Skip to main content

Color Segmentation Using Self-Organizing Feature Maps (SOFMs) Defined Upon Color and Spatial Image Space

  • Conference paper
Book cover Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

A novel approach to color image segmentation is proposed and formulated in this paper. Conventional color segmentation methods apply SOFMs – among other techniques – as a first stage clustering in hierarchical or hybrid schemes in order to achieve color reduction and enhance robustness against noise. 2-D SOFMs defined upon 3-D color space are usually employed to render the distribution of colors of an image without taking into consideration the spatial correlation of color vectors throughout various regions of the image. Clustering color vectors pertaining to segments of an image is carried out in a consequent stage via unsupervised or supervised learning. A SOFM defined upon the 2-D image plane, which is viewed as a spatial input space, as well as the output 3-D color space is proposed. Two different initialization schemes are performed, i.e. uniform distribution of the weights in 2-D input space in an ordered fashion so that information regarding local correlation of the color vectors is preserved and jointly uniform distribution of the weights in both 3-D color space and 2-D input space. A second stage of Density-Based Clustering of the nodes of the SOM (utilizing an ad hoc modification of the DBSCAN algorithm) is employed in order to facilitate the segmentation of the color image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otsu, N.: A Threshold Selection Method From Gray-Level Histograms. IEEE Trans. Syst. Man Cybernet. 9(1) (1979)

    Google Scholar 

  2. Kerre, E.E., Nachtegael, M. (eds.): Fuzzy Techniques in Image Processing. Series Studies in Fuzziness and Soft Computing, vol. 52. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  3. Tizhoosh, H.R.: Fuzzy Image Processing: Introduction in Theory and Applications. Springer, Heidelberg (1997)

    Google Scholar 

  4. Canny, J.R.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Adams, R., Bischof, L.: Seeded Region Growing. IEEE Trans. Pattern Analysis and Machine Intelligence 16(6), 641–647 (1994)

    Article  Google Scholar 

  6. Beveridge, J.R., et al.: Segmenting Images Using Localizing Histograms and Region Merging. Int’l J. Compt. Vision 2 (1989)

    Google Scholar 

  7. McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  8. Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Comm. Pure Appl. Math. 42, 577–684 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood From Incomplete Data Via The EM Algorithm. Journal of Royal Statistical Society, Series B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Osher, S., Sethian, J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brox, T., Weickert, J.: Level Set Based Image Segmentation with Multiple Regions. In: Pattern Recognition, 415–423 (2004)

    Google Scholar 

  13. Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Trans. Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  14. Serra, J.: Image Analysis and Mathematical Morphology. Academic, New York (1982)

    MATH  Google Scholar 

  15. Stephanakis, I.M., Anastassopoulos, G.K.: Watershed Segmentation of Medical Images With On-The-Fly Seed Generation and Region Merging. WSEAS Transactions on Information Science and Applications 1(1), 303–308 (2004)

    Google Scholar 

  16. Bounsaythip, C., Alander, J.T.: Genetic Algorithms in Image Processing - A Review. In: Proc. Of the 3rd Nordic Workshop on Genetic Algorithms and their Applications, Metsatalo, Univ. of Helsinki, Helsinki, Finland, pp. 173–192 (1997)

    Google Scholar 

  17. Sturm, P., Priese, L.: Properties of a Three-Dimensional Island Hierarchy for Segmentation of 3-D Images with the Color Structure Code. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 274–281. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Robertson, A.R.: The CIE 1976 Color-difference Formulae. Color Research and Applications 2, 7–11 (1977)

    Google Scholar 

  19. Tominaga, S.: Color Classification of Natural Color Images. Color Research and Applications 17, 230–239 (1992)

    Article  Google Scholar 

  20. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences. Springer, Berlin (1995)

    Google Scholar 

  21. Yin, H.: ViSOM – A Novel Method for Multivariate Data Projection and Structure Visualization. IEEE Trans. Neural Networks 13(1), 237–243 (2002)

    Article  Google Scholar 

  22. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  23. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Base Algorithm for Discovering Clusters in Large Spatial Databases With Noises. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  24. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: Clustering for Mining in Large Spatial Databases. KI-Journal 1, 18–24 (1998)

    Google Scholar 

  25. Ye, Q., Gao, W., Zeng, W.: Color Image Segmentation Using Density-Based Clustering. In: Proceedings ICASSP, Hong Kong, Vol.3, pp. 345–348 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stephanakis, I.M., Anastassopoulos, G.C., Iliadis, L.S. (2010). Color Segmentation Using Self-Organizing Feature Maps (SOFMs) Defined Upon Color and Spatial Image Space. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics