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Abstract

Many formal translations between time dependent models have been proposed over

the years. While some of them produce timed bisimilar models, others preserve only

reachability or (weak) trace equivalence. We suggest a general framework for argu-

ing when a translation preserves Timed Computation Tree Logic (TCTL) or its safety

fragment. The framework works at the level of timed transition systems, making it

independent of the modeling formalisms and applicable to many of the translations

published in the literature. Finally, we present a novel translation from extended

Timed-Arc Petri Nets to Networks of Timed Automata and using the framework

argue that it preserves the full TCTL. The translation has been implemented in the

verification tool TAPAAL.
∗Partially supported by Institute for Theoretical Computer Science (ITI), project No. 1M0545.
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1 Introduction

Time dependent formal models like Timed Automata (TA) [1], Time Petri Nets

(TPN) [14] and Timed-Arc Petri Nets (TAPN) [6] have received significant attention in

the theory of embedded systems. While originally developed by different communities

of researchers, there has recently been devoted considerable effort towards establish-

ing formal relationships among the different models. To this end, several translations

have been developed (see e.g. [5, 6, 8, 9, 10, 11, 13, 16] or [15, 18] for a more com-

plete overview) and some of them have been implemented in verification tools like

Romeo [12], TAPAAL [9] or the TIOA Toolkit [2].

Many of these translations utilize similar tricks that allow for the simulation of one

system by another. Typically, a single step in one formalism is simulated by a sequence

of steps in the other. We identify a general class of translations that preserve Timed

Computation Tree Logic (TCTL) (see e.g. [15]), a logic suitable for practical specification

of many useful temporal properties. Our main goal is to provide a framework directly

applicable to e.g. tool developers. The theory was motivated by the translations pre-

sented in [9] and [10]. Unlike much work on TCTL where only infinite alternating runs

are considered [15] or the details are simply not discussed [7, 10], we consider also fi-

nite maximal runs that appear in the presence of stuck computations or time invariants

(strict or nonstrict) and treat the semantics in its full generality as used in some state-

of-the-art verification tools like UPPAAL [3]. This is particularly important for liveness

properties. While some translations in the literature preserve some variant of timed

bisimilarity [8, 10, 11, 13], other translations preserve only reachability or trace equiva-

lence [4, 9]. Our framework allows us to argue that several such translations preserve

the full TCTL or at least its safety fragment. In this report we focus only on the inter-

leaving semantics.

To illustrate the applicability of the framework, we propose a novel, full TCTL-

preserving translation from extended timed-arc Petri nets to UPPAAL networks of

timed automata. Earlier translations either caused exponential blow-up in the size [8,

16, 17], preserved only safety properties [9], or where not suitable for implementation in

tools due to an inefficient use of clocks and communication primitives [17]. The transla-

tion from TAPN to UPPAAL timed automata presented in this report is the first to run

in polynomial time while preserving the full TCTL. We implemented the translation in

the tool TAPAAL [9] and the initial experiments confirm its efficiency also in practice.
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2 Preliminaries

We let N, N0, R and R≥0 denote the sets of natural numbers, non-negative integers,

real numbers and non-negative real numbers, respectively. A timed transition system

(TTS) is a quadruple T = (S,−→,AP, µ) where S is a set of states (or processes), −→
⊆ S × S ∪ S × R≥0 × S is a transition relation, AP is a set of atomic propositions, and

µ : S −→ 2AP is a function assigning sets of true atomic propositions to states.

We write s −→ s ′ whenever (s, s ′) ∈−→ and call them discrete transitions, and s d
−→ s ′

whenever (s, d, s ′) ∈−→ and call them delay transitions. We require that the TTS we

consider satisfy the following standard axioms for delay transitions (see e.g. [5]). For

all d, d ′ ∈ R≥0 and s, s ′, s ′′ ∈ S:

1. Time Additivity: if s d
−→ s ′ and s ′ d

′
−→ s ′′ then s d+d ′

−→ s ′′,

2. Time Continuity: if s d+d ′
−→ s ′′ then s d

−→ s ′
d ′

−→ s ′′ for some s ′,

3. Zero delay: s 0
−→ s for each state s, and

4. Time Determinism: if s d
−→ s ′ and s d

−→ s ′′ then s ′ = s ′′.

By s[d] we denote the state s ′ (if it exists) such that s d
−→ s ′ (time determinism

ensures the uniqueness of s[d]). We write s −→ if s −→ s ′ for some s ′ ∈ S and s 6−→
otherwise. Similarly for d

−→. A run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ . . . is

a (finite or infinite) alternating sequence of time delays and discrete actions.

The set of time intervals I is defined by the abstract syntax

I ::= [a, a] | [a, b] | [a, b) | (a, b] | (a, b) | [a,∞) | (a,∞)

where a ∈ N0, b ∈ N and a < b.

We shall now introduce the syntax and semantics of Timed Computation Tree Logic

(TCTL). The presentation is inspired by [15]. Let AP be a set of atomic propositions. The

set of TCTL formulaeΦ(AP) over AP is given by

ϕ ::= ℘ | ¬ϕ | ϕ1 ∧ϕ2 | E(ϕ1UIϕ2) | A(ϕ1UIϕ2) | E(ϕ1 RIϕ2) | A(ϕ1 RIϕ2)

where ℘ ∈ AP and I ∈ I. Formulae without any occurrence of the operators

A(ϕ1UIϕ2) and E(ϕ1 RIϕ2) form the safety fragment of TCTL.

The intuition of the until and release TCTL operators (formalized later on) is as fol-

lows: E(ϕ1UIϕ2) is true if there exists a maximal run such that ϕ2 eventually holds
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s0 s0[1]

s1 s1[2.5]

s2 s2[2]

s3 s3[1.3]

s4

. . .
1

2.5

2

1.3

time

Figure 1: An illustration of the concrete run ρ = s0
1

−→ s0[1] −→ s1
2.5
−→ s1[2.5] −→

s2
2

−→ s2[2] −→ s3
1.3
−→ s3[1.3] −→ s4 . . ..

within the interval I, and until it does, ϕ1 continuously holds; E(ϕ1 RIϕ2) is true if

there exists a maximal run such that either ϕ2 always holds within the interval I or ϕ1
occurred previously. As we aim to apply our framework to concrete case studies with

possible tool support, we need to handle maximal runs in their full generality. Hence

we have to consider all possibilities in which a run can be “stuck”. In this case, we

annotate the last transition of such a run with one of the three special ending symbols

(denoted δ in the definition below).

A maximal run ρ is either

(i) an infinite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→
s2

d2−→ s2[d2] −→ . . ., or

(ii) a finite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→
. . . −→ sn

δ
−→ where δ ∈ {∞, d≤n, d<n } for some dn ∈ R≥0 s.t.

– if δ = ∞ then sn
d

−→ sn[d] for all d ∈ R≥0,

– if δ = d≤n then sn 6
d

−→ for all d > dn and sn
dn
−→ sn[dn] s.t. sn[dn] 6−→, and

– if δ = d<n then sn 6d−→ for all d ≥ dn, and there exists ds, 0 ≤ ds < dn, such

that for all d, ds ≤ d < dn, we have sn
d

−→ sn[d] and sn[d] 6−→.

By MaxRuns(T, s) we denote the set of maximal runs in a TTS T starting at s.

Intuitively, the three conditions in case (ii) describe all possible ways in which a finite

run can terminate. First, a run can end in a state where time diverges. The other two

cases define a run which ends in a state from which no discrete transition is allowed

after some time delay, but time cannot diverge either (typically caused by the presence

of invariants in the model). These cases differ in whether the bound on the maximal

time delay can be reached or not.
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s0 s0[d0]

s1 s1[d1]

s2 s2[d2]

s3 s3[d3]

s4

. . .

I

s1[d]

d0

d1

s2[d ′]

d2
s2[d ′′]

d3

time

Figure 2: An illustration of a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→

s2[d2] −→ . . ..

Figure 1 illustrates part of the maximal run ρ = s0
1

−→ s0[1] −→ s1
2.5
−→ s1[2.5] −→

s2
2

−→ s2[2] −→ s3
1.3
−→ s3[1.3] −→ s4 −→ . . .. Note that actions take zero time units

and that, although not shown in this example, time delays can be zero so it is possible

to do multiple actions in succession without any time progression in between. Further,

there is no special meaning as to whether the arrow for an action goes up or down, this

is simply to keep the figure small.

Let us now introduce some notation for a given maximal run ρ = s0
d0−→ s0[d0] −→

s1
d1−→ s1[d1] −→ s2

d2−→ . . .. First, r(i, d) denotes the total time elapsed from the begin-

ning of the run up to some delay d ∈ R≥0 after the i’th discrete transition. Formally,

r(i, d) =
(∑i−1

j=0 dj

)
+d. Second, we define a predicate validρ : N×R≥0×I → {true, false}

such that validρ(i, d, I) checks whether the total time for reaching the state si[d] in ρ

belongs to the time interval I, formally

validρ(i, d, I) =



d ≤ di ∧ r(i, d) ∈ I if di ∈ R≥0

r(i, d) ∈ I if di = ∞
d ≤ dn ∧ r(i, d) ∈ I if di = d≤n

d < dn ∧ r(i, d) ∈ I if di = d<n .

Figure 2 illustrates a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→

. . . and three points (marked with ×). Note that although time delays appear identical

in the figure they can be of different length (even zero). Let us now give some example

of the application of the validρ(i, d, I) function. We see that validρ(1, d, I) is false because

s1[d] lies outside the interval I. Similarly, validρ(2, d ′′, I) is false because s2[d ′′] is not a

part of the run (since d ′′ > d2). Finally, validρ(2, d ′, I) is true because s2[d ′] is a part of

the run and within I.
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Next, we define a function historyρ : N × R≥0 → 2N×R≥0 s.t. historyρ(i, d) returns

the set of pairs (j, d ′) that constitute all states sj[d ′] in ρ preceding si[d], formally

historyρ(i, d) = {(j, d ′) | 0 ≤ j < i ∧ 0 ≤ d ′ ≤ dj} ∪ {(i, d ′) | 0 ≤ d ′ < d}.
Now we can define the satisfaction relation s |= ϕ for a state s ∈ S in a TTS

T = (S,−→,AP, µ) and a TCTL formula ϕ.

s |= ℘ iff ℘ ∈ µ(s)

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 ∧ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= E(ϕ1UIϕ2) iff ∃ρ ∈MaxRuns(T, s) .

∃i ≥ 0 .∃d ∈ R≥0 . [validρ(i, d, I) ∧ si[d] |= ϕ2 ∧

∀(j, d ′) ∈ historyρ(i, d) . sj[d
′] |= ϕ1

]
s |= E(ϕ1 RIϕ2) iff ∃ρ ∈MaxRuns(T, s) .

∀i ≥ 0 .∀d ∈ R≥0 . validρ(i, d, I) ⇒[
si[d] |= ϕ2 ∨ ∃(j, d ′) ∈ historyρ(i, d) . sj[d

′] |= ϕ1

]
The operators A(ϕ1UIϕ2) and A(ϕ1 RIϕ2) are defined analogously by replacing the

quantification ∃ρ ∈MaxRuns(T, s) with ∀ρ ∈MaxRuns(T, s).

Figure 3 illustrates the satisfaction of an until formula and Figure 4 illustrates the

satisfaction of a release formula. The x-axis indicates elapsed time (which is why dis-

crete actions are drawn as vertical lines: they take zero time units). The figure illustrates

where the two subformulae ϕ1 and ϕ2 must hold.

In particular, notice that there are four possible ways for a release formula to be

satisfied. First, ϕ1 may have occurred in the past (outside the interval), which releases

ϕ2, effectively ensuring that ϕ2 need not hold in the interval I at all. Second, ϕ2 may

not be released, which means that it must hold continuously within the entire interval I.

Third, ϕ2 can hold continuously in the interval I, until some point in the interval where

ϕ1 ∧ϕ2 holds, thereby releasing ϕ2. Finally, ϕ2 can hold continuously in the interval I

until the run deadlocks.

As expected, the until and release operators are dual.

Lemma 2.1. Let T = (S,−→,AP, µ) be a TTS and s ∈ S. Then s |= A(ϕ1 RIϕ2) iff s |=

¬E(¬ϕ1UI ¬ϕ2), and s |= A(ϕ1UIϕ2) iff s |= ¬E(¬ϕ1 RI ¬ϕ2).
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s0 |= E(ϕ1UIϕ2)

s0
s ′0

s1 s ′1

s2 s ′2

s3 s ′3

s4

. . .

ϕ2
ϕ1

I

time

Figure 3: Illustration of a run satisfying an until formula.

s0 |= E(ϕ1RIϕ2)

s0
s ′0

s1 s ′1

s2 s ′2

s3 s ′3

s4

. . .

ϕ1

s0 |= E(ϕ1RIϕ2)

s0
s ′0

s1 s ′1

s2 s ′2

s3 s ′3

s4

. . .

ϕ2

s0 |= E(ϕ1RIϕ2)

s0
s ′0

s1 s ′1

s2 s ′2

s3 s ′3

s4

. . .

ϕ1 ∧ϕ2
ϕ2

s0 |= E(ϕ1RIϕ2)

s0
s ′0

s1 s ′1

s2

s ′2

ϕ2

I

time

Figure 4: Illustration of runs satisfying a release formula.
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Proof. We first argue for the release operator.

(Release ⇒): Assume that s |= A(ϕ1 RIϕ2). We will show that s |= ¬E(¬ϕ1UI ¬ϕ2). As-

sume by contradiction that s |= E(¬ϕ1UI ¬ϕ2). This means that there exists a maximal

run ρ starting from s such that there exists an i ≥ 0 and a d ∈ R≥0 such that validρ(i, d, I)

is true, si[d] |= ¬ϕ2 and for all (j, d ′) ∈ historyρ(i, d) it holds that sj[d ′] |= ¬ϕ1.

This is a contradiction to the assumption that s |= A(ϕ1 RIϕ2) which by definition

means that for all maximal runs ρ ′ starting from s, all i ≥ 0 and all d ∈ R≥0 it holds that

validρ ′(i, d, I) implies that either si[d] |= ϕ2 or there exists a (j, d ′) ∈ historyρ ′(i, d) such

that sj[d ′] |= ϕ1. Thus, it follows that s |= A(ϕ1 RIϕ2) implies s |= ¬E(¬ϕ1UI ¬ϕ2).

(Release ⇐): Assume that s |= ¬E(¬ϕ1UI ¬ϕ2). This means that for all maximal runs ρ

starting from s, all i ≥ 0 and all d ∈ R≥0 it holds that either validρ(i, d, I) is not true or

si[d] 6|= ¬ϕ2 or there exist a (j, d ′) ∈ historyρ(i, d) such that sj[d ′] 6|= ¬ϕ1. By removing

the double negations we see that this matches exactly the definition of s |= A(ϕ1 RIϕ2)

which says that for all maximal runs ρ starting from s, all i ≥ 0 and all d ∈ R≥0 it holds

that if validρ(i, d, I) is true, then either si[d] |= ϕ2 or there exists a (j, d ′) ∈ historyρ(i, d)

such that sj[d ′] |= ϕ1. Thus, we have ¬E(¬ϕ1UI ¬ϕ2) implies s |= A(ϕ1 RIϕ2).

Now we shall argue for the until operator.

(Until ⇒): Assume that s |= A(ϕ1UIϕ2). We will show that s |= ¬E(¬ϕ1 RI ¬ϕ2).

Assume by contradiction that s |= E(¬ϕ1 RI ¬ϕ2), this means that there exists a maximal

run ρ starting from s s.t. for all i ≥ 0 and for all d ∈ R≥0 if validρ(i, d, I) is true, then

it holds that si[d] |= ¬ϕ2 or there exist a (j, d ′) ∈ historyρ(i, d) s.t. sj[d ′] |= ¬ϕ1. This

is a contradiction to the assumption that s |= A(ϕ1UIϕ2), which by definition means

that for every maximal run ρ ′ starting from s there exists and i ≥ 0 and a d ∈ R≥0
such that validρ ′(i, d, I) is true, si[d] |= ϕ2 and for all (j, d ′) ∈ historyρ ′(i, d) it holds that

sj[d
′] |= ϕ1. Then it follows that s |= ¬E(¬ϕ1 RI ¬ϕ2) and thus s |= A(ϕ1UIϕ2) implies

s |= ¬E(¬ϕ1 RI ¬ϕ2)

(Until ⇐): Assume by contraposition that s 6|= A(ϕ1UIϕ2). By definition this means

that there exists a maximal run ρ starting from s s.t. for all i ≥ 0 and all d ∈ R≥0
either validρ(i, d, I) is not true or si[d] |= ¬ϕ2 or there exist a (j, d ′) ∈ historyρ(i, d) s.t.

sj[d
′] |= ¬ϕ1. This matches exactly the definition of s |= E(¬ϕ1 RI ¬ϕ2) which says

that there exists a maximal run ρ starting from s s.t. for all i ≥ 0 and all d ∈ R≥0 if

validρ(i, d, I) is true then either si[d] |= ¬ϕ2 or there exists (j, d ′) ∈ historyρ(i, d) s.t.

sj[d
′] |= ¬ϕ1 . Thus we have that s |= ¬E(¬ϕ1 RI ¬ϕ2) implies s |= A(ϕ1UIϕ2).

8



3 Framework Description

In this section, we shall present a general framework for arguing when a simulation of

one time dependent system by another preserves satisfiability of TCTL formulae. We

define the notion of one-by-many correspondence, a relation between two TTSs A and

B. If A is in one-by-many correspondence with B then every transition in A can be

simulated by a sequence of transitions in B. Further, every TCTL formula ϕ can be

algorithmically translated into a formulate tr(ϕ) s.t. A |= ϕ iff B |= tr(ϕ). In the rest

of this section, we shall use A and B to refer to the original and the translated system,

respectively.

3.1 One-By-Many Correspondence

As the system B is simulating a single transition of A by a sequence of transitions, the

systems A and B are comparable only in the states before and after this sequence was

performed. We say thatB is stable in such states and introduce a fresh atomic proposition

called stable to explicitly identify this situation. States that do not satisfy the proposition

stable are called intermediate states. We now define three conditions that B should possess

in order to apply to our framework. The third condition is optional and necessary only

for the preservation of liveness TCTL properties. A TTS (S,→,AP, µ) s.t. stable ∈ AP is

• delay-implies-stable if for any s ∈ S, it holds that s d
−→ for some d > 0 implies

s |= stable,

• delay-preserves-stable if for any s ∈ S such that s |= stable, if s d
−→ s[d] then s[d] |=

stable for all d ∈ R≥0, and

• eventually-stable if for any s0 ∈ S such that s0 |= stable and for any infinite sequence

of discrete transitions ρ = s0 −→ s1 −→ s2 −→ s3 −→ s4 −→ . . . or any finite

nonempty sequence of discrete transitions ρ = s0 −→ s1 −→ · · · −→ sn 6−→ there

exists an index i ≥ 1 such that si |= stable. We call such a sequence a maximal

discrete sequence.

We write s  s ′ if there is an alternating sequence s = s0 −→ s1
0

−→ s1 −→ s2
0

−→
s2 −→ · · · 0

−→ sn−1 −→ sn = s ′ such that s |= stable, s ′ |= stable, and sj 6|= stable for

1 ≤ j ≤ n− 1.
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A: s0
{p, q}

s1

{p, q}

s2

{q}

s3

{p, q}

4.4
B: t0

{stable, p, q}

t1

{stable, p, q}

t7

{stable, q}

t2

{p}

t3

∅

t5

∅

t4

{stable, q}

t6

{stable, p, q}

4.4

C: u0

{stable, p, q}

u1

{stable, p, q}

u2

∅

u3

∅

u4
{stable, q}

u5

∅
u6 ∅ u7

{stable, p, q}

4.4

Figure 5: Three TTSs such that s0 �=c t0 and s0 �= u0.

Remark 3.1. For technical convenience, we introduced zero delays in the definition of  in

order to preserve the alternating nature of the sequence. Note that this is not restrictive as for

any s ∈ S we always have s 0
−→ s.

Definition 3.2. Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs s.t.

stable ∈ APB and B is delay-implies-stable and delay-preserves-stable TTS. A relation

R ⊆ S× T is a one-by-many correspondence if there exists a function trp : APA −→ APB
such that whenever sR t then

1. t |= stable,

2. s |= ℘ iff t |= trp(℘) for all ℘ ∈ APA,

3. if s −→ s ′ then t t ′ and s ′R t ′,

4. if s d
−→ s[d] then t d

−→ t[d] and s[d]R t[d] for all d ∈ R≥0,

5. if t t ′ then s −→ s ′ and s ′R t ′ and

6. if t d
−→ t[d] then s d

−→ s[d] and s[d]R t[d] for all d ∈ R≥0.

If B is moreover an eventually-stable TTS, then we say that R is a complete one-by-many

correspondence. We write s �= t (resp. s �=c t) if there exists a relation R which is a one-by-

many correspondence (resp. a complete one-by-many correspondence) such that sR t.
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Example 3.3. Consider the TTSs A, B and C in Figure 5 where the sets of propositions for A,

B and C are APA = {p, q} and APB = APC = {p, q, stable}. Then {(s0[d], t0[d]) | 0 ≤
d ≤ 4.4}∪ {(s1, t1), (s2, t4), (s3, t6), (s2, t7)} is a complete one-by-many correspondence which

implies that s0 �=c t0 and {(s0[d], u0[d]) | 0 ≤ d ≤ 4.4} ∪ {(s1, u1), (s2, u4), (s3, u7)} is

a one-by-many correspondence which implies that s0 �= u0. Notice that the system C is not

eventually-stable since the two maximal discrete sequences u1 −→ u5 −→ u6 −→ u6 −→
u6 −→ u6 −→ · · · and u1 −→ u2 −→ u3 do not contain any stable states except for u1.

Consider now the maximal run ρ = s0
4.4
−→ s1 −→ s2

0≤
−→ in the system A. This run

witnesses that s0 |= E(¬qR[3,5] q). Similarly, the maximal run ρ ′ = t0
4.4
−→ t1  t4

0≤
−→

witnesses that t0 |= E((¬q∧ stable)R[3,5] (q∨ ¬stable)).

Before we can prove the main theorem, we need to introduce some notation.

Definition 3.4. Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs, where

stable ∈ APB. For two finite alternating runs ρ in A and ρ ′ in B of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn
−→ sn[dn]

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] · · · tn
dn
−→ tn[dn]

we write ρ �= ρ ′ if si[d] �= ti[d] for all i ≤ n and all d ≤ di.

Now we define when two maximal runs are related w.r.t. �=.

Definition 3.5. Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs, where

stable ∈ APB. For two maximal runs ρ in A and ρ ′ in B we write ρ �= ρ ′ if

• ρ is an infinite maximal run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . ,

ρ ′ is an infinite maximal run

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] t2
d2−→ t2[d2] . . . ,

and si[d] �= ti[d] for all i ≥ 0 and all d ≤ di, or

• ρ is a finite maximal run of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . −→ sn

δ
−→,

ρ ′ is a finite maximal run of the form

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] t2
d2−→ t2[d2] . . . −→ tn

δ
−→,

for some δ ∈ {∞, d≤n, d<n } such that,
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– si[d] �= ti[d] for all i < n and all d ≤ di,

– sn[d] �= tn[d] for all d ∈ R≥0 if δ = ∞,

– sn[d] �= tn[d] for all d ≤ dn if δ = d≤n and

– sn[d] �= tn[d] for all d < dn if δ = d<n .

For the rest of this part let us fix two TTS A = (S,→A,APA, µA) and B =

(T,→B,APB, µB) such that stable ∈ APB and B has the properties delay-implies-stable

and delay-preserves-stable.

Lemma 3.6. Let s0 ∈ S and t0 ∈ T be such that s0 �= t0. Then there exists a finite run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn
−→ sn[dn]

in A if and only if there exists a finite run

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] · · · tn
dn
−→ tn[dn]

in B such that ρ �= ρ ′.

Proof. (⇒): Assume that there exists a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→
· · · −→ sn

dn
−→ sn[dn] in A. By induction on i and using condition 3 and 4 of Definition

3.2 we can construct a run ρ ′ = t0
d0−→ t0[d0]  t1

d1−→ t1[d1]  · · ·  tn
dn
−→ tn[dn] in

B.

(⇐): Assume that there exists a run ρ ′ = t0
d0−→ t0[d0]  t1

d1−→ t1[d1]  · · ·  
tn

dn
−→ tn[dn] in B. By induction on i and using condition 5 and 6 of Definition 3.2 we

can construct a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn
−→ sn[dn] in

A.

Notice that Lemma 3.6 deals only with finite runs and moreover requires that the run

in B ends in a stable state (see definition of and the property of TTS delay-preserves-

stable in the main text). However, there may still exist finite runs in B for which there is

no related run in A. The next lemma considers maximal runs and it is a consequence of

the definition of complete one-by-many correspondence.

Lemma 3.7. Let s0 ∈ S and t0 ∈ T be such that s0 �=c t0. Then there exists a maximal run

ρ ∈ MaxRuns(A, s0) if and only if there exists a maximal run ρ ′ ∈ MaxRuns(B, t0) such that

ρ �=c ρ ′.
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Proof. (⇒): We shall prove this lemma in two steps, first for infinite maximal runs and

then for finite maximal runs. Let

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . ,

be any infinite maximal run in A. Since s0 �=c t0, we have by induction on the index i of

states and using condition 3 and 4 of Definition 3.2 that there exists an infinite maximal

run ρ ′ in B of the form

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] t2
d2−→ t2[d2] . . . ,

where si[d] �=c ti[d] for all i ≥ 0 and all d ≤ di. Thus, ρ �=c ρ ′.

Now let

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . −→ sn

δ
−→,

be a finite maximal run in Awhere δ ∈ {∞, d≤n, d<n }.

Since s0 �=c t0, we shall construct a finite maximal run in B of the form

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] t2
d2−→ t2[d2] . . . tn

δ
−→ .

Using Lemma 3.6 and noticing that the lemma also works with runs ending with a

discrete action, it follows that from the prefix of ρ up to and including sn (referred to as

ρprefix), we can construct the prefix of ρ ′ up to and including tn (referred to as ρ ′prefix) such

that ρprefix �=c ρ ′prefix.

We shall now handle the final part of ρ ′ according to the value of δ in ρ.

δ = ∞ In this case, sn
d

−→ sn[d] for all d ∈ R≥0. It follows from condition 4 of Definition

3.2 that tn
d

−→ tn[d] such that sn[d] �=c tn[d] for all d ∈ R≥0. Hence ρ �=c ρ ′.

δ =≤ In this case, sn 6
d

−→ for all d > dn and sn
dn
−→ sn[dn] such that sn[dn] 6−→. It follows

from condition 6 of Definition 3.2 that tn 6
d

−→ for d > dn. Since sn
dn
−→ sn[dn], it

follows from condition 4 of Definition 3.2 that tn
dn
−→ tn[dn] such that sn[dn] �=c

tn[dn]. Since sn[dn] 6−→, it follows from condition 5 of 3.2 that tn[dn] 6 . By the

delay-implies-stable and eventually-stable properties of B, it follows that tn[d] −→ iff

tn[d] and thus, tn[dn] 6−→. Hence ρ �=c ρ ′.

δ = d<n In this case, sn 6
d

−→ for all d ≥ dn and there exists a ds < dn such that for all d,

ds ≤ d < dn, we have that sn
d

−→ sn[d] and sn[d] 6−→. It follows from condition 6
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of Definition 3.2 that tn 6
d

−→ for d ≥ dn. Since delays are similar in the two runs,

it follows from condition 4 of Definition 3.2 that tn
d

−→ tn[d] such that sn[d] �=c
tn[d] and from condition 5 of Definition 3.2 that tn[d] 6 for all ds ≤ d < dn.

