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Abstract. In this paper we address the problem of building a scalable
component-based system by means of dynamic reconfiguration. Specifi-
cally, we consider the system response time as the performance metric;
we assume that the system components can be dynamically reconfigured
to provide a degraded service with lower response time. Each compo-
nent operating at one of the available quality levels is assigned a util-
ity. Higher quality levels are associated to higher utility. We propose an
approach for performance-aware reconfiguration of degradable software
systems called PARSY (Performance Aware Reconfiguration of software
SYstems). PARSY tunes individual components in order to maximize the
system utility with the constraint of keeping the system response time
below a pre defined threshold. PARSY uses a closed Queueing Network
model to select the components to upgrade or degrade.

1 Introduction

The Component Based software development paradigm allows complex systems
to be built by assembling a number of independent components, each one pro-
viding a specific functionality. This paradigm has many advantages, including
the ability of reducing development costs by allowing components reuse.

One crucial problem is building the system such that non functional require-
ments, such as reliability or performance, can be satisfied as well. This is difficult
for several reasons. First, it is not easy to infer properties of the whole system
by considering its components in isolation. Furthermore, performance depends
on the external workload: even if the system has been implemented to sustain
the expected workload, there may be unexpected variabilities which were not
accounted for, and cause sporadic slowdowns. Thus, in order to ensure that per-
formance related non functional requirements are satisfied, both proper capacity
planning and some form of adaptation are necessary.

In this paper we focus on a specific performance metric, which is the system
response time. This is a useful metric, because it can be easily measured, and
because it impacts directly on users of the system. The system response time



increases with the number of users concurrently accessing the system, unless the
system adopts appropriate strategies to reconfigure itself in order to cope with
spikes in the workload.

One commonly used solution is based on dynamic scalability using more phys-
ical resources. For example, an E-commerce Web site might react to an increased
load by deploying the front-end across more Web servers, and load-balancing
the requests among the available servers [1]. However, there are situations where
this approach is not practical. Not every system can scale by simply adding
more resources; furthermore, it could be difficult to react quickly to spikes in the
workload, as allocating new resources and starting new application instances is
not instantaneous.

In this paper we propose an approach, called Performance Aware Recon-
figuration of software SYstems (PARSY), whose goal is the reduction of the
system response time through a performance-aware degradation of the applica-
tion, driven by the solution of performance models at runtime. Specifically, we
consider a component-based software system, where some of the components can
provide a degraded (but still acceptable) service with reduced response time. For
example, let us go back to the example of E-commerce site under heavy load.
Instead of relying on more server instances, the system might provide a degraded
service for some non critical components. For example, the system could show
heavily compressed images to customers in order to cut transfer time. As an-
other example, the system might switch to a faster, but less precise, algorithm for
searching products in the catalog which might retrieve also items not strictly re-
lated to the user query. The decision of which components can be degraded while
still providing an acceptable service quality, is of course application-dependent.

The system administrators define a maximum allowed system response time.
The system is enhanced with a monitoring component which identifies violations
of the response time constraint. When violations occur, PARSY uses a Queue-
ing Network (QN) performance model to decide which component of the system
should be degraded. As the workload fluctuates, PARSY is able to degrade or
upgrade individual components in order to satisfy, if possible, the response time
constraint. The system administrators can associate weights to each configura-
tion, such that PARSY can choose to degrade less important components first.

This paper is structured as follows: in Section 2 we give a high level overview
of PARSY. In Section 3 we formally define the optimization problem we are ad-
dressing. In Section 4 we describe how a solution to the optimization problem can
be efficiently computed. In Section 5 we evaluate the solution algorithm on some
test instances, while a short survey of the related works is presented in Section
6. Finally, conclusions and future improvements are discussed in Section 7.

