Skip to main content

Support Vector Machines-Kernel Algorithms for the Estimation of the Water Supply in Cyprus

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Abstract

This research effort aimed in the estimation of the water supply for the case of “Germasogeia” mountainous watersheds in Cyprus. The actual target was the development of an ε-Regression Support Vector Machine (SVMR) system with five input parameters. The 5-Fold Cross Validation method was applied in order to produce a more representative training data set. The fuzzy-weighted SVR combined with a fuzzy partition approach was employed in order to enhance the quality of the results and to offer an optimization approach. The final models that were produced have proven to perform with an error of very low magnitude in the testing phase when first time seen data were used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, pp. 144–152. ACM, New York (1992)

    Chapter  Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM A Library for Support Vector Machines (2009), http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  3. Chuang, C.: Fuzzy Weighted Support Vector Regression with a Fuzzy Partition. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 37(3) (2007)

    Google Scholar 

  4. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Elsevier Science, USA (2005)

    MATH  Google Scholar 

  5. Davy, M.: An Introduction to Support Vector Machines and other kernel algorithms. In: Proc. of the 9th Engineering Applications of Neural Networks Conference, Lille, France (2005)

    Google Scholar 

  6. Iliadis, L., Maris, F.: An Artificial Neural Network model for Mountainous Water-Resources Management: The case of Cyprus Mountainous Watersheds Environmental Modeling and Software 22(7), 1066–1072 (2007)

    Google Scholar 

  7. Iliadis, L., Spartalis, S., Tachos, S.: Kernel methods and neural networks for water resources management. Journal Environmental Engineering and Management 9(2) (2010)

    Google Scholar 

  8. Kecman, V.: Learning and Soft Computing. MIT Press, London (2001)

    MATH  Google Scholar 

  9. Kotoulas, D.: Hydrology and Hydraulics of Natural Environment. Aristotle University of Thessaloniki, Greece (2001)

    Google Scholar 

  10. Lin, J.Y., Cheng, C.T., Chau, K.W.: Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal 51, 599–612 (2006) (in French)

    Article  Google Scholar 

  11. Lobbrecht, A.H., Solomatine, D.P.: Control of water levels in polder areas using neural networks and fuzzy adaptive systems. In: Savic, D., Walters, G.A. (eds.) Water Industry Systems: Modelling and Optimization Applications, vol. 1, pp. 509–518. Research Studies Press, Baldock (1999)

    Google Scholar 

  12. Loukas, A.: Class Notes of Laboratory of Hydrology and Water Resources Systems Analysis (2009)

    Google Scholar 

  13. Quick, M.C., Pipes, A.: U.B.C. watershed model. Hydrological Sciences-Bulletin-des Sciences Hydrologiques XXII, 1 3/1977 (1977)

    Google Scholar 

  14. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation. Arizona State University, USA (2008), http://www.public.asu.edu/~ltang9/papers/ency-cross-validation.pdf

    Google Scholar 

  15. Schnitman, L., Felippe de Souza, J.A.M., Yoneyama, T.: Takagi-Sugeno-Kang Fuzzy Structures in Dynamic System Modeling Issues of Linear Takagi-Sugeno Fuzzy Models. IEEE. Trans. on Fuzzy Systems 6(3), 402–410 (1998)

    Article  Google Scholar 

  16. Vapnik, V.N., Golowich, S., Smola, A.: Support Vector method for function approximation regression estimation and signal processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 281–287. MIT Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maris, F. et al. (2010). Support Vector Machines-Kernel Algorithms for the Estimation of the Water Supply in Cyprus. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics