than the minimal distance between poinié and letr; = 77r.
We show (in AppendixB) thaf,-s andT satisfying the following properties can be
constructed in polynomial time:

(1) Exponential growth: EveryS € S; is contained in a ball of radiug72~"/(7—1).
(2) Small neighbourhoods:For everyS € S;, the union J{B,,(v) : v € S} crosses
at most\3*7 setsS’ from the partitiorS; — we say thats knowstheseS’. We also
extend this notation and say thatdfknowsS’, then every € S knowsS’.
(3) Small degrees:For everyS* € S;.; all children of S* know each other and,
consequently, there are at mo&t™3 children of 5*.
(4) Distance approximation:If v,v* € V are different points such thate S; € S;,
v € Sy € S andv* € ST € S, v* € S5 € Sj41 andS, knows S5 but.S; does
not knowsS7, then
-n
r; <d(v,v*) < (1 + %)77’]—;
For anye > 0, thet andn constants can be adjusted so that the last condition
becomes; < d(v,v*) < (1 + ¢)r; (see Remark32).

Remark 1.We note that not all values afandn make sense for our construction. We
omit these additional constraints here.

2.1 The compressed tre& and additional information at nodes

Let us now show how to efficiently compute and store theTtelRecall that the leaves
of T are one point sets and, while going up in the tree, thesedat®jo bigger sets.

Note that ifS is an inner node df" and it has only one chil@’ then both nodes$
andS’ represent the same set. Nodeand.S’ can differ only by their sets of acquain-
tances, i.e. the sets of nodes known to them. If these setqaad, there is some sort
of redundancy irT. To reduce the space usage we store only a compressed vefsion
the treeT.

Let us introduce some useful notation. For a nod# T let set(v) denote the set
corresponding t@ and letlevel(v) denote the level of, where leaves are at level
zero. LetS,, S, be a pair of sets that know each other at Igygland do not know each
other at levelj,, — 1. Then the triplg(S,, Si, jab) is called ameetingof S, and.S; at
level jqp.

Definition 2 (Compressed tree)The compressed versionBf denotedr, is obtained
from T by replacing all maximal paths such that all inner nodes hexactly one child
by a single edge. For each nodeof T we storelevel(v) (the lowest level ofet(v)
in T) and a list of all meetings afet(v), sorted by level.

ObviouslyT has at mosgn — 1 nodes since it has exactlyleaves and each in-
ner node has at least two children but we also have to ensatr¢hih total number of
meetings is reasonable.

Note that the sets at nodesbére pairwise distinct. To simplify the presentation we
will identify nodes and the corresponding sets. Consideeatmgm = (Sq, Si, jab)-
Letp, (respps) denote the parent o, (resp.S,) in T. We say thab, is responsibldor
the meetingn whenlevel(p,) < level(p,) (Whenlevel(p,) = level(ps), bothS,
andS;, are responsible for the meeting). Note that ifS, is responsible for a meeting
(Sa, Sk, Jab), thenS, knowssS, at levellevel(p,)— 1. From this and Properfy 2 of the
partition tree we get the following.

Lemma 3. Each set irlT is responsible for at most+” meetings.

Corollary 4. There are< (2n — 1)A\3*7 meetings stored in the compressed fleée.
T takesO(n) space.

Lemma 5. One can augment the tréwith additional information of siz& (nA3*7),
so that for any pair of nodes, y of T one can decide it andy know each other, and
if that is the case the level of the meeting is returned. TheygtakesO(n log \) time.

Proof. For each node in T we store all the meetings it is responsible for, using a
dictionaryD(m) — the searches take(log(A\3*7)) = O(nlog \) time. To process the
query it suffices to check if there is an appropriate meeting(z) or in D(y). O

In order to give a fast subtree extraction algorithm, we rteatkfine the following
operationmeet. Let u,v € T be two given nodes. Let(;j) denote the node iff on
the path fromw to the root at levelj, similarly defineu(j). The value ofmeet(u,v)
is the lowest level, such tha{j) andu(j) know each other. Such level always exists,
because in the end all nodes merge into root and nodes kndwodiaer at one level
before they are merged (see Propéity 3 of the partition.téeédchnical proof of the
following lemma is moved to Appendix|C due to space limitasio

Lemma 6. The treeT can be augmented so that theet operation can be performed
in O(nlog Aloglogn) time. The augmented tree can be stored IO (A\3+7nlogn)
space and computed in polynomial time.

2.2 Fast subtree extraction

For any subsef C V we are going to define a-subtreeof T, denotedﬂ“(S). Intu-
itively, this is the subtree df induced by the leaves correspondingstoAdditionally
we store all the meetings Ifi between the nodes corresponding to the nod&¥ 6.

More precisely, the set of nodesBfS) is definedafANS : A C V and4is
a node ofT}. A nodeQ of T(S) is an ancestor of a node of T(S) iff R C Q. This
defines the edges @f(S). Moreover, for two nodes, B of T such that bottd and B
intersectS, if A knowsB at levelj, we say thatd N.S knowsB N S in T(S) at levelj.
Atriple (Q, R, jor), Wherejgor is a minimal level such thap knowsR at leveljgrg,
is called ameeting Thelevelof a nodeQ of T(S) is the lowest level of a nodé of T
such that) = A N S. Together with each nod@ of T(S) we store its level and a list
of all its meetingqQ, R, jor)- A nodeq is responsibleor a meeting @, R, 1) when
level(parent(Q)) < level(parent(R)).

Remark 7.The subtreél‘(S) is not necessarily equal to any compressed tree for the
metric spacgs, d|sz).

In this subsection we describe how to extr¢s) from T efficiently. The extraction
runs in two phases. In the first phase we find the nodes and efig¥s$) and in the
second phase we find the meetings.

Finding the nodes and edges d]f(S) We construct the extracted tree in a bottom-up
fashion. Note that we can not simply go up the tree from thedeaorresponding t6
because we could visit a lot of nodes®fwhich are not the nodes 6f(.S). The key
observation is that ift and B are nodes off, such thatd N S andB N S are nodes of
T(S) andC is the lowest common ancestor 4fand B, thenC N S is a node off'(.S)
and it has levelevel(C).

1. Sort the leaves df corresponding to the elements $faccording to their inorder
value inT, i.e., from left to right.

2. Forall pairg A, B) of neighboring nodes in the sorted order, insert into aalietiy
M a key-value pair where the key is the péievel(lca; (A, B)),1cas (A, B))
and the value is the paftd, B). The dictionaryM may contain multiple elements
with the same key.

3. Insert all nodes frony to a second dictionar¥, where nodes are sorted according
to their inorder value from the tré@

4. while M contains more than one element
(a) Letz = (I, C) be the smallest key i/

(b) Extract fromM all key-value pairs with the key, denote those values as
(A1,B1),..., (Am, Bm).

(C) SetP=P \ Ul{AhBl}

(d) Create a new nodg, make the nodes erased fraPrthe children ofQ. Storel
as the level of).

(e) InsertC into P. Setorigin(Q) = C.

(f) If C is not the smallest element iR (according to the inorder value) |€Y;
be the largest element iR smaller thanC' and add a key-value pair td/
where the key is equal tevel(lca; (C, C)), 1cas(Cr, C)) and the value is
(C, O).

(g) If C is not the largest element iR let C, be the smallest element i larger
than C' and add a key-value pair td/ where the key is given by the pair
(level(lcas(C, Cy)),1cas(C, Cy)) and the value is the pa(c’, C..).

Note that in the above procedure, for each n@def ’TI‘(S) we compute the corre-
sponding node ifT, namelyorigin(@). Observe thabrigin(Q) is the lowest com-
mon ancestor of the leaves corresponding to elemers ahdorigin(Q) NS = Q.

Lemma 8. The tre€l’ can be augmented so that the above procedure ru@giriog k)
time and when it ends the only keyhn is the root of the extracted tree

Proof. All dictionary operations can be easily implementediiog k) time whereas
the lowest common ancestor can be foun®ifi) time after anO(n)-time preprocess-
ing (seel[2]). This preprocessing requir2&:) space and has to be performed wHen
is constructed. Since we perfoi@(k) of such operation®(k log k) is the complexity
of our algorithm. a

Finding the meetings in’Tl‘(S) We generate meetings in a top-down fashion. We con-
sider the nodes di“(S) in groups. Each group corresponds to a single level. Now as-
sume we consider a group of nodes. . . , u; at some level. Letvy, ..., vy be the set
of children of all nodes:; in ’TI‘(S). For each node;,7 = 1,...,t we are going to find
all the meetings it is responsible for. Any such meeting<, j) is of one of two types:

1. parent(z) € {uq,...,u.}, possiblyparent(z) = parent(v;), or
2. parent(z) & {u1,...,u}, i.e.level(parent(z)) > /.

The meetings of the first kind are generated as follows. Censhe following set
of nodes ofT (drawn as grey disks in Figuré 1).

L = {z : xis the first node on the path iAfrom origin(u,) to origin(v;),
forsomei=1,...,t,j=1,...,t'}

We mark all the nodes af. Next, we identify all pairs of nodes df that know each
other. By Lemmal3 there are at most™t' = O(t’) such pairs and these pairs can be
easily found by scanning, for eaehe L, all the meetings is responsible for and such
that the node: meets is inL. In this way we identify all pairs of childrefv;, v;) such
thatv; knowsv;, namely ifz, y € L andz knowsy in T, thenznS knowsynsS in T(S).
Then, if v; knowsw;, the level of their meeting can be found (7 log A log logn)
time using operatiomeet(origin(v;), origin(v;)) from Lemma6. Hence, finding
the meetings of the first type tak€g \3*" log A 7t loglogn) time for one group of
nodes, and (**" log A 7k loglog n) time in total.

Finding the meetings of the second type is easier. Consigesecond type meeting
(vi, w,1). Letu; be the parent of;. Then there is a meeting,, w, level(u;)) stored
in u;. Hence it suffices to consider, for eagh all its meetings at levelevel(u,).
For every such meetin@:;, w, level(u;)), and for every child); of u; we can apply
meet(origin(v;), origin(w)) from Lemma® to find the meeting ef andw. For

level(u;)

IREICLIp

Fig. 1. Extracting meetings. The figure contains a part of ffe&lodes corresponding
to the nodes ofF(S) are surrounded by dashed circles. The currently processeq g
of nodes {i;, © = 1,..., k) are filled with black. Nodes from the sétare filled with
gray. The nodes below the gray nodes are the the ngdeés. the children of nodes;

in T(S).

the time complexity, note that by Propefty 2 of the partitioee, a node:; meets
A3t = O(1) nodes at levelevel(u;). Since we can store the lists of meetings sorted
by levels, we can extract all those meetingsdf\3*") time. For each meeting we
iterate over the children af; (Property 8 of the partition tree) and apply Leniha 6. This
results inO(A\>*7 log A 7log log n) time per a child, henc®(A\3+7log A 7k loglogn)
time in total.

After extracting all the meetings, we sort them by level®itk log k) time.

We can claim now the following theorem.

Theorem 9. For a given setS C V (S| = k) we can extract th&-subtree of the com-
pressed tred in time O(A\3+" log A 7k(log k + loglogn)) = O(k(log k + loglogn)).

3 Pseudospanner construction and applications in approxim@tion

In this section we use the subtree extraction procedureilegldn the previous section,
to construct for any seéf C V, a graph that is essentially a small constant stretch span-
ner forS. We then use it to give fast approximations algorithms foesal problems.

3.1 Pseudospanner construction

Definition 10. LetG = (V, E¢) be an undirected connected graph with a weight func-
tion wg : E¢ — R4. AgraphH = (V,Eg), En C E¢ with a weight function
wyg : Fg — R4 is an f-pseudospanndor G if for every pair of verticesi,v € V

we havelg(u,v) < dg(u,v) < f-dg(u,v), wheredg anddy are shortest path met-
rics induced bywe andwg. The numbeyf in this definition is called thetretchof the

pseudospanner. A pseudospanner for a metric space is samgdgudospanner for the
complete weighted graph induced by the metric space.

Remark 11.Note the subtle difference between the above definition hadkassical
spanner definition. A pseudospantéiis a subgraph of7 in terms of vertex sets and
edge sets but it does not inherit the weight functign We cannot construct spanners
in the usual sense without maintaining the entire distanagixy which would require
prohibitive quadratic space. However, pseudospannesgremted below become clas-
sical spanners when provided the original weight function.

Also note, that it immediately follows from the definition afpseudospanner that
for alluv € Exg we havewg (u,v) < wg(u,v).

In the remainder of this section we I€t, d) be a metric space of size where
d is doubling with doubling constant. We also usdl’ to denote the hierarchical tree
data structure corresponding(f, d), andn andr denote the parametersBf For any
S c V, we usel'(S) to denote the subtree Gfcorresponding t, as described in the

2
previous section. Finally, we define a constéaity, 7) = (1 + (ﬁ) 23‘") Tr;.

Theorem 12. GivenT and setS C V, where|S| = k, one can construct &z, 7)-
pseudospanner fo¥ in time O(k(log k + loglogn)). This spanner has size(k).

The proof is in the appendix.

Remark 13.Similarly to Property ¥4 of the partition tree, we can arguat tfthe above
theorem gives @l + ¢)-pseudospanner for asy> 0. Here, we need to take= 1+ £
andn = O().

Remark 14.It is of course possible to store the whole distance matri¥ afnd con-
struct a spanner for any given subspatesing standard algorithms. However, this
approach has a prohibitive(n?) space complexity.

3.2 Applications in Approximation

Results of the previous subsection immediately give séugeresting approximation
algorithms. In all the corollaries below we assume the ftégalready constructed.

Corollary 15 (Steiner Forest).Given a set of point§ C V, |S| = k, together with
a set of requirement® consisting of pairs of elements 8f a Steiner forest with total
edge-length at motC'(n, 7)OPT=(2 + ¢)OPT, for anye > 0 can be constructed in
time O (k(log® k + loglogn)).

Proof. We use theD(m log” n) algorithm of Cole et al.[[9] (where: is the number
of edges) on the pseudospanner guaranteed by Théotem $2algbiithm can give a
guarante@ + ¢ for an arbitrarily smalk. a

Similarly by using the MST approximation for TSP we get

Corollary 16 (TSP).Given a set of point§ C V, |S| = k, a Hamiltonian cycle folS
of total length at mos2C(n, 7)OPT=(2 + ¢)OPT for anys > 0 can be constructed in
time O(k(log k + loglog n)).

Currently, the best approximation algorithm for the fagilocation problem is the
1.52-approximation of Mahdian, Ye and Zhang [18]. A fast implenaion using Tho-
rup’s ideas([2R] runs in determinist@(m logm) time, wherem = |F| - |C|, and if
the input is given as a weighted graphrofertices andn edges, in@(n + m) time,
with high probability (i.e. with probability> 1 — 1/24()). In an earlier work, Tho-
rup [23] considers also thie.center and:-median problems in the graph model. When
the input is given as a weighted graphrofertices andn edges, his algorithms run in
O(n+m) time, w.h.p. and have approximation guaranteexsfof thek-center problem
and12 + o(1) for the k-median problem. By using this latter algorithm with ourtfas

spanner extraction we get the following corollary.

Corollary 17 (Facility Location with restricted facilitie s). Given two sets of points
C C V (cities) andF' C V (facilities) together with opening cogt for each facility

i € F,foranye > 0, a(1.52+¢)-approximate solution to the facility location problem
can be constructed in tim@((|C| + | F|)(log® M (|C| + | F|) + loglog [V])), w.h.p.

The application of our results to the variant ofdfLITY LOCATION with unre-
stricted facilities is not so immediate. We were able to ibtiae following.

Theorem 18 (Facility Location with unrestricted facilities). Assume that for each
point of n-point V' there is assigned an opening coftx). Given a set ok points
C C V,foranye > 0, a(3.04+¢)-approximate solution to the facility location problem
with cities’ setC' and facilities’ seti” can be constructed in tim@(k log k(log® ") k +
loglogn)), w.h.p.

The above result is described in Appendix E. Our approaate tisea reduction to
the variant with restricted facilities. The general, roudgm is the following: during the
preprocessing phase, for every painE V' we compute a small sét(z) of facilities
that seem a good choice far and when processing a query for a set of citigsve
just apply Corollary 117 to cities’ set' and facilities’ set J, . F(c).

Corollary 19 (k-center and k-median). Given a set of point§’ C V and a number
r € N, for anye > 0, one can construct:

() a (2 + ¢)-approximate solution to thecenter problem, or
(i) a (12 + ¢)-approximate solution to themedian problem

in time O(|C|(log |C| + loglog |V'])), w.h.p.

4 Dynamic Minimum Spanning Tree and Steiner Tree

In this section we give one last application of our hieracahiata structure. It has a dif-
ferent flavour from the other applications presented inghjser since it is not based on

constructing a spanner, but uses the data structure giréélsolve the Dynamic Min-
imum Spanning Tree / Steiner Tree (DMST/DST) problem, whezeneed to maintain
a spanning/Steiner tree of a subspace V' throughout a sequence of vertex additions
and removals to/fronX .

The quality of our algorithm is measured by the total costhaf tree produced
relative to the optimum tree, and time required to add/delettices. LefV| = n,
| X | = k. Our goalis to give an algorithm that maintains a constartbfeapproximation
of the optimum tree, while updates are polylogarithmid:jirand do not depend (or
depend only slightly) om. It is clear that it is enough to find such an algorithm for
DMST. Due to space limitations, in this section we only fofate the results. Precise
proofs are gathered in Appendik F.

Theorem 20. Given the compressed tréiV/), we can maintain ad(1)-approximate
Minimum Spanning Tree for a subsEtsubject to insertions and deletions of vertices.
The insert operation works i@ (log” k+log log n) time and the delete operation works
in O(log” k) time, k = | X|. Both times are expected and amortized.

References

1. S. Baswana and S. Sen. A simple linear time algorithm fanprding sparse spanners in
weighted graphs. IRroc. ICALP’03 pages 384-396, 2003.

2. M.A. Bender and M. Farach-Colton. The LCA problem reedit INLATIN '00: Proc. 4th
Latin American Symposium on Theoretical InformatlddCS 1776, pages 88-94, 2000.

3. D. Bilo, H.-J. Bockenhauer, J. HromkayiR. Kralovi, T. Mémke, P. Widmayer, and
A. Zych. Reoptimization of steiner trees. fmoc. SWAT '08pages 258—269, 2008.

4. H.-J. Bockenhauer, J. HromkayiR. Kralovic, T. Momke, and P. Rossmanith. Reoptimiza-
tion of steiner trees: Changing the terminal s&heor. Comput. S¢i410(36):3428—-3435,
2009.

5. H.-J. Béckenhauer, J. HromkaéyiT. M6mke, and P. Widmayer. On the hardness of reopti-
mization. InProc. SOFSEM’'08, volume 4910 of LNGfages 50-65. Springer, 2008.

6. M. Badoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility locatiorsublinear time. IrProc.
ICALP’05, pages 866-877, 2005.

7. H.T-H. Chan, A. Gupta, B.M. Maggs, and S. Zhou. On hieraadtrouting in doubling
metrics. InProc. SODA'05 pages 762—771, 2005.

8. Kenneth L. Clarkson. Nearest neighbor queries in mepacss Discrete & Computational
Geometry22(1):63-93, 1999.

9. R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. A fastglementation of the
Goemans-Williamson clustering algorithm. Pmoc. SODA'01 pages 17-25, 2001.

10. C. Demetrescu and G.F. Italiano. A new approach to dynathpairs shortest pathsl.
ACM, 51(6):968-992, 2004.

11. B. Escoffier, M. Milanic, and V. Th. Paschos. Simple arsd faoptimizations for the Steiner
tree problem Algorithmic Operations Researchi(2):86—94, 2009.

12. S. Har-Peled and M. Mendel. Fast construction of netsvirdimensional metrics, and their
applications. IrProc. SCG'05 pages 150-158, 2005.

13. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logaritb deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edand biconnectivity.J. ACM
48(4):723-760, 2001.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

M. Imase and B.M. Waxman. Dynamic steiner tree problé3hAM Journal on Discrete
Mathematics4(3):369-384, 1991.

P. Indyk. Sublinear time algorithms for metric spacebfgms. InProc. STOC '99 pages
428-434, New York, NY, USA, 1999. ACM.

L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaranivéysal aproximations for TSP,
Steiner Tree and Set Cover. 8TOC’05 pages 1234-5415, 2005.

R. Krauthgamer and J.R. Lee. Navigating nets: simpleritkgns for proximity search. In
Proc. SODA'04 pages 798-807, 2004.

M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithfor metric facility location
problems.SIAM Journal on Computing6(2):411-432, 2006.

L. Roditty. Fully dynamic geometric spanners.Proc. SCG '07 pages 373-380, 2007.
H.F. Salama, D.S. Reeves, Y. Viniotis, and T-L. Sheu. [i&eon of multicast routing al-
gorithms for real-time communication on high-speed neksoin Proceedings of the IFIP
Sixth International Conference on High Performance Nekivay VI, pages 27-42, 1995.
D.D. Sleator and R.E. Tarjan. A data structure for dywamges. InProc. STOC’'81pages
114-122, 1981.

M. Thorup. Quick and good facility location. Rroc. SODA’'03 pages 178-185, 2003.
M. Thorup. Quick k-median, k-center, and facility ldoatfor sparse graph$SIAM Journal
on Computing34(2):405-432, 2005.

M. Thorup and U. Zwick. Approximate distance oracldsACM 52(1):1-24, 2005.

D.E. Willard. New trie data structures which supportnast search operationd. Comput.
Syst. Scj.28(3):379-394, 1984.

D.E. Willard. Log-logarithmic selection resolutionopwcols in a multiple access channel.
SIAM J. Comput.15(2):468-477, 1986.

P. Winter. Steiner problem in networks: A survletworks 17(2):129-167, 1987.

A Related Work

In the next few paragraphs we review different approachehkisoproblem, state the
differences and try to point out the advantage of the repuéisented here.

Universal Algorithmsin the case of S8EINER TREE and TSP results pointing in the
direction studied here have been already obtained. In tloaléed, universal approxi-
mation algorithms introduced by J#. al[[16], for each element of the request we need
to fix an universal solution in advance. More precisely, ia thse of SEINER TREE
problem for each € V we fix a pathr,, and a solution t&' is given as{r, : v € S}.
Using universal algorithms we need very small space to remeerthe precomputed
solution and we are usually able to answer queries effigidnit the corresponding ap-
proximation ratios are relatively weak, i.e, for@NER TREE the approximation ratio
is O(log* n/loglog n). Moreover, there is no direct way of answering queried)
time, and in order to achieve this bound one needs to usessitaithniques as we use
in Sectior 2.2. In our model we loosen the assumption thasdetion itself has to
be precomputed beforehand, but the data output of the prepsing is of roughly the
same size (up to polylogarithmic factors). Also, we allow #igorithm slightly more
time for answering the queries and, as a result are able tooiraghe approximation
ratio substantially — from polylogarithmic to a constant.

Spanners and Distance Oracl@he question whether the graph can be approximately
represented using less space than its size was previoyslyred by the notion of
spanners and approximate distance oracles. Both of thésettlactures represent the
distances in the graphs up to a given multiplicative fagtofhe difference is that the
spanner needs to be a subgraph of the input graph henceaodisthatween vertices
are to be computed by ourselves, whereas the distance aatlee an arbitrary data
structure that can compute the distances when needed. ldgwmth are limited in
size. For general grapli8: — 1)-spanners (i.e., the approximation factofis= 2¢ — 1)

are of sizeO(n'*1/t) and can be constructed in randomized linear time as shown by
Baswana and Sehl[1]. On the other hand, Thorup and ZWick [24¢ shown that the
(2t — 1)-approximate oracles of siz@(tn'*1/?), can be constructed i@ (tmn'+1/?)
time, and are able to answer distance querie®(it) time. It seems that there is no
direct way to obtain, based on these results, an algoritlatctiuld answer our type of
queries faster the@(k?).

The construction of spanners can be improved in the caseutflidg metric. The
papers([12]7] give a construction Of + ¢)-spanners that have linear size in the case
whene and the doubling dimension of the metric are constant. M@gdar-Peled
and Mendel[[I2] giveD(nlogn) time construction of such spanners. A hierarchical
structure similar to that of [17] and the one we use in thisgpapas also used by
Roditty [19] to maintain a dynamic spanner of a doubling meetrith a O(logn) up-
date time. However, all these approaches assume the edstéra distance oracle.
When storing the whole distance matrix, these results, aoebwith known approxi-
mation algorithms in the classical setting |[18,2%,238iply a data-structure that can
answer SEINER TREE, FACILITY LOCATION with restricted facilities anéd-MEDIAN
queries inO(k log k) time. However, it does not seem to be easy to use this approach

to solve the variant of ACILITY LOCATION with unrestricted facilities. To sum up,
spanners seem to be a good solution in our model in the case aud¢n?) space is
available for the data structure. The key advantage of dutiea is the low space re-
quirement. On the other hand, storing the spanner requiyriinear space, but then
we need()(n) time to answer each query. The distance matrix is unaveilabt we
will need to process the whole spanner to respond to a queaygiven set of vertices.

Sublinear Approximation Algorithmanother way of looking at the problem is the at-
tempt to devise sublinear algorithm that would be able teesapproximation problems
for a given metric. This study was started by Indyk|[15] whegaonstant approxima-
tion ratio O(n)-time algorithms for: BRTHEST PAIR, k-MEDIAN (for constantk),
MINIMUM ROUTING COST SPANNING TREE, MULTIPLE SEQUENCEALIGNMENT,
MAXIMUM TRAVELING SALESMAN PROBLEM, MAXIMUM SPANNING TREE and
AVERAGE DISTANCE. Later on Badoiuet. al[6] gave anO(n log n) time algorithm for
computing the cost of the uniform-cost metriedtLITY LOCATION problem. These al-
gorithms work much faster that tf(n?)-size metric description. However, the paper
contains many negative conclusions as well. The authors shat for the following
problemsO(n)-time constant approximation algorithms do not exists:egahmetric
FACILITY LOCATION, MINIMUM -COST MATCHING andk-MEDIAN for k = n/2. In
contrary, our results show that if we allow the algorithm tegrocess partial, usually
fixed, data we can answer queries in sublinear time aftesvard

Dynamic Spanning Tree$he study of online and dynamic Steiner tree was started in
the paper of.[14]. However, the model considered there wataking the computation
time into account, but only minimized the number of edgesnged in the Steiner
tree. More recently the Steiner tree problem was studiedsatting more related to
ours [3.5,4,111]. The first three of these paper study thecqimation ratio possible
to achieve when the algorithm is given an optimal solutiagetber with the change
of the data. The efficiency issue is only raisedlinl [11], bt pnesented algorithm in
the worst case can take the same as computing the solutionstratch. The problem
most related to our results is the dynamic minimum spannmagiMST) problem. The
study of this problem was finished by showing determinidtiodthm supporting edge
updates in polylogarithmic time in [13]. The dynamic Steitree problem is a direct
generalization of the dynamic MST problem, and we were abkehbw similar time
bounds. However, there are important differences betwleemwo problems that one
needs to keep in mind. In the case of MST, by definition, theot&trminals remains
unchanged, whereas in the dynamic Steiner tree we can clita@ye the other hand
we cannot hope to get polylogarithmic update times if wevalto change the edge
weights, because this would require to maintain dynamitadées in the graph. The
dynamic distance problem seems to require polynomial tone@pdates [110].

B Partition tree — precise definitions and proofs

To start with, let us recall partition and partition schene@imtions.

Definition 21 (Jia et al [1€], Definition 1).A (r, o, I)-partition is a partition ofV into
disjoint subsetsS; such thatdiam S; < ro for all i and for allv € V, the ball B,.(v)
intersects at most sets in the partition.

A (o, I) partition scheme is an algorithm that produdesc, I)-partition for arbi-
traryr e R,r > 0.

Lemma 22 (similar to Jia et al [16], Lemma 2).Letn > 0 be a nonnegative integer.
For V being a doubling metric space with doubling constathere existg2=7, \3+7)
partition scheme that works in polynomial time. Moreover, dveryr the generated
partition S,. has the following property: for ever§ € S, there existd eader(S) € S
such thatS C By-yn-1,(leader(S5)).

Proof. Take arbitrary-. Start withVy = V. At stepi fori = 0,1, ... take anyy; € V;
and takeS; = By—n-1,.(v;)NV;. SetV; 11 = V;\S; and proceed to next step. Obviously,
S; C Ba—n—1,.(v;), sodiam S; < 27"r and we seleader(S;) = v;.

Take anyv € V and consider all setS; crossed by balB,.(v). Every such set is
contained inB(;9-x).(v) C By, (v), which can be covered by at most™" balls of
radius2="~2r. But for everyi # j, d(v;,v;) > 27"~ !r, so every leader of set crossed
by B,.(v) must be in a different ball. Therefore there are at mdst’ sets crossed.O

Let us define the space patrtition trEe

Algorithm 23 Assume we have doubling metric spéed) and(2~", A3+7) partition
scheme form Lemnial22. Let us assunre?2 and letr be a real constant satisfying:

27" i 1
- Zﬁ S 1,|.e,7'2 on—1_1 +1
— 7 <27,

Then construct space patrtition tréeas follows:

1. Start with partitionSy = {{v} : v € V}, andry < min{d(u,v) : u,v € V,u #
v}. Forevery{v} € Sy letleader({v}) = v. LetS} = Sy.

2. Letj :=0.

3. WhileS; has more than one element do:
(a) Fix Tjt1 :=TTj = TjT‘().
(b) LetS’,, be a partition of the seL; = {leader(S) : S € S;} generated by

given partition scheme for = 2r;, ;.

(c) LetS;y1 :={U{S : leader(5) € S’} : S € §), }.
(d) Setieader({J{S : leader(S) € S'}) = leader(S’) foranys’ € §} ;.
(e)j=j5+1

Note that for everyj, S; is a partition of V. We will denote byleader;(v) the
leader of sefS' € S; thatv € S.

Definition 24. We will say thatS* € S, is a parent ofS € S; if Leader(S) € S*
(equally S c S*). This allows us to consider sefg generated by Algorithih 23 as
nodes of a tre& with root being the set’.

Lemma 25. For every; and for every € S the following holds:

727"

;.
r—1"7

d(v,leader;(v)) <

Proof. Note that
j
d(v, leader;(v)) < Z d(leader;(v),leader;_1(v))

We use bound from Lemnia22:

J i _
-1 21
g d(leader;(v),leader;_1(v)) < g 271 2ripy = 27 "TT ro < ’

’I’j.
; T—1 T—1
=1 =1

a

Lemma 26. For everyj, for everyS € S;, the union of balld J{B,,(v) : v € S}
crosses at most>™ sets from the partitiofs;.

Proof. Forj = 0 this is obvious, since, is smaller than any(u, v) for u # v. Letus
assumg > 0.
Letv € S € S;,v* € S* €S, S # S* andd(v,v*) < r;. Then, using Lemma25,

d(leader;(v), leader;(v*)) < d(leader;(v),v)+d(v,v*)+d(v*, leader;(v*)) <

21N
< T‘j(l —l—Q%le) < 2T‘j

Since, by partition propertied?,,, (leader;(v)) crosses at most' sets fromS’ and
leader;(v*) € By, (leader;(v)), this finishes the proof. O

Definition 27. We say that a sef < S; knowsa setS’ € S; if J{B,,(v) : v €
S}nNS # (. We say that € V knowsS’ €S;ifvese S and S knowsS’ or
S=5".

Note that Lemma26 implies the following:

Corollary 28. A set (and therefore a node too) at a fixed leydias at most\3+7
acquaintances.

Lemma 29. Let S € S; be a child ofS* € S;; and letS knowS’ € S;. Then either
S’ C S* or S* knows the parent of’.

Proof. Assume thatS” is not a child (subset) of* and letS** € S,4; be the parent
of S’. SinceS knows S’, there existv € S, v' € S’ satisfyingd(v,v") < r;. But
rj < rjy1 andv € S* andv’ € S**. O

Lemma 30. SetS* € S; has at mosi**" children in the tre€T.

Proof. By construction of levelj, let S € S;_; be such a set thateader(S) =
leader(S™) (in construction step we divided sets of leadérs; into partitionS).

Let S’ € S;_1 be another child of5*. Then, by construction and assumption that
T <27

d(leader(S’), leader(S)) < 2r; - 27"t =27p; <y, 4.

However, by LemmB263,, , (leader(S)) crosses at most**" sets at levej —1.
That finishes the proof. a

Lemma 31. Letwv,v* € V be different points such thate S, € S;, v € Sp € Sj14
andv* € S} € S;,v* € 55 € S;11 and.S; knowsS; but.S; does not knows;. Then

47271
r; <d(v,0") < (1—!— T 1)TTj.

r_
For 7 = 2 andn = 2 this impliesr; < d(v,v*) < 6r;.

Proof. SinceS; and S} do not know each other, andv* are in distance at least.

Since S, knows S3, there existu € S, andu* € S5 such thatd(u, u*) < rj41.