2 PARSY Overview

PARSY is an approach capable of driving the dynamic degradation of soft-
ware systems. PARSY uses models at runtime to decide how the system can
be upgraded or degraded. Specifically, the goal of PARSY is to selectively de-



grade or upgrade individual components in a component-based software system
such that the estimated overall response time R is below a predefined thresh-
old Rpy.x. PARSY tries to degrade less important components first, where the
“importance” of each component can be defined by the system administrators.
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Fig. 1. PARSY Process Overview

The PARSY process is shown in Figure 1, and consists of the following steps:

1. PARSY starts by considering as input an architectural model of the system.
The system is made of K components Cy,...,Cx. Component Cj can be
configured to provide service at different quality levels 1,..., Li (1 denotes
the worst quality level, and Ly > 1 denotes the best quality level). Qual-
ity levels directly impact the execution time of components: the higher the
quality level, the longer it takes to each component to compute the result.
When a component is degraded, it produces a result more quickly; however,
the result could be only an approximation of the correct one; if Cx can not
be degraded, we let Ly = 1. A system configuration £ is a vector (¢1,...,{k)
such that £ denotes the quality level of component C.

2. Each component Cj operating at quality level j is labeled with a positive
utility value UT(k, 7). Utility values are defined by the system administra-
tors; roughly speaking, utility values tell PARSY how much “important” a
component is.

3. In this step the maximum response time R,y is defined. This parameter is
strictly application-dependent, and it is normally defined early in the soft-
ware development process as part of the non functional requirements.

4. The system is enhanced with a monitoring component, which continuously
measures the average system response time.

5. If the response time is above or below the threshold, a system reconfiguration
can be triggered. It is important to ensure that reconfigurations are not too
frequent, so that the system has enough time to settle down.

6. A system reconfiguration involves upgrading/degrading one or more compo-
nents. A QN performance model is used to evaluate different configurations.



Specifically, the QN model is used to solve the optimization problem of iden-
tifying the configuration with maximum utility, subject to the constraint that
the estimated system response time is below the threshold Ry .x.

Steps 1-3 are described in Section 3, while steps 4—6 are detailed in Section 4.
Numerical examples of the PARSY application are then illustrated in Section 5.

3 Assumptions and Problem Definition

In PARSY we consider a software system made of K components Cy,...,Ck.
Each component Cy can be configured to provide service at different quality levels
1,..., Ly (1=worst, Ly=best). The idea is that each component can be degraded
to provide sub-optimal service faster. So the system exhibits a tradeoff between
fast but less accurate computations, and slow but accurate computations.

In the following we assume that each component C; performs a single op-
eration. We further assume that all components are independent, in the sense
that each one is hosted on a different physical resource. Note that both these
limitations can easily be addressed. A single component implementing multiple
operations can be viewed as a set of “simple” components—each one implementing
a single operation—sharing the same physical resource. Then, multiple compo-
nents sharing the same resource can be modeled by taking their aggregate service
demands, as will be described in a few moments.

A system configuration is a vector £ = ({1,...,Lx) such that for each k =
1,...,K, £ € {1,...,Ly}; this indicates that component Cj is operating at
level ¢;,. We denote with D(k, j) the mean service demand of component Cy
when operating at level j € {1,...,Lr}. We require that, for each compo-
nent Cx, 0 < D(k,1) < D(k,2) < ... < D(k,Ly), that is, service demands
for progressively degraded quality levels are strictly monotonically decreasing.
Note that if multiple components, say C;,,C .C;,, share the same physical re-
sources, they can be aggregated into a single component whose service demand
is D(ilagil) + D(ig,gh), +...+ D(Zm7€1m)

In PARSY Step 2 we define a positive utility value UT(k, j) for component
Ci operating at quality level j. For each Cy we require that 0 < UT(k,1) <
UT(k,2) < ... < UT(k, Ly). The utility value allows system administrators to
define weights associated with quality levels, such that unimportant services are
considered for degradation before important ones.

With a slight abuse of notation, the utility of system configuration £ is defined
as the sum of utilities of each component:

IR

K
UT(€) = > UT(k, ) (1)
k=1
The initial system configuration is £ = (L1, ..., Lk), such that all components

operate at the best quality level.
The goal of PARSY (Step 3) is to selectively upgrade or degrade some of
the components such that the estimated system response time is kept below a



Table 1. Symbols used in this paper

Ci,...,Cxk  Components
Rmax Maximum allowed system response time
X Measured system throughput
R Measured system response time
N Number of concurrent users (computed according to Eq. (4))
L= (l1,...,0K) System configuration (component Cj, is operating at level ;)

Ly Number of quality levels offered by component Cy,

R(N; ) Estimated system response time at configuration £ with NV requests

D(k, j) Average service demand of component Cj at quality level j

UT(k,j) Utility of component C, when operating at quality level j

predefined threshold Ry, and the system utility is the highest possible. In other
words, we seek a solution to the following optimization problem:

maximize UT(€) (2)
subject to R(N;£€) < Ruax
lpe{l,....,Ly} k=1,...,K

where R(N;£) is the estimated system response time with configuration £, when
there are N users. We are seeking the configuration which maximizes the total
utility and keeps the estimated response time below the threshold Ry ax.

Finding an exact solution to (2) is computationally difficult, as (2) can be
viewed as an instance of the multiple-choice knapsack problem [2]. Finding the
optimal solution requires the estimation of the response time for all possible
configurations, which takes time O(f (N, K) H?Zl L), where f(N, K) is the cost
of computing R(N;£).

Also, observe that the problem (2) could even have no solution at all. In fact,
the lowest possible response time can be achieved when the system is in its con-
figuration (1,...,1) (all components have been degraded as much as possible).
A basic result from queueing theory states that the response time R(N;1,...,1)
is asymptotically bounded by [3]:

R(N;1,...,1) > Nrn]?x{D(k,l)} (3)

Thus, from (3) we conclude that, for any configuration £ = ({q,...,0k),
limy 00 R(N;£) = oo, which means that for sufficiently high loads the con-
straint R(N;£) < Rmax can not be satisfied. In this case, PARSY will select the
configuration (1,...,1) as solution of the optimization problem (2).

Table 1 summarizes the symbols used in this paper.

4 Solving the Optimization Problem
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Fig. 2. System architecture, which includes the monitor and the controller

We now propose a practical way to find an approximate solution to the
problem (2) above. The main points of PARSY are the following:

— We enhance the system with a monitoring component which triggers a re-
configuration whenever the measured system response time deviates from
the threshold Ruyax (Step 4); this is described in detail in Section 4.1.

— We use a closed QN model to estimate response time R(N;£) for a given
system configuration £ (Step 5). The computation of estimated response time
with the QN model is used to find a solution to the optimization problem as
will be illustrated in Section 4.2.

4.1 Identifying Reconfiguration Times

To perform the reconfiguration (Step 6) the first problem we address is how to
decide when a reconfiguration should occur. To do so, we enhance the software
system with a monitoring component (see Fig. 2). The monitor is a passive
observer that measures the system response time R and throughput X (the use
of throughput will be illustrated shortly). Then, the monitor notifies a separate
component (the controller) when a reconfiguration should take place.

Specifically, if the measured response time is less than the threshold (R <
Riax), the monitor notifies the controller to trigger a possible upgrade of one or
more components; if the measured response time is greater than the threshold
(]:2 > Runax) the monitor notifies the controller to trigger a possible downgrade
of some components.

Attention must be paid to avoid unnecessary reconfigurations when the mea-
sured response time R bounces above and below the threshold Ryax. A common
approach to deal with this situation is to trigger a reconfiguration after the event
R > Ruax (resp. R < Riax) has been observed multiple consecutive times. Al-
ternatively, we can deﬁne two thresholds Ry, and Rpax such that an upgrade
is triggered when R < Ruin, and a downgrade is triggered when R > Ruax-
Furthermore, it is important to wait for the system to settle down after a recon-
figuration. For one recent result, see [4].



4.2 Finding a New Configuration

We now describe how the controller identifies a new system configuration. The
controller can estimate the system response time for different configurations
by using a single-class, closed QN model. Each queueing center in the model
represents a system component. We assume that the QN model has product-
form solution, which in general could not be true for the system being modeled.
However, the assumption of product-form solution allows us to solve the QN
model efficiently; this is important because PARSY needs to reconfigure the
system on-line.

The QN model contains K service centers, where center k corresponds to
component Cg. If the system configuration is £ = (¢1,...,¢k), then the service
demand of queueing center k is D(k, {y).

To analyze the closed QN model, we need the number N of requests in the
system at the time of reconfiguration. N can be computed from the observed
values X and R using Little’s law [5]:

N=XR (4)

Now that we have all parameters for the QN model, we can estimate R(N;£)
using Mean Value Analysis (MVA) [6] according to the pseudo-code shown in
Algorithm 3 in the Appendix. The computational complexity of MVA is O(NK),
where N is the number of requests and K is the number of service centers (which
is equal to the number of components in the system). A faster way to estimate the
response time is to compute asymptotic upper and lower bounds on the response
time of QN model. For example, bounds on the response time can be computed
in time O(K) [3]; of course, performance bounds do not provide the exact value
for R(N;£), but only upper and lower limits. We can then estimate the system
response time as the average of the upper and lower limit (see Algorithm 4).

We now describe how the performance model is used to identify a new system
configuration. Specifically, we describe an approximate solution technique, based
on the greedy paradigm, which identifies a feasible solution to (2). The solution
technique works as follows:

~IfR> Rpax, we identify components which can be degraded. We keep de-
grading components until the estimated system response time, as computed
using the QN model, becomes less than the threshold Ry ax.

~IfR< Rpnax, we identify components which can be upgraded. We keep up-
grading components as long as the estimated system response time remains
less than the threshold R, ..

Let us analyze the two cases in detail.

Degrading Components When R > Rpax, a reconfiguration is triggered by ex-
ecuting Algorithm 1. This is a greedy algorithm which, at each step, selects a
component to degrade. The algorithm stops either when (i) the estimated re-
sponse time is below the threshold, or (ii) all components have been degraded
at quality level 1, so that no further degradation is possible.



Algorithm 1 Degrade configuration

Require: £ current system configuration
Require: N number of requests in the system
Require: D(k,j) service demand of component Cj operating at quality level j
Require: UT(k, j) utility of component Ci operating at quality level j
Ensure: £°°7 is the new system configuration
Y — ¢
C—{k| GV >1} {Candidate set of components which can be degraded}
while C # () do
B — argmax, {D(k, ;") /UT(k, ;) | k€ C}
Y — 05V —1 {Degrade Cp}
Compute R(N;£"°") using Algorithm 3 (MVA)
if R(N;£"°") < Rmax then

Break {Downgrade complete}
else
C—A{k |G >1} {Recompute the candidate set}
Return £7¢V

At each iteration, the component to be degraded Cp is the one for which the
ratio D(B, ¢p)/UT(B, {p) is maximum, where ¢z is the quality level of Cg after
it has been degraded. The idea is to degrade the component with both a high
service demand and a low utility. In queueing theory it is well known that the
center with maximum demand is the bottleneck device; here we also take into
account the utility of the degraded component.

Upgrading Components Algorithm 2 is used to upgrade components as long as
the estimated system response time R(N; £) remains below the threshold Ry ax.
Again, we use a greedy approach in which the component Cy; to be upgraded is
chosen at each iteration. Let £;; be the quality level of component Cy; before the
reconfiguration. Then, Cy is chosen to satisfy the following two properties:

— After upgrading Cy at configuration ¢y + 1, the new estimated system re-
sponse time is below the threshold Ry ax;

— Cy is the component whose upgrade provides the maximum utility with the
minimum increase in system response time.

This approach is similar to the greedy algorithm for solving the knapsack prob-
lem [2], where items are tried in order of decreasing unitary value.

4.3 Computational Complexity

Both Algorithms 1 and 2 execute a number of iterations in which a single com-
ponent is downgraded /upgraded; in particular, at each iteration one component
Ci can be upgraded from level ¢y to level £+ 1, or degraded from level £ to level
{;, — 1. The worst case happens when the whole system is degraded from config-
uration (Li,...,Lg) to configuration (1,...,1), or the other way. Thus, in the
worst case at most Zszl Ly, iterations are performed. The cost of each iteration



Algorithm 2 Upgrade configuration
Require: £ current system configuration
Require: N number of requests in the system
Require: D(k,j) service demand of component Cj operating at quality level j
Require: UT(k, j) utility of component Ci operating at quality level j
Ensure: £°°7 is the new system configuration
£ — ¢
C—{k| G < Li} {Candidate set of components which can be upgraded}
while C # () do
U — argmin, {D(k, ;" + 1)/UT(k, ;" +1) | ke C}
LY — 0 + 1 {Try to upgrade Cy}
Compute R(N;£"°") using Algorithm 3 (MVA)
if R(N;£%°") > Rmax then

LY — Y —1 {Rollback configuration for Cy }
C— C\{U}

else
C—{k| G < Li} {Recompute the candidate set}

Return £°°V

is dominated by the cost f(N, K) of evaluating R(N;£). If the system response
time is estimated using the MVA Algorithm 3, we have that f(NV, K) = O(NK)
which implies that the computational complexity of Algorithms 1 and 2 is
O(NK Y, Ly). If the system response time is estimated by computing upper
and lower bounds R* and R~ [3] and letting R(N;£) ~ (R* + R™)/2, then we
have f(N,K) = O(K). In this case we can reduce the computational complex-
ity of Algorithms 1 and 2 to O(K ), Lj), which is also independent from the
number of requests N.

5 Numerical Example

In this section we assess the effectiveness of PARSY by means of a set of synthetic
test cases which is numerically evaluated. We consider a software system with K
components such that each component can operate at L different quality levels.
We experiment with multiple combinations of K and L: we use K = 10, 20, 30, 50
and L = 2,3,5. Service demands D(k, j) and utility UT(k, j) of component Ck
operating at quality level j, for all k = 1,...,K, 5 = 1,..., L, are randomly
generated when each model is created.

We evaluate each system for 7' = 200 time steps. The number of users (re-
quests) Ny at step t = 1,...,T is produced using a random walk model. For each
experiment the threshold R,.xis defined as:

Rpax = max{R(Ny1,...,1) |t=1,...,T} (5)

that is, Ryaxis the maximum system response time when all components operate
at quality level 1 (worst). This ensures that there exists a configuration such that
the system response time is kept below Ry .xfor all values of NV;.
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Fig. 3. Response time, utility and number of requests for K = 10, L = 2.

We implemented Algorithms 1 and 2 in GNU Octave [7]. Initially, all com-
ponents are set at the best quality level. We tested two different techniques to
estimate R(N;£): (i) using MVA (Algorithm 3), and (ii) using Balanced System
Bounds (BSB) (Algorithm 4).

PARSY is executed on-line, that is it finds a new configuration at time step ¢
by considering only the configuration at the previous step ¢ — 1 and the number
of currently active requests N;. The observed system response time R(t) at time
t is computed using MVA. The value of R(t) is then used to decide whether the
configuration should be upgraded or downgraded, as described in Section 4. For
each configuration we also compute the utility according to (1).

Figure 3 shows an example of the results for a system with K = 10 com-
ponents operating at L = 2 quality levels. The top part of the plot shows the
observed system response time for the static configuration (L, . .., L) (solid line),
PARSY+MVA and PARSY+BSB (dashed lines). Reconfiguration points are also
shown. The middle part of Figure 3 shows the utility over time for the static sys-
tem (solid line), as well as using PARSY (dashed lines). Note that the utility of
the system with configuration (L, ..., L) is, by construction, an upper bound of
the utility of any other valid configuration. Finally, the bottom part of Figure 3
shows the number of users N; at time step 1.

In order to compare PARSY+MVA and PARSY+BSB we consider two met-
rics: the total utility UT and the overflow response time AR. The total utility



Table 2. Results of all experiment sets. K is the number of components; L is the
number of quality levels; UT is the total utility and AR the response time overflow.

141622.46 90643.03  114941.53 0.00 112057.56 0.00
240703.53  252987.50  128606.66 0.00 126259.66  55.45

50
50

No Adaptation PARSY+MVA PARSY+BSB

K L uT AR uT AR UuT AR
5 2 5884.17 5890.15 5712.94 0.00 5705.07 0.00
5 3 16363.16 9962.44 15044.46 0.00 15011.59 0.00
5 5 20757.87  169979.45 13316.75 0.00 13214.68 0.00
10 2 19040.52 20594.15 17694.10 0.00 17615.86 0.00
10 3 32711.11 65785.59 27722.41 0.00 27490.38 0.00
10 5 49114.04  182799.96 34705.66 0.00 34356.43  30.83
20 2 39493.98 22550.31 37410.67 0.00 37204.16 0.00
20 3 63899.70 67996.03 55610.41 0.00 55120.90 0.00
20 5 94426.88  137734.24 70743.20 0.00 69628.72 0.00
50 2 92983.84 35439.53 85082.02 0.00 83692.37 0.00

3

5

is the sum of utilities of all system configurations produced by PARSY. The
overflow response time is defined as the sum of (R(t) — Rmax) over all ¢ for which
R(t) > Rumax. Intuitively, the overflow response time is the area which lies above
the line y = Rpax and below y = R(t). Observe that the choice of Ryay (see (5))

ensures that an optimal reconfiguration algorithm is able to achieve AR = 0.

We report in Table 2 the results of all experiments; for a better visual com-
parison, the same results are shown in Figure 4. We observe that PARSY is
very effective in reducing the response time overflow; at the same time the total
utility is kept as a fraction of the maximum possible value. It is interesting to ob-
serve that, in the considered test cases, PARSY+BSB produces only marginally
worse reconfigurations than those produced by PARSY+MVA. This means that
configurations identified by PARSY+BSB have on average slightly lower utility,
while the response time overflow in both cases is basically zero. The difference
in the utility value is quite small, and is compensated by the fact that BSB are
faster to compute, and thus are better suited for very large systems with many
components. Note that efficiency of the reconfiguration algorithms is hardly an
issue for small to medium size system. Our tests have been performed on a Linux
PC (kernel 2.6.24) with an AMD Athlon 64 X2 Dual Core processor 3800+ with
2GB of RAM, using GNU Octave version 3.2.3. On this system, a single recon-
figuration step requires a fraction of a second using MVA, even for the largest
test case with K = 50 components and L = 5 levels; note that in this case the
total number of possible configurations is 5.
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axes denote the parameters K/L used for that experiment. The response times overflow
is shown in log scale.

6 Related Works

In the last years, as outlined in [8], the topic of reconfigurable and self-adaptive
computing systems has been studied in several communities and from different
perspectives. The autonomic computing framework is a notable example of gen-
eral approach to the design of such systems [9, 10]. Hereafter, we focus on works
appeared in the literature dealing with the self-adaptation of software systems
to guarantee the fulfillment of QoS requirements. Specifically, we focus on works
that make use of models to perform this step.

GPAC (General-Purpose Autonomic Computing), for example, is a tool-
supported methodology for the model-driven development of self-managing IT
systems [11]. The core component of GPAC is a generic autonomic manager ca-
pable of augmenting existing IT systems with a MAPE autonomic computing
loop. The GPAC tools and the probabilistic model checker PRISM [12] are used
together successfully to develop autonomic systems involving dynamic power
management and adaptive allocation of data-center resources [13]. KAMI [14] is
another framework for model evolution by runtime parameter adaptation. KAMI
focuses on Discrete Time Markov Chain models that are used to reason about
non-functional properties of the system. The authors adapt the QoS properties of
the model using Bayesian estimations based on runtime information, and the up-
dated model allows the verification of QoS requirements. The approach presented
in [15] considers the QoS properties of a system in a web-service environment.
The authors provide a language called SLAng, which allows the specification of
QoS to be monitored. The Models@Run. Time approach [16] proposes to leverage



software models and to extend the applicability of model-driven engineering tech-
niques to the runtime environment to enhance systems with dynamic adapting
capabilities. In [17], the authors use an architecture-based approach to support
dynamic adaptation. Rainbow [18] also updates architectural models to detect
inconsistencies and in this way it is able to correct certain types of faults. A differ-
ent use of models at runtime for system adaptation is taken in [19]. The authors
update the model based on execution traces of the system. In [20] the authors
describe a methodology for estimation of model parameters through Kalman
filtering. This work is based on a continuous monitoring that provides run-time
data feeding a Kalman filter, aimed at updating the performance model.

In the area of service-based systems (SBS), devising QoS-driven adaptation
methodologies is of utmost importance in the envisaged dynamic environment in
which they operate. Most of the proposed methodologies for QoS-driven adap-
tation of SBS address this problem as a service selection problem (e.g., [21-24]).
Other papers have instead considered service-based adaptation through workflow
restructuring, exploiting the inherent redundancy of SBS (e.g., [25—-27].) In [28]
a unified framework is proposed where service selection is integrated with other
kinds of workflow restructuring, to achieve a greater flexibility in the adaptation.

The works closest to our approach are [29-31]. In [29], the authors propose a
conceptual model dealing with changes in dynamic software evolution. Besides,
they apply this model to a simple case study, in order to evaluate the effectiveness
of fine-grained adaptation changes like service-level degrading/upgrading action
considering also the possibility to perform actions involving the overall resource
management. The approach proposed in [30] deals with QoS-based reconfigu-
rations at design time. The authors propose a method based on evolutionary
algorithms where different design alternatives are automatically generated and
evaluated for different quality attributes. In this way, the software architect is
provided with a decision making tool enabling the selection of the design al-
ternatives that best fits multiple quality objectives. Menascé et al. [31] have
developed the SASSY framework for generating service-oriented architectures
based on quality requirements. Based on an initial model of the required service
types and their communication, SASSY generates an optimal architecture by
selecting the best services and potentially adding patterns such as replication or
load balancing.

With respect to existing approaches, PARSY lies in the research line fostering
the usage of models at runtime to drive the QoS-based system adaptation. The
proposed approach uses two very efficient modeling and analysis techniques that
can then be used at runtime without undermining the system behavior and its
overall performance.

7 Conclusions

In this paper we presented PARSY, a framework for runtime performance aware
reconfiguration of component-based software systems. The idea underlying PARSY
is to selectively degrade and upgrade system components to guarantee that the



overall response time does not exceed a predefined threshold. The capability
of driving this dynamic degradation is achieved through the introduction of a
monitoring component that triggers a reconfiguration whenever the measured
response time exceeds the threshold, and the use of a QN model to estimate,
at runtime, the response time of various reconfiguration scenarios. The response
times are used to feed the optimization model whose solution gives the system
configuration which maximizes the total utility while keeping the response time
below the threshold.

The methodology proposed in this paper can be improved along several direc-
tions. We are extending the framework to include multiple classes of requests,
and to be able to deal with multiple components sharing the same physical
resource. We are also exploring the use of forecasting techniques as a mean to
trigger system reconfiguration in a proactive way. Another direction that deserve
further investigation is the use of different numerical techniques for an efficient
and accurate solution of the optimization problem. Finally, we are working on the
implementation of our methodology on a real testbed, to assess its effectiveness
through a more comprehensive set of real experiments.
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A Estimation of the System Response Time

Algorithm 3 Estimation of R(N,£) using MVA

Require: N number of users
Require: £ = ({1,02,...0k) current system configuration
Require: D(k,j) service demand of component Cj operating at quality level j
Ensure: R is the system response time
for allk=1,2,... K do
Qr 0
for alln=1,2,...N do
for allk=1,2,... K do

Ry — D(k,lr) x (1 + Qk) {Residence time at Cy}
R — Ele Ry, {System response time}
X «—n/R {System throughput}
for all k=1,2,... K do
Qr — XRyi {Average number of requests at Cy }
Return R

Algorithm 4 Estimation of R(N,£) using BSB

Require: N number of users
Require: £ = ({1,{2,... k) current system configuration
Require: D(k,7) service demand of component Cj operating at quality level j
Ensure: R is the system response time
Duax — max{D(k,¢) | k=1,...,K}
Dyot — Zk D(kyék)
R™ «— max{NDmnax, Dot (1 + (N —1)/N)} {Lower bound on response time}
RT « Dot + (N — 1) Dinax {Upper bound on response time}
R~ (Rt +R7)/2
Return R