Moreover, by the delay-implies-stable and eventually-stable properties of B, it follows

that tn[d] −→ iff tn[d] , hence tn[d] 6−→ for all ds ≤ d < dn. Hence ρ �=c ρ ′.

(⇐): We shall also prove this direction in two steps, first for infinite maximal runs and

then for finite maximal runs. Assume that there exists an infinite maximal run in B of

the form

ρ ′ = t0
d0−→ t0[d0] −→ t1

d1−→ t1[d1] −→ t2
d2−→ t2[d2] −→ · · ·

where intermediate states are also indexed.

Let j1 < j2 < j3 < . . . be all the indices such that tji |= stable for all i > 0. Since B is

an eventually-stable TTS there are infinitely many stable states in ρ ′. Moreover, since B is

a delay-implies-stable TTS, it follows that if ti 6|= stable then di = 0 for all i > 0. Finally,

because B is also a delay-preserves-stable TTS, it follows that whenever ti |= stable then

ti[di] |= stable for all i ≥ 0. These properties in turn imply that we can write ρ ′ in the

form

ρ ′ = t0
d0−→ t0[d0] tj1

dj1−→ tj1 [dj1 ] tj2
dj2−→ tj2 [dj2 ] · · ·

Now, following the similar strategy as in the (⇒) case, we can construct a infinite

maximal run ρ ∈MaxRuns(A, s0) such that ρ �=c ρ ′.

Now assume that there exists a finite maximal run in B of the form

ρ ′ = t0
d0−→ t0[d0] −→ t1

d1−→ t1[d1] −→ t2
d2−→ t2[d2] −→ · · · −→ tn

δ
−→

where intermediate states are also indexed and δ = {∞, d<n , d≤n}.

Let j1 < j2 < j3 < . . . < jk be all the indices such that tji |= stable for all 0 < i ≤ k.

Since B is an eventually-stable TTS, we know that jk = n. Further, because B is a delay-

implies-stable and delay-preserves-stable TTS, we can write ρ ′ in the form

ρ ′ = t0
d0−→ t0[d0] tj1

dj1−→ tj1 [dj1 ] · · · tjk
δ

−→ .

Now, following the similar strategy as in the (⇒) case, we can construct a finite maximal

run ρ ∈MaxRuns(A, s0) which also ends with δ
−→ such that ρ �=c ρ ′.

Now we translate TCTL formulae. LetAPA andAPB be sets of atomic propositions

such that stable ∈ APB and let trp : APA −→ APB be a function translating atomic
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propositions. We define tr : Φ(APA) → Φ(APB) as follows:

tr(℘) = trp(℘)

tr(¬ϕ1) = ¬tr(ϕ1)

tr(ϕ1 ∧ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

tr(E(ϕ1UIϕ2)) = E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))

tr(A(ϕ1UIϕ2)) = A((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))

tr(E(ϕ1 RIϕ2)) = E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))

tr(A(ϕ1 RIϕ2)) = A((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))

We are now ready to state the main result of this section.

Theorem 3.8. Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs such that

stable ∈ APB and let s0 ∈ S and t0 ∈ T . If s0 �=c t0 then for any TCTL formula ϕ, s0 |= ϕ if

and only if t0 |= tr(ϕ). If s0 �= t0 then the claim holds only for any formula ϕ from the safety

fragment of TCTL.

Proof. We shall prove this theorem by structural induction on ϕ. By Lemma 2.1 it is

sufficient to handle the operators ℘, ¬ϕ, ϕ1 ∧ϕ2, E(ϕ1UIϕ2) and E(ϕ1 RIϕ2).

• ϕ = ℘, ϕ = ¬ϕ1, and ϕ = ϕ1 ∧ϕ2 follow trivially from the induction hypothesis.

• ϕ = E(ϕ1UIϕ2):

(⇒) : Assume that s0 |=A E(ϕ1UIϕ2). Thus there exists a maximal run ρ ∈
MaxRuns(A, s0) that witnesses ϕ. This implies that there exists a prefix of ρ of

the form

ρprefix = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn−1

dn−1
−→ sn−1[dn−1] −→ sn

d
−→ sn[d],

such that validρ(n, d, I), sn[d] |=A ϕ2 and sk[d
′] |=A ϕ1 for all (k, d ′) ∈

historyρ(n, d). By Lemma 3.6 there exists a run ρ ′prefix in B of the form

ρ ′prefix = t0
d0−→ t0[d0] t1

d1−→ t1[d1] · · · tn−1

dn−1
−→ tn−1[dn−1] tn

d
−→ tn[d],

such that ρprefix �=c ρ ′prefix.
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We want to show that t0 |=B E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable)). Be-

cause sn[d] �=c tn[d] and sn[d] |=A ϕ2, we have by the induction hypothe-

sis that tn[d] |=B tr(ϕ2) and from condition 1 of Definition 3.2 we have that

tn[d] |=B stable. Let j be the index corresponding to the occurrence of tn in the

alternating sequence which unfolds the  steps. Because time delays are equiv-

alent in the two runs, it follows that validρ ′(j, d, I) and moreover, for any pair

(k, d ′) ∈ historyρ ′(j, d) either,

– tk[d ′] is an intermediate state and thus tk[d ′] |=B ¬stable, or

– tk[d ′] is a stable state. From the construction of ρ ′prefix it follows that there ex-

ists a pair (k ′, d ′) ∈ historyρ(n, d) such that sk ′ [d ′] �=c tk[d ′]. By the induction

hypothesis and the fact that sk ′ [d ′] |=A ϕ1, it follows that tk[d ′] |=B tr(ϕ1).

This means that tk[d ′] |=B tr(ϕ1) ∨ ¬stable.

Thus any maximal run ρ ′ ∈ MaxRuns(B, t0) that extends ρ ′prefix witnesses tr(ϕ),

meaning that t0 |=B E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable)).

(⇐) : Assume t0 |=B E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable)). Thus there exists a

maximal run ρ ′ in B that witnesses tr(ϕ). By the fact that B is a delay-implies-stable

and delay-preserves-stable TTS there exists a prefix of ρ ′ of the form

ρ ′prefix = t0
d0−→ t0[d0] t1

d1−→ t1[d1] · · · tn−1

dn−1
−→ tn−1[dn−1] tn

d
−→ tn[d],

such that validρ ′(j, d, I), tn[d] |=B tr(ϕ2) ∧ stable and tk[d ′] |=B tr(ϕ1) ∨ ¬stable for

all (k, d ′) ∈ historyρ ′(j, d) where j is the index corresponding to the occurrence of

tn in the alternating sequence which unfolds the steps as before.

By Lemma 3.6 there exists a run ρprefix in A of the form

ρprefix = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn−1

dn−1
−→ sn−1[dn−1] −→ sn

d
−→ sn[d],

such that ρprefix �=c ρ ′prefix.

We want to show that s0 |=A E(ϕ1UIϕ2). Because sn[d] �=c tn[d] and tn[d] |=B

tr(ϕ2) ∧ stable, we have by the induction hypothesis that sn[d] |=A ϕ2. Since time

delays are equivalent in the two runs, it follows that validρ(n, d, I). Further, for any
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pair (k ′, d ′) ∈ historyρ(n, d), it follows that there exists a (k, d ′) ∈ historyρ ′(j, d)

such that sk ′ [d ′] �=c tk[d ′]. By the induction hypothesis, it follows that sk ′ [d ′] |=A

ϕ1 because tk[d ′] |=B tr(ϕ1) and tk[d ′] |=B stable.

It then follows that any maximal run ρ ∈ MaxRuns(A, s0) starting with ρprefix wit-

nesses ϕ, thus s0 |=A E(ϕ1UIϕ2).

• ϕ = E(ϕ1 RIϕ2):

(⇒) : Assume that s0 |=A E(ϕ1 RIϕ2). By assumption, there exists a maximal run

(infinite or finite)

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ · · ·

in A that witnesses ϕ. This means that for all i ≥ 0 and all d ∈ R≥0 if validρ(i, d, I)

is true then either si[d] |=A ϕ2 or there exists a (k, d ′) ∈ historyρ(i, d) s.t. sk[d ′] |=A

ϕ1.

By Lemma 3.7 it follows that there exists a maximal run

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] t2
d2−→ t2[d2] · · · (1)

in B such that ρ �=c ρ ′ (see Definition 3.5).

We want to show that t0 |=B E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable)). For all i ≥ 0
and all d ∈ R≥0, if validρ ′(i, d, I) is true then either

– ti[d] is an intermediate state and then ti[d] |=B ¬stable, or

– ti[d] is a stable state. This means that ti[d] has a distinguished index in Equa-

tion 1. Let h be the index of ti[d] in Equation 1. It follows from the construc-

tion of ρ ′ that sh[d] �=c th[d]. There are two cases to consider.

∗ either sh[d] |=A ϕ2 and then by the induction hypothesis it follows that

th[d] |=B tr(ϕ2), or

∗ there exists (` ′, d ′) ∈ historyρ(h, d) such that s` ′ [d ′] |=A ϕ1. From the

construction of ρ ′ it follows that there exists a pair (`, d ′) ∈ historyρ ′(i, d)

such that s` ′ [d ′] �=c t`[d ′]. By the induction hypothesis, it follows that

t`[d
′] |=B tr(ϕ1) ∧ stable.