Therefore
d(v,v*) <

< d(v,leader(S3)) + d(leader(Ssz),u) + d(u, u*)+
+d(leader(S3),u") + d(leader(S5),v*) <
7271

<4 + (1+4727n)
C—T rigl = ;.
1 Jj+1 J+1 -1 J

O

Remark 32.Imagine we want in Lemnfa 81 to obtain bound< d(v,v*) < (1+¢)r;
for some smalll > ¢ > 0. Taker = 1 + 5. We want here the followin .:2:1" <3,

. _ e2 &2
ie.,2 "< i < 51 Then we have

471921 2
d(v,v™) < (1 + =2)TT‘j < (1 + E) r; < (1+¢e)r;.
T—1 3/

Note, that to obtain this we need = O(Z%). Note, that conditions in Algorithia 23

for n andr are much weaker than we assumed here.

C Implementation of the meet and jump operations

In this section we provide realizationsméet and jump operations that work fast, i.e.,
roughly inO(log log n) time.

Let us now recall the semantics of theet operation, which was used in the fast
subtree extraction in Sectién 2.2. For nodeandwv, by u(j) andv(j) we denote the
ancestor of. (resp.v) in the tree at levej. Themeet (v, u) operation returns the lowest

level j such thatu(j) andwv(j) knows each other. This operation can be performed in
O(N"31oglogn) time.

Operationjump is used by the dynamic algorithms in Sectidn 4, and its seicgnt
is as follows. In the compressed tree, for eachSsefe store a list of all meetings ¢,
sorted by level. Thgump(v, 7), given nodey and level outputs the sef and a meeting
(S,5’,7) such thaty € S andj is the lowest possible level such that ;. Informally
speaking, it looks for the first meeting of a set containirsych that its level is at least
i. The jump operation works irO(log logn + log log log stretch). If we require that
there is some meeting at leviesomewhere, maybe distant framin the tree, the time
reduces t@((logn + loglog A) loglog n).

C.1 Path partition

In order to implement thgump andmeet operations efficiently we need to store addi-
tional information concerning the structurebfnamely a path partition. The following
lemma defines the notion.

Lemma 33. The set of edges of the tréfecan be partitioned into a set of patits=
{Pi,..., Py} suchthat each path starts at some nod@& ahd goes down the tree only
and for each node of the treeT the path fromv to the root contains edges from at most
[log, n| paths of the path decompositihMoreoverP can be found)(n) time.

Proof. We use a concept similar to the one used by Sleator and Tar[24]. We start
from the root and each edge incident to the root is a beginofirgnew path. We then
proceed to decompose each subtree of the root recursivelgn\tbnsidering a subtree
rooted at a node we lengthen the path going down from the parent &fy one edge
going to the subtree containing the largest number of ndatesaking ties arbitrarily).
Each of the remaining edges leavingtarts a new path.

It is easy to see that each path goes down the tree only. Nogid®rma node.
When we go up from to the root, every time we reach an end of some path ffothe
size of the subtree rooted at the node we move into doublés €Flals the proof since
there are at mo$tn — 1 vertices. O

We now describe additional information related to the patbainposition that we
need to store. Each nodeof T maintains a sesaths, where(i, level) € paths(v) if
the path fromv to the root contains at least one edge of the gattand the lowest such
edge has its bottom endpoint at levelel. In other words P; enters the path fromto
the root at levelevel. We use two different representations of theggaths simultane-
ously. One is a dictionary implemented as a hash table, andttier is an array sorted
by level. Because of the properties of the path decompositidrom Lemma 3B for
each node we havelpaths(v)| < [logy(n)].

Let P, € P be a path with vertice§vy, ..., v:} (given in order of increasing level).
We defineinterior(P;) to be the sefvy,...,v:—1}, i.e. we exclude the top vertex of
P;. We also defingoplevel(F;) to be the level oi;_1, i.e. the highest level among
interior nodes of?;.

C.2 Themeet operation

In order to benefit from the path decomposition to implemesitt operation, we also
need to store adjacency information for paths, similar &ittfiormation we store for
single nodes. LeP,, P, € P be two paths, such that their interior nodes know each
other at levelj,;, but not at levelj,, — 1. Then the triple(P,, P, j.») is called a
meetingof P, and P, at levelj,;,. We also say thaP, and P, meetat levelj,;), or that
they know each other. This definition is just a generalisatiba similar definition for
pairs of nodes ofl. We may also define a notion ofsponsibilityfor paths which is
analogous to the definition for nodes and formulate a lemnatogous to LemmEal5.

Lemma 34. One can augment the trézwith additional information of siz&(nA3*7),
so that for any pair of paths®;, P, € P one can decide i’, and P, know each
other, and if that is the case the level of the meeting is regdr The whole query takes
O(nlog A) time.

Now, suppose we are given two nodes € T and we are to computgeet(u, v).
The following lemma provides a crucial insight into how than be done.

Lemma 35. Let (i,j) € paths(u), which means that the patR; reaches the path
from u to the root at levelj and assume that nodesv start to know each other at
levelj,, = meet(u,v), wherej,, < toplevel(P;). Then eithe(i,¢) € paths(v) for
some/, or there exists’, such that path#’ and P;; know each othel; is responsible
for their meeting, andi’, ¢) € paths(v) for some(. Moreover, this condition can be
checked irO(A73) time.

Proof. Sincej,, < toplevel(F;) we know that at levetoplevel(P;) paths fromu
to the root and fromv to the root either merged, or else nodes on those paths &t leve
toplevel(P;) know each other. If those paths merged, tftamtersects the path from
v to the root, and we know thdt, x) € paths(v). This can be checked in hash table
for paths(v) in O(1) time.

Otherwise as’ we take P; to be the lowest patt®,» € P, such that(i”,¢) €
paths(v) for somel, andtoplevel(P;’) > toplevel(F;). To check if this occurs,
we takeS; — the interior node of; with the highest level, and iterate over 8lknown
by S; and look for path containing’ in the hashtable fopaths(v). As S; knows at
most\"*3 sets, the bound follows. a0

Now, using Lemma-35 we can do a binary search over the elernéptschs(u),
and find a pair(iy, j,) € paths(u) such thatmeet(u,v) < toplevel(P;,) and
meet(u,v) > j,. Namely, we look for the lowest path ipaths(u) that satisfies
Lemmd35. Similarly, we can findl,, j,) € paths(v). Since paths’, andP;, know
each other, we simply use Lemind 34 to find the exact lgwethere they meet,and as
the result ofneet(u, v) returnmax(j., j, j). We need to take the maximum of those
values, because patls, andP;, could possibly meet before they enter the paths from
u andw to the root.

Lemma 36 (Lemmal® restated)The treeT can be augmented so that theet op-
eration can be performed i®(nlog Aloglogn) time. The augmented tree can be
stored inO(\3*n log n) space and computed in polynomial time.

Proof. Since |paths(u)| < [log,n] we performO(loglogn) steps of the binary
search. During each step we perfofi\"+3) searches in a hash table, thus we can
find the result ofneet(u, v) in O(loglogn) time.

The space bound follows from Corolldry 4 (the additiolealn factor in the space
bound comes from the size piths(x) for each node). Now we need only to describe
how to obtain running time independent of the stretch of tietrimy In order to compute
theT tree (without augmentation) we can slightly improve ourstauction algorithm:
instead of going into the next level, one can compute the lsstadlistance between
current sets and jump directly to the level when some paietdf merges or begins to
know each other. a

Remark 37.We could avoid storingaths in arrays by maintaining, for each pathiin
links to paths distant by powers of two in the direction of thet (i.e. at mostog log n
links for each path).

Also, to obtain better space bound, we could use a balaneednstead of the hash
tables to keep the first copy pkths. If we use persistent balanced trees, we can get
an O(nloglogn) total space bound. However, in that case the search timedwamul
increased t@((log log n)?) for one call to theneet operation.

C.3 The jump operation

Lemma 38. The compressed trék can be enhanced with additional information of
sizeO(\"3nlogn) in such a way that thgump(v, i) operation can be performed in
O(loglog n+logloglog stretch) time, wherestretch denotes the stretch of the met-
ric. If we require that there is some meeting at leiebmewhere in the tree (possibly not
involvingv), the jump operation can be performed if((log + loglog \) log logn)
time.

Proof. To calculatejump(v,), we first look atpaths(v) and binary search lowest
path P € paths(v) such that the highest node in has level greater than If P =
{v1,...,v:} (given in order of increasing level), that means thatel(v;) < i <
level(v:). This step take®(loglogn) time.

To finish thejump operation, we need, among meetings on patlind the lowest
one with the level not smaller thanAs levels are numbered fromto log stretch,
this can be done using y-Fast Tree data structure [25,2@&].y¥Rast Tree uses linear
space and answers predecessor queriéXlog log u) time, whereu is the size of the
universe, here = log stretch.

To erase dependency @ftretch, note that according to Corollaby 4, where are
at mostM := (2n — 1)\7"3 meetings in tredl. Therefore, we can assign to every
level j, where some meeting occurs, a numbet n(j) < M and for two such levels
jandj’, j < 7/ iff n(j) < n(j’). The mapping:(-) can be implemented as a hash
table, thus calculating(;) takesO(1) time. Instead of using y-Fast Trees with level
numbers as universe, we use numbers -). This require® (log log n+loglog M) =
O((logn + loglog A) log logn) time, but we need to have the kéyn the hash table,
i.e., there needs to be some meeting at légaimewhere in the tree. O

D Omitted Proofs

Proof (of Theorern12).

Recall that nodes o'i“(S) are simply certain subsets 6f in particular all single-
element subsets o are nodes off'(S). Associate with every node of T(S), an
elements of A, which we will callleader(A), so that:

— if A= {a} (which meansd is a leaf inT(S)), thenleader(A) = a,
— if A has sonsAy, ..., A,, in T(S), then letleader(A) be any ofleader(A;),
1=1,...,m.

If two nodesA, B in T(S) know each other, we will also say that their leadiarsder(A)
andleader(B) know each other. Also, ifd is the parent ofB, anda # b, where
a = leader(A) andb = leader(B), we will say thatu is the parent ob. We will also
say thatz beatsb at level L, whereL is the level at whichd appears as a node — this
is exactly the level whergstops being a leader, and is just an ordinary element of a set
whereq is a leader.
Now we are ready do define the pseudospannerflLet (S, E), whereE contains
all edgesuv, u # v such that:

1. v is the father ofu, or
2. w andv know each other.

We cannot assign to these edges their real weights, becausm®wot know them.
Instead, we definevy (u,v) to be an upper bound o#(u, v), which is also a good
approximation ofl(u, v). In particular:

1. If uis a son ofv andv beatsu at levelj, we putwy (u,v) = 2%@.

T

2. If w andv first meet each other at levglwe putwy (u, v) = (1 + 472:17')773.

We claim that] is aC(n, 7)-spanner fol/ of sizeO(n).

It easily follows from Lemmak 25 arid31 thétu, v) < wg(u,v), hence also for
anyu,v € V we haved(u,v) < dg(u,v), wheredy is the shortest distance metric in
H.

Now, we only need to prove that for every pair of vertiees* € X, we have
dg(v,v*) < C(n,7)d(v,v*). The proof is similar to that of LemniaB1. As before, let
veS €8Sj,ve S €S andv € ST € S;, v € 55 € S;41 and assumé,
knows S; but S, does not knowsS; (all that is assumed to hold i, not in T(.)).
Then, sinceS; andS} do not know each others, andv* are at distance at least. On
the other hand, sinc8; knows S5 in T, we also have tha$, N S knows S5 N S'in

T(S). Letu = leader(Sz N .S), u* = leader(S; N .S). It follows from the definition
of H, thatuu* is an edge ind and it has weight (u, u*) < (1 + 4:2:1")7—rj.

Now consider the path fromto So NS in ’TI‘(S). Initially, v is the leader of the
singleton sef{v}, then it might get beaten by some other vertexthenwv; can get

beaten by some other vertex, and so on. Finally, at some levekemerges as a leader.

This gives a path = vy, vy, ..., v, = uin H. We have
727"
wH(UiUi-H) = 2:77”1,

wherel,, 1 is the level at whichy; 1 beatsy;. Since all these levels are different and all
of them are at most+ 1, we get:

m—1 — J
727" ;
dp(v,u) < Z wir (vi, Vip1) < 2o ZH <
1=0 i=0
727N it _q 27 71277

- -1 7-1 7“0_7__1-7_177“]-.

We can argue in the same way fgrandw*. Joining all 3 bounds we get:
dp(v,0") < dg(v,u) + wg(u,u*) + dg (u*,v*) <

81271

2t 127"
1)TT‘j+2' .

§(1+

F—
and finally

2
dy(v,v*) < <1 + < T 1) 23”> Tr; < C(7,n)d(v,v").
P
Since every edge of the spanner either corresponds to a-fdhe=dge ihﬁ“(S) orto
a meeting of two nodes ifi(S), it follows from Lemméd# tha#l has sizeD(n). The
time complexity of constructingl is essentially the same as that of construcfn(uﬁ),
i.e.O(k(log k + loglogn)). O

E Facility location with unrestricted facilities

In this section we study the variant oA€ILITY LOCATION with unrestricted facilities
(see Introduction). We show that our data structure can genanted to process such
queries inO (k(log k + log log n)) time, with the approximation guarantee3o4 + ¢.

Our approach here is a reduction to the problem solved inl@oy@ 7. The general
idea is roughly the following: during the preprocessinggghdor every point: € V'
we compute a small sdf(x) of facilities that seem a good choice for and when
processing a query for a set of citi€s we just apply Corollari{/ 17 to cities’ sét and
facilities’ set| J . F'(c). In what follows we describe the preprocessing and the query
algorithm in more detail, and we analyze the resulting apipnation guarantee.

In this section we consider a slightly different represgataof treeT. Namely,
we replace each edde, parent(v)) of the originalT with a path containing a node
for each meeting of. The nodes on the path are sorted by level, and for any of such
nodesv, level(v) denotes the level of the corresponding meeting. The newntilée
be denoted.

E.1 Preprocessing

T—1
Note thatvis(j) is an upper bound on the distance between two peirssdw such
thatv € S; andw € S, for two setsSy, Ss that know each other and belong to the same
partitionS;. For a node of treeT we will also denoteris(v) = vis(level(v)).

In the preprocessing, we begin with computing the compresse T. Next, for
each nodey of T we compute a point in the sets whichknows, with the smallest
opening cost among these points. Let us denote this poirhbyp(v). Finally, for
eachr € V consider the patt® in T from the leaf corresponding tar} to the root. Let
P = (vi,v2,...,vp) and fori = 1,...,|P| letz; = cheap(v;). Let p the smallest
number such thaf(x,) < n/eo - vis(v,), whereey is a small constant, which we
determine later; now we just assume that (0, 1]. Letg be the smallest number such
thatg > p andf(zq) < e¢ - vis(vg). If p exists, we letF'(x) = {vp, vp11,...,v4} and
otherwiseF (x) = 0.

Letus denoteis(j) = (1+4727")rrj, i.e.vis(j) is the upper bound from Lemrhal31.

Lemma 39. Foranyz € V, |F(z)| = O(logn). O

Proof. Letr = p + [log,(n/e3)]. Note that for anyi = p,...,r — 1, level(v;) <
level(v;+1). Hence

Vis(o)Tlevel(vT)

vis(level(v,)) = vis(0)reve(vr) < - <
T

< e3vis(0)7

level(v,) e2
= Y .vis(level(v,)).
n

n

It follows that f (x,,) < e¢ - vis(level(v,)). Theng < r, sincez, € set(v,). O

It is straightforward to see that all the sétéx) can be found irO(n logn) time.
The intuition behind our choice df(z) is the following. If f (z;) > n/eo-vis(v;),
then the opening cost af; is too high, because evenvifcities contribute to the opening

of z;, each of them has to pay more thats(v;) on average (the constasy here is
needed to deal with some degenerate case, see furthamorethan an approximation
of its connection cost. Hence it is reasonable for citiesdn(v;) to look a bit further
for a cheaper facility. On the other hand, whin:;) < ¢ - vis(v;), then even if cityx
opens facilityz; alone it pays much less than its connection cost t&ince the possible
cheaper facilities are further than, choosinge; would be a(1 + ()-approximation.

E.2 Query

LetC C V be a set of cities passed the query argument. DéneteC|. Now for each
¢ € C we choose the set of facilities

Fi(c) = {cheap(v) : v € F(c) andf(cheap(v)) < k/eo - vis(v)}.

Similarly as in Lemm&-39 we can show tha(c)| = O(log k). Clearly, Fy(c) can
be extracted from¥'(c) in O(logk) time: if F(c) is sorted w.r.t. the level, we just

check whetherf(cheap(v)) < k/eo - vis(v) beginning from the highest level ver-
tex and stop when this condition does not hold. Finally, wejgote the unior#'(C) =
Uecec Fr(c) U {cheap(root(T)} and we apply Corollari/ 17 to cities’ s€t and fa-

cilities’ set F'(C). Note thatF’ containscheap(root(T) — i.e. the point oft” with the
smallest opening cost — this is needed to handle some degemaise.

E.3 Analysis

Theorem 40. Let SOL be a solution of the facility location problem for diges’ set
C and facilities’ setl’. Then, for any > 0, there are values of parametersn andeg
such that there is a solutioBOL’ of cost at most2 + ¢)cost(SOL), which uses only
facilities from setF'(C).

Proof. We construc8OL’ from SOL as follows. For each opened facilityof SOL,
such thatr ¢ F(C), we consider the set(x) of all the cities connected te in SOL.
We choose a facility’ € F'(C) and reconnect all the cities fro6i(z) to z'.

Let ¢* be the city ofC(z) which is closest tar. Consider the pati® of T from
the leaf corresponding tg* to the root. Letv be the first node on this path such that
knowsz and
eof(x)
|C ()]

Note that by the first inequality of Lemrhal31, for the first nagden P that knowsr,

vis(v) >

1)

47271

47271
1)TTlevel(w) < (1 +

1)Td(x,c*).

vis(w) < (1 +

T — T —

On the other hand, again by Lemind 31, for the first neda P such thatris(u) >

T“Cf(i”;‘) there isvis(u) < TT“Cf(Sf Hence, since is the higher ofw andu,

vis(v) < Tmax{nggl), (1 + ‘lTTi_;)d(a:, c*)}) 2

First we consider the non-degenerate case Whgn*) # (). Letv,, ..., v, be the sub-
path of P which was chosen during the preprocessinget {p, ..., ¢} be the small-
est number such thaheap(p’) < k/eo - vis(v,). Recall thatFy,(¢*) = {cheap(v;) :
p <i<g}. Ifve {v,. .. v}, thenFg(c*) contains a facility of opening cost at
most f(x), at distance at mostis(v). Otherwisev is higher tharny, on P, so Fj(c*)
contains a facility of cost at mostis(v), at distance at mosy, - vis(v). To sum up,
Fy(c*) contains a facility of cost at mostax{ f(x),eo - vis(v)}, at distance at most
vis(v). Denote it byz’. We reconnect all of'(z) to .

Now let us bound the cost of connectidyx) to z’. From the triangle inequal-
ity, (), and the fact that* is closest tar we get

> dled)< > dle,x) +|C(x)|vis(v)

ceC(z) ceC(x)
47271
< Z d(e,z) + T max sof(ac),(l—i— 1) Z d(e,)
c€C(x) T
41271
§T€0f(x)+<1+7(1+ 7_1)> Z d(e, z). (3)

ceC(x)

Now let us expand the bound fg(z'):

f(z') < max {f(:c), £o™ max { fof (@) (1+ 47271")z, c*)}}

|C ()] T—
< (1 +eom)f(z) + EoT(l + f_Ti_ln) : Z d(c,). 4)
ceC(x)

From [3) and[(#) together we get

fa)+ Y dlea’) < 5)
ceC(x)
§(1+2507)f(x)+<1+(T+Tao)(1+ffln)) Y dle,a).
ceC(x)

Finally, we handle the degenerate case whgft*) = (). Then we just connect all

C(z) to the facility 2’ = cheap(root(T)), i.e. the facility with the smallest opening
cost inV. Note thatF (c*) = () implies that for any poiny € V (and hence also for

x),

fly) > k/egvis(root(T)) > k/eq mn}}ég/ d(x,y).
Hence,S, oy (e) < 0@ maxa yev d(a, y) < (IC()|/m)eof (2) < 20f (z).

It follows that
f@)+ Y die,a) < (1+20)f (). 6)
ceC(x)

From [3) and[(b), we get that

=
Ar2 T)> cost(SOL).

T —

cost(SOL/) < (1 + (17 4+ 7¢0) (1 +

One can easily seen that the constapts andrn can be adjusted so that the coefficient
beforecost(SOL) is arbitrarily close to 2. This proves our claim. O

From Theorerm 40 and Corollakyl17 we immediately get the Vailhg.

Corollary 41 (Facility Location with unrestricted facilit ies, Theoren{ 18 restated).
Assume that for each point afpointV there is assigned an opening cgigtr). Given
T and a set of: pointsC' C V, for anye > 0, a (3.04 + ¢)-approximate solution to
the facility location problem with cities’ s&t and facilities’ setV’ can be constructed
intimeO(k log k(logo(l) k +loglogn)), w.h.p.

F Dynamic Minimum Spanning Tree and Steiner Tree —
algorithm details

In this section we give details on the proof of Theorlemh 20t thawe describe an
algorithm for MST in the static setting and than we make itatyic.

We assume we have constructed the compressef (fég Apart from Lemma2i,
we treat\, n andr as constants and omit them in the higrotation. Recall that we are
givenasubseX C V, |[V| = n, |X| = k. In the static setting, we are to give a constant
approximation of a MST for the séf in time almost linear irk. In the dynamic setting,
the allowed operations are additions and removals of \ertia/fromX and the goal is
achieve polylogarithmic times on updates.

F.1 Static Minimum Spanning Tree

We first show how the compressed tfB6/) can be used to solve the static version
of the Minimum Spanning Tree problem, i.e. we are given aXset 1V and we want
to find a constant approximation of the Minimum Spanning B« in time almost
linearink.

Let r (called theroot) be any fixed vertex inX and letL;(X) = {z € X :

meefz,r) = i + 1}. Also, letD(r) = (1 + 4727") 7. As a consequence of Prop-

T—1
erty[4 of the partition tree, we get the following:
Lemma42. Letz,y € L;(X). Thenr; < d(z,r) < D(r)r;. Moreover, at levef +
1+1log, (2D(7)) =i+ O(1) of T the sets containing andy are equal or know each
other.

A spanning tre€’ of X is said to bdayeredif it is a sum of spanning trees for each
of the setg{r} U L;(X). The following is very similar to Lemma 8 in Jia et al. [16].

Lemma 43. There exists a layered tré&, of X with weight at mos©(1)OPT, where
OPT is the weight of the MST &f.

Proof. Let Toptbe any minimum spanning tree & with cost OPT. Letn = [log,. (1+
D(7))] andf’ = {r} UU{L:(X) : i mod m = j} for0 < j < m. Double the edges
of Topr, walk the resulting graph along its Euler—tour and shorétiertices not be-
longing to£7. In this way we obtain the tréE) . — a spanning tree of’ with cost at
most20PT. CIearIyU;.’:O1 T - is a spanning tree fak with cost at mosgmOPT.

Let zy be an edge OTgPT such thatz andy belong to different layers, that is,
x € Li(X),y € Ly:(X),i <i.Theni > i+ m and due to Lemma31:

d(y,r) >ry > (14 D(1))r; > 7 +d(z,7).

Therefored(x,y) > r; and, asi(z,r) < D(7)r;, d(x,r) < D(7)d(x,y). Moreover:

d(y,r) < d(z,y) +d(z,r) < d(z,y) + D(r)ri < (1+ D(7))d(z,y).

Therefore by replacingy by one of the edgesr oryr, we increase the cost of this edge
at most(1 + D(7)) times. If we replace all such edges in all T for 0 < j < m,
we obtain a layered spanning treeXfwith cost at mosgm (1 + D(7))OPT. O

Our strategy is to construct an(1)-approximationT;(X) to MST for each layer
separately and connect all these trees twhich gives arO(1)-approximation to MST
for X by the above lemma. The spanning tfB€X) is constructed using a sparse
spanning grapld; (X) of L;(X). In order to buildG;(X) we investigate the level
at which the sets containing verticeslof X) meet each other. The following technical
Lemma shows that we can extract this information efficiently

Lemma 44. Letx € X and leti < j be levels ofl. Then, for each level &f in range
i, 7], we can find all sets known 1q in total timeO(log log log stretch+ loglogn +
A13(5 —). If we are given levely such that there exists a meeting (possibly not
involvingz) at leveliy, the above query take3((logn + loglog A\) loglogn + |ig —
il + A3 (5 —0)) time.

To perform these queries, the tree needs to be equipped dditianal information
of sizeO(\?776n).

Proof. First we performjump(z,4) and, starting with the returned meeting, we go up
the tree, one meeting at a time, until we reach lgveh this way, we iterate over all
meetings ofc between levelg and;. We store in the tree, for each meetiffg S, '),

the current set of acquaintances®andS’. The answer to our query can be retrieved
directly from this information. Also note that this extrdonmation takeD(\276n)
space, as there are at m@sh — 1)\"*3 meetings and each set knows at mast3
other sets at any fixed level. If we are given leiggve may simply perfornjump(z;, i)
and walk the tree to level O

Theorem 45. Given the compressed tré&1') and a subseX C V' one can construct
an O(1)-approximationT” to MST in timeO(k(loglog n + log k).

Proof. Designate any € X as the root of the tree. Split all the remaining vertices into
layersL,;(X). For each nonempty layer pick a single edge connecting awertthis
layer tor and add itT. Furthermore, add t@' an approximate MST for each layer,
denotedl;(X), constructed as follows.

Consider a layet;(X) with k; > 0 elements. We construct a sparse auxiliary
graphG;(X) with L;(X) as its vertex set. We use Lemind 44 to find for each vertex
x € L;y(X) and every level il € [i —log. k + 1,i + 1 + log.(2D(4))] all the sets
known toz at levell in T. Using leveli + 1 = meet(x, r) as the anchot, this can be
done inO(log logn + log k) time per element € L;(X). Using this information we
find, for everyl as above and every sétat levell known to at least one € L;(X), a
bucketB; s. This bucket contains alt € L;(X) that knowsS at levell. Note that the
total size of the buckets i9(k; log k), because we are scannifglog k) levels, and a
vertex can only knovD(1) sets at each level. Now we are ready to define the edges of

E(G;(X)). For every buckeB; ¢, we add toFE (G, (X)) an arbitrary path through all
elements inB; 5. We also assign to each edge on this path a weighfxfr)r;_;.

Since the total size of the buckets (¥ k; log k), we also have thaf?;(X) has
O(k;log k) edges. We IeT; (X) be the MST of7; (X). Note thatl;(X') can be found in
time O(k; log k) by the following adjustment of the Kruskal’s algorithm. lewonsider
buckets ordered in the increasing orderl othe edges on the paths are given in the
increasing order of their lengths. At every step of Kruskalgorithm, we keep current
set of connected componentsBf{ X) as an array, where every € L;(X) knows
the ID of its component. We also keep the size of each compokiénenever two
components are joined by a new edge, the new componenttmh@rirom the bigger
subcomponent. This ensures that for every L; (X) we change its ID at mostog k; |
times.

We now claim that

Lemma 46. The total weight off;(X) is O(1)(OPT;, x) + ri), where OPT,, (x, is
the weight of the MST fak; (X).

Proof (Proof of Lemm@a46First, note that the Kruskal’s algorithm connects the whole
bucketB; s when considering edges of lengV(7)r;_,. Therefore we may modify
graphG;(X) to G}(X) such that all pairs of vertices iB; s are connected by edges
of length2D(7)r,—1, without changing the weight of the MST. Léf be the metric
in G4(X). By Lemma31Ld;(z,y) > d(z,y), as the sets containingandy at level,
wherez andy are not placed in the same bucket, do not know each othé(zlly) <
Ti—log, k» thend;(z,y) = 2D(7)ri_10g, 1 = 2D(7)r;/k, as bothe andy meet in some
bucket at level — log, k + 1. Otherwise, ifd(x,y) > ri_10g_1, by Lemmd 3l again,
di(z,y) < 2D(7)d(z,y), as bothr andy know S at levell.

Let us replace metri¢ by d’ defined as follows: fot: # y, d'(z,y) = 2D(7)d(x,y)
if d(x,y) > ri—iog, x @andd'(z,y) = ri_10g, x Otherwise. Clearlyl(z,y) < di(x,y) <
d'(z,y). Note thatd’ satisfies the following condition: for eachy,«’,y" € L;(X),
d(z,y) < d(a',y) iff d(z,y) < d'(/,y’). Therefore, the Kruskal’s algorithm for
MST in (L;(X), d) chooses the same trégpras whenrun o(L;(X), d’). Letd(Topr)
(di(Top1), d'(Topt)) denote the weight ofopr With respect to metrid (resp.d; and
d"). Let us now bound! (Topt). Topt cOnsists ofk; — 1 edges, so the total cost of
edgesry such thatd(z,y) < ri—1og, & IS at most(k; — 1)2D(7) % < 2D(1)r;. Other
edges cost at mog?(7) times more than when using metri¢cso in totald’' (Topr) <
2D(7)(r; + d(Top1)). As d;(Topt) < d'(Topt), and Kruskal's algorithm finds mini-
mum MST with respect td;, the lemma is proven. O

Now we are ready to prove thdt is anO(1)-approximation of MST forX. Let
OPT be the weight of MST fak', and OPT, be the weight of the optimal layered MST
of X. We know that OPT < O(1)OPT by Lemméa4s.

The optimal solution has to connectvith the vertexx € X which is the furthest
from r. We haved(r,z) > rmax, Wherermax = 7; for the biggest with non-empty
L;(X). It follows that OPT> rmax > O(1) >_, 14, because the;-s form a geometric
sequence. Thus, the cost of connecting all layersisctbounded by)(1)OPT.

Moreover, Lemm&46 implies that sum of the weights offallX)-s is bounded by:

O(1)) (ri + OPT,(x)) < O(1) (OPT+ OPT,) < O(1)OPT.

i

Thus the constructed trédeis anO(1)-approximation of the MST ok . a

F.2 Dynamic Minimum Spanning Tree

The dynamic approximation algorithm for MST builds on thead from the previous
subsection. However, we tackle the following obstacles:

— we do not have a fixed root vertex around which the layers coalcbnstructed,

— the number of distance levels considered when buildingliamxigraphs is depen-
dent onk, and as such can change during the execution of the alggthdfinally,

— we need to compute the minimum spanning trees in auxiliaxplys dynamically.

The following theorem shows that all of these problems casdbeed successfully.

Theorem 47 (Theoreni20 restated)Given the compressed tréév), we can main-
tain anO(1)-approximate Minimum Spanning Tree for a sub¥etubject to insertions
and deletions of vertices. The insert operation work®ibg” k + log log n) time and
the delete operation works i@(log” k) time, k = | X|. Both times are expected and
amortized.

Proof. The basic idea is to maintain the layers and the auxiliarplgalescribed in the
proof of Theoreni 45. However, since we are not guarantedaitiyavertex is going to
permanently stay i, we might need to occasionally recompute the layers andhgrap
from scratch, namely when our current root is removed. Hanet we always pick
root randomly, the probability of this happening as a resfiiny given operation is
< 1 and so it will not affect our time bounds. It does, howeverkewem randomized.

The number of distance levels considered for each laykigisk + O(1) and so
it might change during the execution of the algorithm. Ttas be remedied in many
different ways, for example we might recompute all the daactures from scratch
every timek changes by a given constant factor.

The above remarks should make it clear that we can actualigtaia the layer
structure and the auxiliary graph (as a collection of pathsan—empty buckets;)
for each layer with low cost (expected and amortized) peatgadVe now need to show
how to use these structures to dynamically maintain a spgrtnée. We use the algo-
rithm of de Lichtenberg, Holm and Thorup (LHT) [13] that miiims a minimum span-
ning tree in a graph subject to insertions and deletions gégdooth in timed (log* n),
wheren is the number of vertices.

We are going to use the LHT algorithm for each auxiliary grapparately. Note
that inserting or deleting a vertex corresponds to insguirdeletingO(log k) edges to
this graph, as every vertex is ((log k) buckets.

In case of insertion of a vertex we need)(log log n) time to performeet (v, root)
and find the appropriate layer. Non—empty layers and theirampty buckets may be

stored in a dictionary, so the search for a fixed layer or a fixecket is performed
in O(log k) time. Having appropriate layer, we inserinto all known buckets, taking
O(log4 k) time to update edges in each bucket. Therefore the inseratige works in
expected and amortized tini®log® k + loglogn).

In case of deletion of a vertex, we may maintain for each vertex iK a list of
its occurrences in buckets, and in this way we may fast aéoegkent edges. For each
occurrence, we delete two incidentt@dges and connect the neighbors of herefore
the delete operation works in expected and amortized Giieg®). a

	Fast Approximation in Subspaces by Doubling Metric Decomposition
	Marek Cygan, Lukasz Kowalik, Marcin Mucha, Marcin Pilipczuk and Piotr Sankowski

