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Abstract. In this paper, a novel unsupervised neural network combin-
ing elements from Adaptive Resonance Theory and topology learning
neural networks, in particular the Self-Organising Incremental Neural
Network, is introduced. It enables stable on-line clustering of stationary
and non-stationary input data. In addition, two representations reflecting
different levels of detail are learnt simultaneously. Furthermore, the net-
work is designed in such a way that its sensitivity to noise is diminished,
which renders it suitable for the application to real-world problems.
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1 Introduction

For numerous tasks, the traditional off-line learning approach with separate
training, validation, and test phases is not sufficient. The diagnosis of genetic
abnormalities [1], interactive teaching of a humanoid robot [2], and the subcel-
lular localisation of proteins [3] constitute some examples for such problems. As
a consequence, incremental on-line learning has become more popular in recent
years, since such machine learning techniques are required to gradually complete
knowledge or adapt to non-stationary input distributions.

In this paper, a novel neural network is introduced which combines incre-
mental and fast on-line clustering with topology learning. Based on its origins in
Adaptive Resonance Theory (ART) networks, it is called TopoART. Thanks to
these origins, TopoART creates stable representations while retaining its ability
to learn new data. In order to render TopoART more suitable for real-world
applications, it was designed in such a way that it becomes insensitive to noise.
Furthermore, TopoART creates a hierarchical representation of the input distri-
bution reflecting different levels of detail.

In Sect. 2, related learning methods are outlined. Afterwards, details of the
TopoART algorithm are introduced in Sect. 3. Then, clustering results for artifi-
cial and real-world data are presented in Sect. 4. Here, the ability of TopoART to
cope with noise and to incrementally learn new input data from non-stationary
distributions will be demonstrated as well. Finally, Sect. 5 summarises the most
important points of this paper.
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2 Related Work

The k-means algorithm [4], which constitutes a very well-known unsupervised
learning technique, determines a partitioning of an input distribution into k re-
gions or rather clusters. Each cluster is represented by a reference vector. The
determination of the number of required clusters constitutes a crucial problem.
For this reason, the Linde-Buzo-Gray (LBG) algorithm [5] was developed. Based
on a fixed training set, it successively computes sets of reference vectors of in-
creasing size until a stopping criterion is fulfilled. The topological structure of
the input data is not considered by this algorithm.

In 1982, the Self-Organising Feature Maps (SOFMs) [6], which map input
data to a lattice of neurons, were introduced. Here, the reference vectors are
encoded by the weights of the neurons. The lattice possesses a predefined topo-
logical structure, the dimension of which is usually lower or equal to the dimen-
sion of the input space. If the input distribution is not known in advance, an
appropriate lattice structure is very difficult to choose. This problem was solved
by the Growing Neural Gas (GNG) algorithm [7]. It allows for the incremen-
tal incorporation of new neurons and the learning of the input distribution’s
topology by adding and deleting edges between different neurons. But the rep-
resentation of the input distribution is not stable: A continuing presentation of
input data, even if they have already been learnt, results in a continuing adapta-
tion of the neurons’ weights, i.e. the reference vectors, and the network topology.
As a consequence, already acquired knowledge gets lost due to further training.
This problem has been termed the stability-plasticity dilemma [8]. It occurs, for
instance, if the input distribution is complex. But small changes of the input
probabilities or the sequencing of the input data may cause a similar effect.

Adaptive Resonance Theory (ART) networks have been proposed as a so-
lution to the stability-plasticity dilemma [8]. These networks learn top-down
expectations which are matched with bottom-up input. The expectations, which
are called categories, summarise sets of input data to clusters. Depending on the
type of ART network, the categories exhibit different shapes such as a hyper-
spherical shape [9], an elliptical shape [10], or a rectangular shape [11]. Besides
enabling ART networks to create stable and plastic representations, the cat-
egories allow for an easy novelty detection. But in contrast to SOFMs and GNG,
ART networks do not capture the topology of the input data. Furthermore, their
ability of stable learning leads to an increased sensitivity to noise.

In 2006, the Self-Organising Incremental Neural Network (SOINN) was intro-
duced [12]. Similar to GNG, SOINN clusters input data by incrementally adding
neurons, the weights of which represent reference vectors, and representing the
topology by edges between nodes. But it has several additional features: Firstly,
SOINN has a two-layered structure representing the input distribution at differ-
ent levels of detail. Additionally, this structure decreases the sensitivity to noise.
The second layer is trained after the training of the first layer has been finished.
Secondly, novelty detection can be performed based on an adaptive threshold.
Thirdly, each neuron has an individual learning rate which decays if the amount
of input samples it represents increases. By this means, a more stable represen-
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tation is achieved. But the weights of the neurons do not stabilise completely.
Furthermore, a high number of relevant parameters (8 parameters per layer) has
to be selected in order to apply SOINN.

The Enhanced Self-Organising Incremental Neural Network (ESOINN) [13]
solves some of the above mentioned problems: By removing the second layer and
one condition for the insertion of new neurons, the number of required param-
eters is considerably decreased (4 in total). Furthermore, the whole network can
be trained on-line. But similar to SOINN, the weights do not stabilise completely.
Moreover, ESOINN loses the ability to create hierarchical representations.

TopoART combines the advantages of ART and topology learning networks.
From its ART ancestors, it inherits the ability of fast and stable on-line learn-
ing using expectations (categories). But the categories are extended by edges
reflecting the topology of the input distribution enabling the formation of arbi-
trarily shaped clusters. In addition, it adopts the ability to represent input data
at different levels of detail from SOINN; but unlike SOINN, TopoART learns
both levels simultaneously.

3 The TopoART Algorithm

The basic structure and the computational framework of TopoART are strongly
related to Fuzzy Art [11] – a very efficient ART network utilising rectangular
categories. Fuzzy ART constitutes a three-layered neural network (see Fig. 1).
Input is presented to the initial layer F0. Here, the input vectors x(t) are encoded
using complement coding. The encoded input vectors are denoted by xF1(t). As
a consequence of the usage of complement coding, each component xi(t) of an
input vector x(t) has to lie in the interval [0, 1].

x(t) =
[
x1(t), . . . , xd(t)

]T
(1)

xF1(t) =
[
x1(t), . . . , xd(t), 1− x1(t), . . . , 1− xd(t)

]T
(2)

The encoded input vectors xF1(t) are transmitted to the comparison layer
F1. From here, they activate the neurons of the representation layer F2:

zF2
i (t) =

∣∣xF1(t) ∧ wF2
i (t)

∣∣
1

α+
∣∣wF2

i (t)
∣∣
1

(3)

The activation zF2
i (t) (choice function) constitutes a measure for the similar-

ity between xF1(t) and the category represented by neuron i. | · |1 and ∧ denote
the city block norm and a component-wise minimum operation, respectively.
The parameter α must be set slightly higher than zero. The choice of the actual
value is not crucial.1 In general, zF2

i (t) prefers small categories to large ones.
After all F2 neurons have been activated, the best-matching neuron bm, i.e.

the neuron with the highest activation, is selected. But the category represented

1 α was set to 0.001 for all experiments presented in this paper.
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by its weights wF2
bm(t) is only allowed to grow and enclose a presented input

vector if resonance occurs, i.e. if the match function (4) is fulfilled.∣∣xF1(t) ∧ wF2
bm(t)

∣∣
1∣∣xF1(t)

∣∣
1

≥ ρ (4)

In case of resonance, the weights wF2
bm of the chosen neuron are adapted and

the output y(t) of the network is set:

wF2
bm(t+ 1) = β

(
xF1(t) ∧ wF2

bm(t)
)

+ (1− β)wF2
bm(t) (5)

yi(t) =

{
0 if i 6= bm
1 if i = bm

(6)

β denotes the learning rate. Setting β to 1, trains the network in fast-learning
mode; i.e., each learnt input is enclosed by the category that matches it best.
As the categories cannot shrink according to (5), the formed representations
are stable. The current size Si(t) of a category can be derived from the weights
wF2

i (t) of the corresponding neuron i:

Si(t) =

d∑
j=1

∣∣∣(1− wF2
i,d+j(t)

)
− wF2

i,j (t)
∣∣∣ (7)

The growth of the categories is limited by the vigilance parameter ρ and the
dimension of the input space d, which determine the maximum category size
Smax.

Smax = d(1− ρ) (8)

Assuming a neuron was not able to fulfil (4), its activation is reset. Then a
new best-matching node is chosen. If no suitable best-matching neuron is found,
a new neuron representing x(t) is incorporated and resonance occurs.

TopoART is composed of two Fuzzy ART-like components (TopoART a
and TopoART b) using a common F0 layer performing complement coding (see
Fig. 1). But in contrast to Fuzzy ART, each F2 neuron i of both components
has a counter denoted by nai and nbi , respectively, which counts the number
of input samples it has learnt. An encoded input vector is only propagated to
TopoART b if resonance of TopoART a occurred and nabm≥φ. Every τ learning
cycles, all neurons with a counter smaller than φ are removed. Therefore, such
neurons are called node candidates. Once ni equals or surpasses φ, the corres-
ponding neuron cannot be removed anymore; i.e., it becomes a permanent node.
By means of this procedure, the network becomes insensitive to noise but is still
able to learn stable representations.

In order to allow for fast on-line learning, the learning rate βbm used for
adapting the weights of the best-matching neuron is always set to 1 yielding:

wF2
bm(t+ 1) = xF1(t) ∧ wF2

bm(t) (9)
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Fuzzy ART TopoART

Fig. 1. Comparison of Fuzzy ART and TopoART. TopoART consists of two Fuzzy
ART-like components using the same input layer. Furthermore, the F2 nodes of
TopoART are connected by edges defining a topological structure. In order to reduce
its sensitivity to noise, TopoART evaluates the benefit of neurons (node candidates)
before they are fully incorporated.

Rather than only determining the best-matching neuron bm and modifying
its weights, the neuron sbm with the second highest activation that fulfils (4)
is adapted as well (10). Here, βsbm should be chosen smaller than 1, as neuron
sbm – in contrast to neuron bm – is only intended to partly learn xF1(t).

wF2
sbm(t+ 1) = βsbm

(
xF1(t) ∧ wF2

sbm(t)
)

+ (1− βsbm)wF2
sbm(t) (10)

As a result of this procedure, the insensitivity to noise is further increased,
since the categories are more likely to grow in relevant areas of the input space.

If φ=1 and βsbm=0, inserted nodes immediately become permanent, all input
vectors are propagated to TopoART b, and only the weights of the best-matching
neuron bm are adapted during a learning cycle. In this case, the categories of
TopoART a and TopoART b equal the categories of Fuzzy ART networks trained
in fast-learning mode with the vigilance parameters ρa and ρb, respectively.

In order to enable TopoART to learn topologies, a lateral connection or rather
edge between the neurons bm and sbm is created, if a second best-matching
neuron can be found. These edges define a topological structure. They are not
used for activating other neurons. If the neurons bm and sbm have already been
connected by an edge, it remains unchanged, since the edges do not possess an
age parameter in contrast to the edges in ESOINN, SOINN, and GNG. They are
only removed, if one of the adjacent neurons is removed. As a consequence, edges
between permanent nodes are stable. But new edges can still be created. This
mechanism constitutes an extension of Fuzzy ART’s solution to the stability-
plasticity dilemma, which enables the representation of new input while retaining
the already learnt representations.

In order to refine the representation of TopoART a by means of TopoART b,
ρb should be higher than ρa. Within the scope of this paper, ρb is determined
according to (11), which diminishes the maximum category size Smax by 50%.
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ρb =
1

2
(ρa + 1) (11)

In this way, TopoART b learns a more detailed representation which is less
influenced by noise. Connections between categories of TopoART a can be split
in TopoART b resulting in a hierarchical representation of the input data.

The output y(t) of both TopoART components can be computed in a simi-
lar way as with Fuzzy ART. In addition, the connected components or rather
clusters are labelled (cf. [12] and [13]): Starting from an unlabelled neuron, all
connected neurons receive a specific label. Then, a new unlabelled neuron is
searched for. This process is repeated until no unlabelled neurons remain. The
vector c(t) provides the cluster labels of all F2 neurons. For reasons of stability,
only permanent nodes are considered for the computation of y(t) and c(t). By
this, the clusters can grow and fuse, but they are prevented from shrinking.

4 Results

TopoART was evaluated using three different types of data: (i) stationary artifi-
cial data, (ii) non-stationary artificial data, and (iii) stationary real-world data.
As stationary artificial input distribution, a dataset copying the one used for the
evaluation of SOINN [12] was chosen

(
see Fig. 2(a)

)
. It comprises two Gaussian

components (A and B), two ring-shaped components (C and D), and a sinus-
oidal component (E) composed from three subcomponents (E1, E2, and E3).
Each component encompasses 18,000 individual samples. Additionally, the in-
put distribution includes uniformly distributed random noise amounting to 10%
of the total sample number (10,000 samples).
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SOINN layer 1: λ=400, age
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6
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SOINN layer 2: λ=100, age
dead

=100, c=0.05

(a) (b) (c)

Fig. 2. Input distribution and clustering results of SOINN. The input distribution (a)
is successfully clustered by SOINN. Here, the representation is refined from layer 1 (b)
to layer 2 (c). Reference vectors belonging to the same cluster share a common colour
and symbol.

This dataset was used to train a SOINN system. The results of both of its
layers are depicted in Fig. 2(b) and Fig. 2(c), respectively. The values for λ,
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agedead, and c were selected in such a way that results comparable to those
published in [12] were achieved. In contrast, the settings for α1, α2, α3, β, and
γ were directly adopted from [12] for both layers

(
1
6 , 1

4 , 1
4 , 2

3 , 3
4

)
.

Figure 2 shows that SOINN was able to create a hierarchical representation
of the input distribution: The two clusters in layer 1 were refined in layer 2 which
distinguishes five clusters. Additionally, the second layer reduced the influence
of noise.

The dataset shown in Fig. 2(a) cannot be used directly to train a Fuzzy ART
or a TopoART network. Rather, all samples have to be scaled to the interval
[0, 1] so as to render them compatible with complement coding.

As Fuzzy ART constitutes the basis of TopoART, it was analysed first. For
comparison reasons, β was set to 1 like βbm in TopoART. ρ was selected in such
a way as to roughly fit the thickness of the elliptic and sinusoidal components of
the input distribution. As this network does not possess any means to decrease
the sensitivity to noise, virtually the whole input space was covered by categories(
see Fig. 3(a)

)
.
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TopoART a: β
sbm
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TopoART b: β
sbm
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b
=0.96, τ=100, φ=5

(a) (b) (c)

Fig. 3. Comparison of the ART networks’ results. Fuzzy ART (a) learnt rectangular
categories covering virtually the complete input space. In contrast, TopoART learnt
a noise insensitive representation in which the categories have been summarised to
arbitrarily shaped clusters. The representation of TopoART a (b) was further refined
by TopoART b (c). Here, all categories of an individual cluster are painted with the
same colour.

In contrast to Fuzzy ART, both TopoART components created represen-
tations reflecting the relevant regions of the input distribution very well

(
see

Figs. 3(b) and 3(c)
)
. This is remarkable since the value of ρa was equal to the

value of the vigilance parameter ρ of the Fuzzy ART network. Similar to the
layers of SOINN, the representation of TopoART was refined from TopoART a
to TopoART b: While TopoART a comprises two clusters, TopoART b distin-
guishes five clusters corresponding to the five components of the input distribu-
tion. By virtue of the filtering of samples by TopoART a and due to the fact that
ρb is higher than ρa

(
cf. (11)

)
, the categories of TopoART b reflect the input

distribution in more detail. This property is particularly useful, if small areas
of the input space have to be clustered with high accuracy. Here, TopoART a
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could filter input from other regions and TopoART b could create the desired
detailed representation.

The learning of non-stationary data was also investigated using the input dis-
tribution shown in Fig. 2(a). But now, input from different regions was presented
successively (see Fig. 4).
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A+E3 B+E2 C+D+E1

Fig. 4. Training of TopoART with non-stationary artificial data. A TopoART network
was consecutively trained using three different input distributions: A+E3, B+E2, and
C+D+E1. Each column shows the results after finishing training with data from the
given regions. All categories of an individual cluster are painted with the same colour.

Figure 4 shows that both components of TopoART incrementally learnt the
presented input. Already created representations remained stable when the input
distribution changed. Similar to the stationary case, TopoART b performed a
refinement of the representation of TopoART a. But here, the sub-regions E1,
E2, and E3 were separated, since the corresponding input samples were presented
independently and could not be linked. TopoART a was able to compensate for
this effect, as its lower vigilance parameter ρa allowed for larger categories which
could form connections between the sub-regions.

Finally, a dataset originally used to investigate methods for the direct imita-
tion of human facial expressions by the user-interface robot iCat was applied [14].
From this dataset, the images of all 32 subjects (12 female, 20 male) that were
associated with predefined facial expressions were selected, which resulted in a
total of 1783 images. These images had been acquired using two lighting condi-
tions: daylight and artificial light. They were cropped, scaled to a size of 64×64
pixels, and successively processed by principal component analysis keeping 90%
of the total variance

(
cf. Fig. 5(a)

)
.
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After training a TopoART network with these data, the resulting clusters
were compared to the partitionings based on labels reflecting the subjects and
the lighting conditions. Here, two standard measures were used: the Jaccard
coefficient J and the Rand index R [15]. Both provide values between 0 and
1, with higher values indicating a higher degree of similarity. As always more
than one criterion (subjects, lighting conditions, facial expressions, gender, usage
of glasses, etc.) for partitioning these images influences the clustering process,
values considerably lower than 1 may also indicate similarity. The splitting of
clusters caused by these additional criteria, for example, results in a decrease of
the Jaccard coefficient.

Due to the filtering process controlled by φ, several input samples were re-
garded as noise and excluded from cluster formation. Within the scope of the
evaluation, they were associated with the cluster containing the permanent node
with the highest activation. Since the original activation (3) depends on the cat-
egory size, an alternative activation (12) was used to analyse the formed clus-
ters.2 It constitutes a normalised version of the city block distance between an
input sample and the respective category, which was successfully applied in [3]
and [16].

zF2
i (t) = 1−

∣∣(xF1(t) ∧ wF2
i (t)

)
− wF2

i (t)
∣∣
1

d
(12)

Figure 5 shows the results for both TopoART components. Here, the param-
eter τ was adopted from the previous experiments; βsbm, φ, and ρa were iterated
over representative values from the relevant intervals and selected in such a man-
ner as to maximise the Jaccard coefficient for the partitioning according to the
subjects. Then βsbm and φ were fixed, while the influence of ρa is illustrated.
Here, no results for ρa<0.75 are displayed, since a further decrease of ρa does
not cause any changes.
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Fig. 5. Clustering of stationary real-world data. After preprocessing facial images (a),
they were clustered by a TopoART network. Then, it was analysed how accurately the
resulting clusters reflect the different subjects (b) and the two lighting conditions (c).

2 The original activation (3) was still utilised for training.
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According to Fig. 5(b), the partitioning with respect to the 32 subjects is
best represented if ρa is high. Here, Jb and Rb increase for lower values of ρa than
Ja and Ra, which reflects the finer clustering of TopoART b. In contrast, the
partitioning according to the two lighting conditions

(
cf. Fig. 5(c)

)
is impaired

for high values of ρa, which is indicated by the decrease of Ja and Jb. The
more detailed representation of TopoART b amplifies this effect. Choosing ρa
appropriately, e.g. ρa=0.96, the representations of both partitionings can be
combined by a single TopoART network. In this case, TopoART a represents
the coarser partitioning with respect to the lighting conditions and TopoART b
the finer partitioning according to the subjects.

For the results given in Fig. 5, the relevant parameters were selected in such
a way as to maximise the Jaccard coefficient for the partitioning according to
the subjects. Hence, the representation of the lighting conditions is not optimal.
If the parameters are optimised to provide the maximum Jaccard coefficient
for this partitioning, the following maximum values are reached: Ja=0.779 and
Jb=0.671. This confirms the previous results according to which TopoART a
creates a less detailed representation of the input data which is more suited to
represent the two lighting conditions.

5 Conclusion

TopoART – the neural network proposed in this paper – successfully combines
properties from ART and topology learning approaches: The categories originat-
ing from ART systems are connected by means of edges. In this way, clusters of
arbitrary shapes can be formed. In addition, a filtering mechanism decreases the
sensitivity to noise. Similar to SOINN, representations exhibiting different levels
of detail are formed. But TopoART enables parallel learning at both levels re-
quiring only 4 parameters (βsbm, φ, ρa, τ) to be set, which constitutes a reduction
of 75% compared to SOINN. Moreover, representations created by TopoART are
stable.

Although the number of parameters to be set is small, they must be chosen
using some kind of prior knowledge about the input data distribution. This task
is very difficult, in particular, as TopoART is trained on-line. In order to solve
this problem, the hierarchical structure of TopoART can be exploited, since
it provides alternative clusterings of the input data distribution. By means of
interaction during the learning process, these clusterings could be evaluated with
respect to the current task or other criteria.

The capability of TopoART to capture hierarchical relations and the topology
of presented data might be of interest for numerous tasks, e.g. the representation
of complex sensory and semantic information in robots. In principle, TopoART
could even be extended to a multi-level structure that captures hierarchical re-
lations more comprehensively.
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