This in turn means that t0 |=B E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable)).
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(⇐) : Assume that t0 |=B E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable)). Hence there

exists a maximal run (infinite or finite) in B that witnesses tr(ϕ) and since B is a

delay-implies-stable, delay-preserves-stable and eventually-stable TTS, the run has the

following form:

ρ ′ = t0
d0−→ t0[d0] t1

d1−→ t1[d1] t2
d2−→ t2[d2] · · ·

This means that for all i ≥ 0 and all d ∈ R≥0 if validρ ′(i, d, I) is true then either

ti[d] |=B tr(ϕ2) ∨ ¬stable or there exists a (k, d ′) ∈ historyρ ′(i, d) s.t. tk[d ′] |=B

tr(ϕ1) ∧ stable.

By Lemma 3.7 it follows that there exists a maximal run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ · · ·

in A such that ρ �=c ρ ′.

We want to show that s0 |=A E(ϕ1 RIϕ2). For all i ≥ 0 and all d ∈ R≥0, we have

that si[d] �=c ti[d] and whenever validρ(i, d, I) is true then

– either ti[d] |=B tr(ϕ2) and then by the induction hypothesis we have that

si[d] |=A ϕ2, or

– there exists some (` ′, d ′) ∈ historyρ ′(j, d) where j is the index corresponding

to the occurrence of ti in the alternating sequence which unfolds the steps,

such that t` ′ [d ′] |=B tr(ϕ1) ∧ stable. From the construction of ρ, it follows

that there exists a pair (`, d ′) ∈ historyρ(i, d) such that s`[d ′] �=c t` ′ [d ′]. By the

induction hypothesis, it follows that s`[d ′] |=A ϕ1.

This in turn means that s0 |=A E(ϕ1 RIϕ2).

Observe that for the case of E(ϕ1UIϕ2) (dually for the case A(ϕ1 RIϕ2)), we used

Lemma 3.6 which requires only a one-by-many correspondence. On the other hand, to

prove the case of E(ϕ1 RIϕ2) (dually, A(ϕ1UIϕ2)) we used the eventually-stable prop-

erty and Lemma 3.7, which requires a complete one-by-many correspondence. Hence,

if the relation is only a one-by-many correspondence then the theorem works only for

the safety fragment.

Example 3.9. The reason we need a complete one-by-many correspondence to preserve

the full TCTL can be illustrated by considering systems A and C in Figure 5 where
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{(s0, u0), (s1, u1), (s2, u4), (s3, u7)} is a one-by-many correspondence between states in A

and C. In this particular example, s0 |=A A(pU[3,5] q) but u0 6|=B tr(A(pU[3,5] q)) =

A((p∨ ¬stable)U[3,5] (q∧ stable)). Both of the following maximal runs

ρ = u0
4.4
−→ u1 −→ u2

0
−→ u2 −→ u3

0≤
−→

ρ ′ = u0
4.4
−→ u1 −→ u5

0
−→ u5 −→ u6

0
−→ u6 −→ u6

0
−→ u6 −→ u6

0
−→ · · ·

in C are counter examples to tr(A(pU[3,5] q)).

3.2 Overall Methodology

We finish this section by recalling the steps needed in order to apply the framework to a

particular translation between two time-dependent systems. Assume that we designed

an algorithm that for a given system A constructs a system B together with the notion

of stable states in the system B.

1. Show that B is a delay-implies-stable and delay-preserves-stable TTS (and optionally

an eventually-stable TTS).

2. Define a proposition translation function trp : APA −→ APB.

3. Define a relationR and show that it fulfills conditions 1–6 of Definition 3.2.

Theorem 3.8 now allows us to conclude that the translation preserves the full TCTL (or

its safety fragment ifR is only a one-by-many correspondence).

4 Translation from Bounded TAPN to NTA

This section describes a translation from extended timed-arc Petri nets to networks of

timed automata (NTA). We start with the definitions of the models.

4.1 Extended Timed-Arc Petri Nets

We shall now define timed-arc Petri nets with invariants, inhibitor arcs and transport

arcs. Recall the set of time intervals I defined in Section 2. The predicates r ∈ I for

I ∈ I and r ∈ R≥0 are defined in the expected way. By IInv we denote the subset of I of

intervals containing 0 and call them invariant intervals.
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Definition 4.1. A timed-arc Petri net with invariants, inhibitor arcs and transport arcs

(TAPN) is a tuple N = (P, T, F, c, Ftarc, ctarc, Finhib, cinhib, ι) where

• P is a finite set of places,

• T is a finite set of transitions such that P ∩ T = ∅,

• F ⊆ (P × T) ∪ (T × P) is a set of normal arcs,

• c : F|P×T −→ I assigns time intervals to arcs from places to transitions,

• Ftarc ⊆ (P × T × P) is a set of transport arcs that satisfy for all (p, t, p ′) ∈ Ftarc and all

r ∈ P: (p, t, r) ∈ Ftarc ⇒ p ′ = r, (r, t, p ′) ∈ Ftarc ⇒ p = r, (p, t) /∈ F, and (t, p ′) /∈ F,

• ctarc : Ftarc −→ I is a function assigning time intervals to transport arcs,

• Finhib ⊆ P × T is a set of inhibitor arcs satisfying for all (p, t) ∈ Finhib and all p ′ ∈ P:

(p, t) /∈ F and (p, t, p ′) /∈ Ftarc,

• cinhib : Finhib −→ I assigns time intervals to inhibitor arcs, and

• ι : P −→ IInv is a function assigning invariants to places.

The preset of t ∈ T is defined as •t = {p ∈ P | (p, t) ∈ F ∨ ∃p ′ ∈ P . (p, t, p ′) ∈ Ftarc}

and the postset of t is t• = {p ∈ P | (t, p) ∈ F∨ ∃p ′ ∈ P . (p ′, t, p) ∈ Ftarc}.

A marking on a TAPN N is a function M : P −→ B(R≥0), where B(R≥0) is the set of

finite multisets of non-negative real numbers s.t. for every place p ∈ P and every token

x ∈M(p) it holds that x ∈ ι(p). The set of all markings onN is denoted byM(N). Note

that in TAPN each token has its own age. A marked TAPN is a pair (N,M0) where N is

a TAPN and M0 is an initial marking on N with all tokens of age 0. A transition t ∈ T is

enabled in markingM if

• for all p ∈ •t s.t. (p, t) ∈ F there is a token x of an age in the time interval on the

arc from p to t: ∀p ∈ •t s.t. (p, t) ∈ F . ∃x ∈M(p) . x ∈ c(p, t),

• for all p ∈ •t s.t. (p, t, p ′) ∈ Ftarc the age of the token x in p satisfies the invariant at

p ′: ∀p ∈ •t s.t. (p, t, p ′) ∈ Ftarc . ∃x ∈M(p) . x ∈ ctarc(p, t, p
′) ∧ x ∈ ι(p ′),

• for all p ∈ P s.t. (p, t) ∈ Finhib there is no token with age in the interval on the

inhibitor arc: ∀p ∈ P s.t. (p, t) ∈ Finhib . ¬∃x ∈M(p) . x ∈ cinhib(p, t).
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Definition 4.2 (Firing Rule). If t is enabled in a marking M then it can be fired producing a

markingM ′ defined asM ′(p) = (M(p) \ C−
t (p)) ∪ C+

t (p) for all p ∈ P where

• for every p ∈ P such that (p, t) ∈ F
C−
t (p) = {x} where x ∈M(p) and x ∈ c(p, t),

• for every p ∈ P such that (t, p) ∈ F
C+
t (p) = {0}, and

• for every p, p ′ ∈ P such that (p, t, p ′) ∈ Ftarc

C−
t (p) = {x} = C+

t (p ′) where x ∈M(p), x ∈ ctarc(p, t, p
′) and x ∈ ι(p ′), and

• in all other cases we set the above sets to ∅.

Note that there may be multiple choices forC−
t (p) andC+

t (p) and the minus and union operators

are interpreted over multisets.

Definition 4.3 (Time Delay). A time delay d ∈ R≥0 is allowed in a marking M if (x+ d) ∈
ι(p) for all p ∈ P and all x ∈M(p), i.e. by delaying d time units no tokens violate the invariants

on places. By delaying d time units we reach a marking M ′ defined as M ′(p) = {x + d | x ∈
M(p)} for all p ∈ P.

A TAPN N = (P, T, F, c, Ftarc, ctarc, Finhib, cinhib, ι) generates a TTS T(N) = (M(N),−→,
AP, µ) where states are markings on N, M −→ M ′ if by firing some transition t in

marking M we reach the marking M ′, and M d
−→ M ′ if by delaying d time units in

marking M we get to marking M ′. The set of atomic propositions AP and the labeling

function µ are defined as AP def
= {(p ./ n) | p ∈ P, n ∈ N0 and ./ ∈ {<,≤,=,≥, >}}

and µ(M)
def
= {(p ./ n) | |M(p)| ./ n and ./ ∈ {<,≤,=,≥, >}}. The idea here is that the

proposition (p ./ n) is true in a marking M if and only if the number of tokens in the

place p satisfies the constraint with respect to n.

4.2 Networks of Timed Automata

We shall now introduce networks of timed automata in the UPPAAL style [3]. UPPAAL

timed automata can perform handshake and broadcast communication and manipulate

finite data structures. We define only those features that are needed for our translation,

namely broadcast communication and integer variables (used only for counting). These

features are only a syntactic sugar and the expressive power is identical to the timed

automata model by Alur and Dill [1].
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Let C = {c1, c2, . . .} be a finite set of real-valued clocks. A clock constraint (or guard)

is a boolean expression defined by the abstract syntax: g1, g2 ::= true | c ./ n | g1 ∧ g2

where c ∈ C, n ∈ N0 and ./ ∈ {≤, <,==, >,≥}. For invariant clock constraints, we require

./ ∈ {≤, <}. The set of all clock constraints and invariant clock constraints over C are

denoted by G(C) and GInv(C), respectively.

A (clock) valuation is a function v : C → R≥0 that for every clock c ∈ C returns the

value of c. Let d ∈ R≥0. We define the valuation (v + d) after delaying d time units by

(v + d)(c) = v(c) + d for every c ∈ C. Let r ⊆ C. We define the valuation v[r] after the

clocks in r are reset by v[r](c) = 0 if c ∈ r and v[r](c) = v(c) if c ∈ Cr r. The satisfaction

relation v |= g (i.e. when a valuation satisfies a guard g) is defined in the natural way.

We will now define the concept of integer variables. Let X be a finite set of integer

variables. The set VE(X) of arithmetic expressions over X is given by the abstract syntax

expr ::= m | x + + | x − − where m ∈ Z and x ∈ X. The set VG(X) of variable

guards is a boolean combination of the predicates expr ./ expr where expr ∈ VE(X) and

./ ∈ {<,≤,==,≥, >}.

Variable assignments are expressions of the form x := expr where x ∈ X and expr ∈
VE(X). The set of all variables assignments over X is denoted by VA(X). A set A ⊆
VA(X) of variable assignments is called non-conflicting if for every x ∈ X whenever

(x := expr1) ∈ A and (x := expr2) ∈ A then expr1 = expr2.

Finally, we will define a variable valuation as a total mapping z : X −→ Z that for a

variable x ∈ X returns its current value. This mapping is naturally extended to all vari-

able expressions in VE(X). The satisfaction relation z |= φ is true if the variable guard

φ ∈ VG(X) evaluates to true under the valuation z. Let A be a finite non-conflicting set

of variable assignments and let z be a variable valuation. We define z[A] as a variable

valuation updated with the assignments from A by z[A](x) = z(expr) if (x := expr) ∈ A
and z[A](x) = z(x) otherwise.

We can now define the notion of a timed automaton.

Definition 4.4 (Timed Automaton). A timed automaton is a tuple (L, `0, Act, C, X,−→,
IC, IX) where L is a finite set of locations and `0 ∈ L is the initial location, Act is a finite set

of actions, C is a finite set of clocks, X is a finite set of integer variables, −→⊆ L × G(C) ×
VG(X)×Act× 2C× 2VA(X)×L is a finite set of edges s.t. whenever (`, g, φ, a, r,A, ` ′) ∈−→
then A is finite and non-conflicting set of variables assignments, IC : L → GInv(C) is a function

assigning clock invariants to locations, and IX : L → VG(X) is a function assigning variable

invariants to locations.
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We write ` g,φ,a,r,A
−−−−−−→ ` ′ instead of (`, g, φ, a, r,A, ` ′) ∈−→, where ` is a source loca-

tion, g is a clock guard, φ is a variable guard, a is an action, r is a set of clocks to be

reset, A is a finite non-conflicting set of variable assignments and ` ′ is a target location.

We can now define a network (parallel composition) of timed automata commu-

nicating via broadcast. Let Broad be a finite set of broadcast channel names and let τ

denote the internal action τ performed by a single component. The set of actions is

Act = {a

!

, a
?

| a ∈ Broad} ∪ {τ}. The intuition is that a

!

indicates initiation of broad-

casting on a channel a and all automata where the action a
?

is enabled must participate

in the broadcast communication.

Definition 4.5 (Network of Timed Automata). Let A1, A2, . . . , An for some n ∈ N be

timed automata over a fixed set of actions Act, clocks C and integer variables X such that Ai =

(Li, Act, C, X,−→i, I
i
C, I

i
X, `

i
0) for all 1 ≤ i ≤ n. A network of timed automata (NTA) is a

parallel composition A1 ‖ A2 ‖ . . . ‖ An.

A configuration of an NTA is a tuple (`1, `2, . . . , `n, z, v) where `i ∈ Li for all 1 ≤ i ≤ n,

z is a variable valuation over X and v is a clock valuation over C such that for every i,

1 ≤ i ≤ n, it holds that z |= IiX(`i) and v |= IiC(`i). The set of all configurations of a given

NTA A is denoted by Conf (A).

We can now define the precise semantics of networks of timed automata as TTSs.

Let A = A1 ‖ A2 ‖ . . . ‖ An, where Ai = (Li, Act, C, X,−→i, I
i
C, I

i
X, `

i
0) be an NTA. The

TTS generated by A is T(A) = (Conf (A),−→,AP, µ) such that the transition relation

consists of

• Ordinary transitions: (`1, . . . , `i, . . . , `n, z, v) −→ (`1, . . . , `
′
i, . . . , `n, z

′, v ′) if there is

an edge `i
g,φ,τ,r,A
−−−−−−→i `

′
i in the i’th automaton such that v |= g, z |= φ, v ′ = v[r],

z ′ = z[A], v ′ |= IiC(` ′i) ∧
∧
j 6=i I

j
C(`j) and z ′ |= IiX(` ′i) ∧

∧
j6=i I

j
X(`j),

• Broadcast synchronization transitions: (`1, . . . , `n, z, v) −→ (` ′1, . . . , `
′
n, z

′, v ′) if there

is a ∈ Broad and

– there exists an i, 1 ≤ i ≤ n, s.t. `i
gi,φi,a

!

,ri,Ai
−−−−−−−−−→i `

′
i is an edge in the i’th

automaton where v |= gi and z |= φi,

– let J be the set of all j, 1 ≤ j 6= i ≤ n, s.t. `j
gj,φj,a

?
,rj,Aj

−−−−−−−−−→j `
′
j in the j’th

automaton where v |= gj and z |= φj,

– for all j ∈ J we set ` ′j, Aj and rj according to the edge `j
gj,φj,a

?
,rj,Aj

−−−−−−−−−→j `
′
j

(note that there may be multiple edges to choose from),
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– for all j 6∈ J , 1 ≤ j 6= i ≤ n, we let ` ′j = `j, Aj = ∅ and rj = ∅,

– z ′ = (. . . ((. . . (((z[Ai])[A1])[A2]) . . . [Ai−1])[Ai+1]) . . . [An−1])[An] such that

z ′ |=
∧n
k=1 I

k
X(` ′k),

– v ′ = v[R] where R =
⋃n
k=1 rk such that v ′ |=

∧n
k=1 I

k
C(` ′k), and

• Delay transitions: (`1, . . . , `n, z, v)
d

−→ (`1, . . . , `n, z, v + d) if d ∈ R≥0 s.t. v + d |=∧n
i=1 Ii(`i).

We let AP def
= {(#` ./ m) | ` ∈ ∪ni=1Li,m ∈ N0 and ./ ∈ {<,≤,=,≥, >}}, and

µ : Conf (A) −→ 2AP is defined such that a proposition (#` ./ m) is true in a given

configuration if and only if the number of parallel components that are currently in the

location ` satisfies the constraint with respect tom.

The initial configuration is (`10, `
2
0, . . . , `

n
0 , z0, v0) where v0(c) = 0 for all c ∈ C. We

require that z0 satisfies the variable invariants of all initial locations.

Remark 4.6. Note that during a broadcast, the assignments on the edge of the sender are eval-

uated first, followed by the assignments of the receivers that are evaluated in the order from A1

to An.

4.3 The Translation

We will now present the translation from k-bounded TAPN (where the maximum num-

ber of tokens in every reachable marking is at most k) to NTA. For each token in the

net, we create a parallel component in the network of timed automata. Since we cannot

dynamically instantiate new timed automata, we need to have a constant number of

tokens in the net at all times. As we assume that the net is k-bounded, it is enough to

construct k automata to simulate each token. In each of these automaton there is a loca-

tion corresponding to each place in the net. Whenever a TA is in one of these locations,

it simulates a token in the corresponding place. Moreover, each automaton has a local

clock which represents the age of the token. All automata simulating the tokens have

the same structure, the only difference being their initial location, which corresponds

to the tokens’ initial position in the net. Because there may not always be exactly k to-

kens present during the execution of the net, we add a new location `capacity where the

automata representing currently unused tokens are waiting.

In addition to these “token” automata we create a single control automaton. The pur-

pose is to simulate the firing of transitions and to move tokens around via broadcasts
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Clocks:

c = 0.0

c1 = 1.2

c2 = 2.5

c3 = 3.3

c4 = 5.5

p0

#4

{1.2, 2.5, 3.3, 5.5}

p1
t

[0, 4]

`stable `(t) inv:

c == 0 ∧

count1 ≥ 1

ttest

!

c := 0

count1 == 1tfire

!

count1 := 0

Token automata template repeated four times for 1 ≤ i ≤ 4:

p0

`(tp0p1)

p1

0 ≤ ci ≤ 4 count1++

ttest
?

τ

count1−− count1 > 1

tfire
?

ci := 0

Figure 6: A simple TAPN and the translated NTA.

initiated by the control automaton. This automaton has a location `stable which acts as a

mutex in the sense that the control automaton moves out of this location once the simu-

lation of a transition begins and returns back once the simulation of the transition ends.

Moreover, each time the automaton is in `stable, the token automata in the composed NTA

correspond to a marking in the TAPN. We will first show how the translation works on

two examples.

Example 4.7. Figure 6 shows a simple TAPN with a single transition and four tokens of different

ages. The translated NTA consists of five automata, one control automaton (topmost automaton)

and four token automata, one for each token. Notice that in this example we have refrained from

drawing the `capacity location as it is not used.

The translated NTA works as follows. First, the control automaton broadcasts on the channel

ttest. Any token automaton with its clock in the interval [0, 4] is forced to participate in the

broadcast; in our case three token automata will participate. We use integer variables to count

the number of token automata that took part in the broadcast. Because the preset of t has size

one, we only need one counter variable count1. Once the token automata synchronized in the

broadcast, they move to the intermediate locations `(tp0p1) and during the update each increments

count1 by one; in our case the value of count1 will become three. This means that the invariant

on `(t) in the control automaton is satisfied. In other words, we know that there are enough

tokens with appropriate ages in the input places for t to fire. Notice that if there were not enough
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p3p1

p2

t

t ′

p4

inv: ≤ 3

[0, 4][1, 5]

[0, 2]

[0,∞)

3.02.8 1.4

`stable `(t)
inv:

c == 0 ∧

count1 ≥ 1 ∧

count2 ≥ 1 ∧

count3 == 0

`(t ′)inv:

c == 0 ∧

count1 ≥ 1

t ′test

!

c := 0

count1 == 1

t ′fire

!

count1 := 0

ttest

!

c := 0

count1 == 1 ∧

count2 == 1 ∧

count3 == 0

tfire

!

count1 := 0,

count2 := 0,

count3 := 0

Token automata template repeated three times for 1 ≤ i ≤ 3:

p3

0 ≤ ci ≤ 2
ttest

?

count3++

p1

`(tp1p4)

p4

ci ≤ 3

1 ≤
ci
≤ 3

t test
?

count1+
+

count1−−

τ

count1 > 1

tfire
?

p2

`(tp2`capacity
)

`capacity

0 ≤
ci
≤ 4

t test
?

count2+
+

count2−−
τcount2 >
1

tfire
?

ci := 0

`(t ′
p3
p4

)

t ′test
?

count1++

count1−−
τcount1 >
1

t ′fire
?

ci := 0

Figure 7: A TAPN and the translated NTA.

tokens in some of the input places, then the invariant on `(t) was not satisfied and the broadcast

could not take place at all. This is one of the crucial aspects to realize in order to see why this

translation preserves liveness properties.

Now the value of count1 is three and the control automaton may not broadcast on the tfire

channel yet since the guard ensures that this is only possible when exactly one token automaton

remains in its intermediate place. Therefore, we are forced to move two of the token automata

back to p0 via the τ-transitions. This is possible only as long as count1 is strictly greater than

one. Hence exactly one token automaton has to remain in its intermediate place before the control

automaton can broadcast on the tfire channel and finalize the simulation of firing t. Note that

due to the invariant c == 0 in the control automaton, no time delay is possible during the

simulation of the transition.
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After demonstrating the basic idea of the broadcast translation, let us discuss a

slightly more elaborate example using all of the features of the TAPN model.

Example 4.8. Consider the TAPN model in Figure 7 that uses transport arcs (the pair of arcs

with filled tips from p1 to p4) for moving tokens while preserving their ages, an inhibitor arc (the

arc with the circle tip) and an invariant in place p4. The NTA created by our algorithm is below

the net. As before, the template is repeated three times, once for each token, the only difference

being the initial location (p1, p2 and p3, respectively) and the name of the clock (c1, c2 and c3,

respectively).

We see that the control automaton has a test-fire loop for every transition in the TAPN model.

There are some special constructions worth mentioning. First of all, consider the inhibitor arc

from p3 to t. This arc is encoded using a self-loop participating in the ttest broadcast transition.

We use a counter variable to count the number of automata that take this edge. We simply encode

the requirement that there is no token in the interval [0, 2] by adding the invariant count3 == 0

on the location `(t).

A second observation is the guard on the edge from p1 to `(tp1p4). It is evident that this does

not match the interval [1, 5] located on the arc from p1 to t in the TAPN model. The guard

1 ≤ ci ≤ 3 is in fact the intersection of the interval [1, 5] and the invariant ≤ 3 on the place p4.

This is because the age of the token consumed in p1 will be preserved once moved to p4 and by

intersecting the intervals we avoid possible deadlocks. One may think that it is enough to add

the invariant ≤ 3 on the intermediate place, however, this may result in incorrect behavior. If

there were two tokens in p1 with ages 4 and 2, the broadcast on ttest would be blocked. This is

because invariants block the entire broadcast transition even if only a single automaton with a

satisfied guard cannot participate due to the violation of the invariant in its target location.

For our specific example, we need at least one token of age [1, 3] in p1, at least one token of

age [0, 4] in p2 and zero tokens of age [0, 2] in p3 in order for t to be enabled, which is precisely

encoded in the invariant on `(t). The reader may also notice that different transitions share

counter variables. The variable count1 is used in the simulation of both t and t ′ but they are

used in a non-conflicting way, in the sense that we are never simulating t and t ′ at the same

time. We also see that during the simulation of t ′ we do not take the invariant of the target

location into account since the arc from t ′ to p4 is a normal arc and produces a token of age zero

which always satisfies any invariant.

We shall now proceed to present the translation algorithm. For every transition twe

assume an a priori fixed set Pairing(t), motivated by [9], where
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Algorithm 1: Translation from k-bounded TAPN to NTA.

Input: A k-bounded TAPNN = (P, T, F, c, Ftarc, ctarc, Finhib, cinhib, ι) with a markingM0
Output: NTA PTA = A||A1||A2|| . . . ||Ak s.t. A = (L,Act,C,X,−→, IC, IX, `0) and

Ai = (Li,Act,C,X,−→i, IiC, IiX, `i0)

begin
for i := 1 to k do Li := P ∪ {`capacity}

L := {`stable};Act := {ttest

!

, ttest
?
, tfire

!

, tfire
?

| t ∈ T} ∪ {τ}

C := {c, c1, c2, . . . , ck}; X := {counti | 1 ≤ i ≤ NumVars(N)}

forall t ∈ T do
j := 0; varInvt := true; varGuardt := true

while |Pairing(t)| > 0 do
j := j+ 1; Remove some (p, I, p ′, type) from Pairing(t)

for i := 1 to k do
Li := Li ∪ {`(tp

p ′)}

Add p
g,true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−→i `(tpp ′) s.t. g := c ∈ I if type = normal else g := c ∈ I ∩ ι(p ′)

Add `(tp
p ′)

true, true, tfire
?
,R, ∅

−−−−−−−−−−−−→i p ′ s.t. R = {ci} if type = normal else R = ∅

Add `(tp
p ′)

true, countj>1,τ, ∅, countj−−
−−−−−−−−−−−−−−−−−−−→i p

varInvt := varInvt ∧ countj ≥ 1; varGuardt := varGuardt ∧ countj == 1

forall p ∈ P where (p, t) ∈ Finhib do

j := j+ 1; for i := 1 to k do Add p
ci∈cinhib(p,t), true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−−−−−−−−−→i p
varInvt := varInvt ∧ countj == 0; varGuardt := varGuardt ∧ countj == 0

L := L ∪ {`(t)}; Add `stable
true, true, ttest

!

, {c}, ∅
−−−−−−−−−−−−−→ `(t) and `(t)

true, varGuardt, tfire

!

, ∅, {counti:=0|1≤i≤j}
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ `stable

for i := 1 to k do

IiC(p) :=


ci ≤ a if p ∈ P and ι(p) = [0,a]

ci < b if p ∈ P and ι(p) = [0,b)

true if p ∈ Li \ P

IiX(p) := true for p ∈ Li

IC(p) :=

true if p = `stable

c ≤ 0 if p ∈ L \ {`stable}
IX(p) :=

varInvt if p = `(t) for t ∈ T

true if L \ {`(t) | t ∈ T}

i := 0; forall p ∈ P do forall Token ∈M0(p) do `i0 := p; i := i+ 1

for i := |M0| + 1 to k do `i0 := `capacity

`0 := `stable

end

Pairing(t) = {(p, I, p ′, tarc) | (p, t, p ′) ∈ Ftarc ∧ I = ctarc(p, t, p
′)} ∪

{(p1, I1, p
′
1,normal), . . . , (pm, Im, p ′m,normal) |

{p1, . . . , p`} = {p | (p, t) ∈ F}, {p ′1, . . . , p ′` ′} = {p | (t, p) ∈ F},

m = max(`, ` ′), Ii = c(pi, t) if 1 ≤ i ≤ ` else Ii = [0,∞),

pi = `capacity if ` < i ≤ m,p ′i = `capacity if ` ′ < i ≤ m}.

The set Pairing(t) simply pairs input and output places of t in order to fix the

paths on which tokens will travel when firing t. It also records the time interval

on the input arc and the type of the arc (normal for normal arcs and tarc for trans-
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port arcs). As an example, a possible pairing for the transition t in Figure 7 is

Pairing(t) = {(p1, [1, 5], p4, tarc), (p2, [0, 4], `capacity,normal)}. We also let NumVars(N)
def
=

maxt∈T (|Pairing(t)| + |{(p, t) | (p, t) ∈ Finhib}|) denote the maximum number of integer

variables needed in the translation. The translation is given in Algorithm 1. Note that it

works in polynomial time.

4.4 Translation Correctness

For notational convenience, we shall in this section sometimes label discrete transitions

with the names of the transitions by which they were performed.To prove the correct-

ness of this translation, we will follow the methodology described in Section 3.2. We

let (N,M0) be a marked k-bounded TAPN and let PTA be the NTA constructed by Algo-

rithm 1 with initial configuration s0.

We define the stable proposition as (#`stable = 1). Recall that (#`stable = 1) is true

whenever there is one TA in the `stable location. Thus (`, `1, `2, . . . , `k, z, v) |= (#`stable = 1)

if and only if ` = `stable.

We will first show that PTA possesses the three properties required by a complete

one-by-many correspondence. Recall that T(PTA) is the TTS generated by PTA.

Lemma 4.9. T(PTA) is a delay-implies-stable TTS.

Proof. Since all locations in the control automaton except `stable have the invariant c ≤ 0,
it follows that only 0 delays are possible in intermediate states.

Lemma 4.10. T(PTA) is a delay-preserves-stable TTS.

Proof. Since time delays do not change the current location of any automaton, it follows

that any time delay from a stable configuration will result in another stable configura-

tion. Thus, T(PTA) is a delay-preserves-stable TTS.

Lemma 4.11. T(PTA) is an eventually-stable TTS.

Proof. We must show that for any (finite or infinite) maximal discrete sequence of length

at least 1

ρ = s0 −→ s1 −→ s2 −→ s3 −→ · · ·
where s0 |= (#`stable = 1), there exists an i ≥ 1 such that si |= (#`stable = 1).
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Because s0 is stable, it follows that the control automaton is in location `stable in s0. We

will show that by construction any maximal discrete sequence starting in s0 contains a

prefix of the form

s0
ttest
−−→ s1 −→ s2 −→ · · · −→ sn−1

tfire
−−→ sn

such that n ≤ k+ 1 (we assume that the input net is k-bounded) and sn |= (#`stable = 1).

If any discrete transition is enabled in s0 then by construction, it is a broadcast tran-

sition on some channel ttest. Assume that s0
ttest
−→ s1. In s1 there are only two possibilities

for discrete transitions, which are mutually exclusive and by construction one of them

is always possible (due to the use of integer guards and invariants). Either there is a τ-

transition enabled in some token TA in case there are more than one token TA currently

in the same intermediate location `(tpp ′) or a broadcast on the tfire channel is enabled

when there is exactly one token TA in each of the required `(tpp ′) locations.

In the first case, the only possibility is to keep taking τ-transitions, which move the

extra token TA back to their original locations. This must continue until some configura-

tion sn−1 is reached where there are no more τ-transitions enabled. By construction, this

will eventually happen. It follows that tfire will be the only enabled discrete transition in

sn−1. In the worst case, all k TA participated in the ttest broadcast synchronization and

only a single TA is required to synchronize on the tfire broadcast channel. Thus, we must

move k− 1 TA back to their original locations.

In the second case, only the tfire broadcast synchronization is enabled and we have by

construction of PTA that the invariants on the target location of all tfire broadcast receivers

will be satisfied. Since synchronizing on the tfire channel brings the control automaton

back to `stable, it follows that sn |= (#`stable = 1). Hence, T(PTA) is an eventually-stable

TTS.

We now define the proposition translation function trp. A TAPN proposition (p ./

n) is translated into (#p ./ n).

Let us now define a correspondence relation R between markings and configura-

tions. Let M = {(p1, r1), (p2, r2), . . . , (pn, rn)} be a marking of N such that n ≤ k,

where (pi, ri) is a token located in the place pi with age ri ∈ R≥0. Further, let

s = (`, `1, `2, . . . , `k, z, v) be a configuration of PTA. We define R such that (M,s) ∈ R iff

there exists an injection h : {1, 2, . . . , n} −→ {1, 2, . . . , k} such that ` = `stable, `h(i) = pi

and v(ch(i)) = ri for all i where 1 ≤ i ≤ n, `j = `capacity for all j ∈ {1, 2, . . . , k} \ range(h)

and counti = 0 for all 1 ≤ i ≤ NumVars(N). Intuitively, if (M,s) ∈ R then for every
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token in M there is a TA where its location and clock valuation matches the token data

and vice versa.

We shall now prove thatR is a complete one-by-many correspondence.

Theorem 4.12. The relationR is a complete one-by-many correspondence.

Proof. Let (N,M0) be a marked k-bounded TAPN and PTA be the NTA generated by

Algorithm 1. We will show that R satisfies all requirements of Definition 3.2 and thus

is a complete one-by-many correspondence. From Lemma 4.9, Lemma 4.10 and Lemma

4.11 it follows that T(PTA) is a delay-implies-stable, delay-preserves-stable and eventually-

stable TTS.

Let M be a marking and let s be a configuration, such that MR s. We shall now

prove thatR satisfies conditions 1-6 of Definition 3.2 on page 10.

1. s |= (#`stable = 1) follows from the definition ofR.

2. From the definition ofR it follows thatM |= ℘ iff s |= trp(℘).

3. AssumeM −→ M ′. This means that there exists a transition t such thatM t
−→ M ′.

We must show that s  s ′ such that M ′R s ′. We will start by showing that ttest is

enabled in s. Since ttest is a broadcast channel, the first requirement is that the ttest

sender has to be enabled. There are no guards on the sender transition, so only the

invariant on `(t) may block the ttest sender. The second requirement is that every

possible receiver (i.e. any receiver whose guard is satisfied) must participate in the

broadcast synchronization. Due to the construction of PTA, there are no invariants

on the intermediate places `(tpp ′). Thus, any receiver with a satisfied guard can

participate in the broadcast synchronization. By the fact that MR s, it follows

that enough TA will participate in the broadcast synchronization to satisfy the

invariant on `(t). Thus, s ttest
−→.

Since s |= (#`stable = 1) and s ttest
−→ we have by Lemma 4.11 that

s
ttest
−→ s1 −→ s2 −→ · · · −→ sn = s ′

such that si 6|= (#`stable = 1) for 1 ≤ i < n and sn |= (#`stable = 1). By construction,

this sequence has the form

s
ttest
−→ s1 −→ s2 −→ · · · −→ sn−1

tfire
−→ sn
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where n ≤ k + 1. Thus, since M t
−→ M ′ we can use the sequence above and

Lemma 4.9 to get the sequence s  s ′. Observe that if |•t| > |t•| then |•t| − |t•|

token TA will be moved to `capacity after simulating t from s and if |•t| < |t•| then

|t•| − |•t| token TA will be moved out of `capacity after simulating t from s. Since

MR s, we getM ′R s ′ by matching the changes inMwhen firing t to the changes

in swhen executing the sequence above.

4.,6. Time delays can only be restricted by invariants. By Lemma 4.9 and the fact that

the invariant on place p in N is carried over to location p in PTA, we have that it is

always possible to do the same time delays inM and s. By Lemma 4.10, it follows

clearly that ifM d
−→ M ′ then s d

−→ s ′ andM ′R s ′ and vice versa.

5. Assume s s ′. This implies that

s −→ s1
0

−→ s1 −→ s2
0

−→ s2 −→ · · · −→ sn−1
0

−→ sn−1 −→ sn = s ′

such that si 6|= (#`stable = 1) for 1 ≤ i < n and sn |= (#`stable = 1). By construction

of PTA, we have that n ≤ k+ 1 and that this sequence must be of the form (leaving

out 0 delays)

s
ttest
−→ s1 −→ s2 −→ · · · −→ sn−1

tfire
−→ sn.

Since s ttest
−→ s1 we know that the invariant on `(t) is satisfiable. By the construction

of PTA, this in turn means that there are enough token automata that can synchro-

nize on ttest in such a way that for each input place p ∈ •t there is at least one

automaton whose current location is p and the clocks of these automata satisfy

the guards on the ttest transitions. Further, for each place p ′ such that there is an

inhibitor arc from p ′ to t, there is no automaton in location p ′ with a clock satisfy-

ing the guard on ttest. This is exactly what is needed to fire t from M, and because

MR s, thenM t
−→ M ′.

If any token TA moves out of `capacity when s  s ′ then additional tokens will be

produced when firing transition t from M and if any token TA moves into `capacity

when s  s ′ then t will consume more tokens than it produces when fired from

M. SinceMR s, we clearly getM ′R s ′.
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5 Conclusion

We have introduced a general framework for arguing when a translation between two

timed transition systems preserves TCTL model checking. The framework generalizes

earlier translations like [9] and [10] that dealt with concrete models. Apart from [9, 10],

the framework is applicable also to other translations like [8, 11, 13, 17]. We have further

described a novel reduction from bounded timed-arc Petri nets with transport/inhibitor

arcs and invariants on places to networks of timed automata in the UPPAAL style to

which the framework is applicable. Compared to earlier translations, we considered

a more general class of nets and showed that also liveness TCTL properties are pre-

served. The translation works in polynomial time and it has been implemented in the

verification tool TAPAAL [9].

Acknowledgements. We would like to thank Alexandre David and Kenneth Y. Jør-

gensen for their comments and help with the implementation issues.
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