Skip to main content

Walking Pattern Generator Using an Evolutionary Central Pattern Generator

  • Conference paper
Trends in Intelligent Robotics (FIRA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 103))

Included in the following conference series:

Abstract

For the generation of locomotion, such as walking, running or swimming, vertebrate and invertebrate animals use the Central PatternGenerator (CPG). In this paper, a walking pattern generator is proposed using an evolutionary optimized CPG. Sensory feedback pathways in CPG are proposed, which uses Force Sensing Resistor (FSR) signals. For the optimization of CPG parameters, quantuminspired evolutionary algorithm is employed. Walking pattern generator is developed to generate trajectories of ankles and hip using CPG. The effectiveness of the proposed scheme is demonstrated by simulations and real experiments using a Webot dynamic simulator and a small sized humanoid robot, HSR-IX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: Proc. IEEE Int. Conf. on Robotics and Automations, Leuven, Belgium, pp. 1321–1326 (May 1998)

    Google Scholar 

  2. Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.-O., Takanishi, A.: Development of a new humanoid robot WABIAN-2. In: Proc. IEEE Int. Conf. on Robotics and Automations,Orlando, Florida, pp. 76–81 (May 2006)

    Google Scholar 

  3. Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. In: Proc. IEEE-RAS Int. Conf. On Humanoid Robots, Tsukuba, Japan, pp. 50–55 (December 2005)

    Google Scholar 

  4. Park, I.-W., Kim, J.-Y., Lee, J., Oh, J.-H.: Online free walking trajectory generation for biped humanoid robot KHR-3(HUBO). In: Proc. IEEE Int. Conf. on Robotics and Automations, Orlando, Florida, pp. 1231–1236 (May 2006)

    Google Scholar 

  5. Kim, J.-H., Lee, K.-H., Kim, Y.-D., Lee, B.-J., Yoo, J.-K.: The origin of artificial species: Humanoid robot HanSaRam. In: Proc. 2nd International Conference on HNICEM 2005, Manila, Philippines (March 2005)

    Google Scholar 

  6. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: A Realtime Pattern Generator for Biped Walking. In: Proc. IEEE Int. Conf. on Robotics and Automation, Washington, DC, pp. 31–37 (May 2002)

    Google Scholar 

  7. Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation. IEEE Transaction on Robotics 24(4), 917–925 (2008)

    Article  Google Scholar 

  8. Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation. IEEE Transactions on Robotics 24(4), 917–923 (2008)

    Article  Google Scholar 

  9. Grillner, S., et al.: Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in NeuroSciences 18(6), 270–279 (1995)

    Article  Google Scholar 

  10. Taga, G.: Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D: Nonlinear Phenomena 75(1.3), 190–208 (1994)

    Article  Google Scholar 

  11. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG Sensory Feedback with Policy Gradient for Biped Locomotion for a Full-body Humanoid. In: Proc. The 20th National Conference on Artificial Intelligence, vol. 3, pp. 1267–1273 (2005)

    Google Scholar 

  12. Hase, K., Yamazaki, N.: Computer simulation of the ontogeny of biped walking. Anthropological Science 106(4), 327–347 (1998)

    Article  Google Scholar 

  13. Mori, T., Nakamura, Y., Sato, M., Ishii, S.: Reinforcement learning for a cpg-driven biped robot. In: Nineteenth National Conference on Artificial Intelligence, pp. 623–630 (2004)

    Google Scholar 

  14. Han, K.-H., Kim, J.-H.: Genetic quantum algorithm and its application to combinatorial optimization problem. In: Proc. 2000 Congress on Evolutionary Computation, vol. 2, pp. 1354–1360. IEEE Press, Piscataway (July 2000)

    Google Scholar 

  15. Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, CS., Yoo, JK., Hong, YD., Lee, KB., Ryu, SJ., Kim, JH. (2010). Walking Pattern Generator Using an Evolutionary Central Pattern Generator. In: Vadakkepat, P., et al. Trends in Intelligent Robotics. FIRA 2010. Communications in Computer and Information Science, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15810-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15810-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15809-4

  • Online ISBN: 978-3-642-15810-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics