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The local minima of a quadratic functional depending on binary variables are discussed. An arbitrary 
connection matrix can be presented in the form of quasi-Hebbian expansion where each pattern is supplied 
with its own individual weight. For such matrices statistical physics methods allow one to derive an 
equation describing local minima of the functional. A model where only one weight differs from other ones 
is discussed in details. In this case the above-mention equation can be solved analytically. Obtained results 
are confirmed by computer simulations. 
 

                                                                I. Introduction 
 

{ }1iS = ±Let us examine the problem of minimization of quadratic functional depending on  binary variablesN , 
: 1, 2,...,i N=

2
, 1

1( ) min
N

ij i j
i j

E J S S
N =

= − ⎯⎯→∑ SS                                             .                                                                                (1) 

This problem arises in different scientific fields starting with physics of magnetic materials and neural networks up 
to analysis of results of physical experiments and logistics. The state of the system as a whole is given by N-
dimensional vector 1 2( , ,..., )NS S S=S  with binary coordinates . These vectors will be called configuration 
vectors or simply configurations. The functional 

iS
( )E E= S , which has to be minimized, will be called the energy of 

the state. Without loss of generality the connection matrix ( )ijJ=J  can be considered as a symmetric one 

( ) since the substitution 2/)( jijiij JJJ +→jiij JJ =  does not change the value of . E

       In the general case practically nothing is known neither about the number of local minima of the functional (1), 
nor about their structure. Only in some cases there are more or less clear ideas about the energy surface of the 
functional. These cases are the Sherrington-Kirkpatrick model of spin glass [1] and high-symmetrical neural 
network of Hopfield’s type [2]. In both cases characters of connection matrices were of great importance.  
         Statistical physics methods were efficiently used for analysis of the energy surface in the Hopfield model [3]-
[5]. In these papers was used the Hebb connection matrix. It is a correlation matrix constructed from a set of M 
given configurations , { }1±=μξi),...,,( μμμμ ξξξ N21=ξ , : 1, 2,..., Mμ =

  .  ∑
=

=
M

jiijJ
1μ

μμξξ

{ }M
1

μξIn the theory of neural networks configurations  are called patterns. We also use this notation. When 

statistical physics methods are applied, the result is as follows. If patterns  are randomized and independent and 
their number 

μξ
0.14M N< ⋅ , in the vicinity of each pattern there is necessarily a local minimum of the functional (1). 

In other words, the neural network works as an associative memory. For the first time this result was obtained in [3], 
[4]. 
      Up to now it was supposed that statistical physics methods are applicable only for the Hebb connection matrix. 
However, in the papers [6]-[8] it was shown that any symmetric matrix can be presented as quasi-Hebbian 
expansion in uncorrelated configurations : μξ

  . (2) ∑
=

=
M

jiij rJ
1μ

μμ
μ ξξ

In Eq. (2) weights rμ  are determined from the condition of non-correlatedness of configurations , and the 
number 

μξ
M  is determined by the accuracy of approximation of the original matrix J . The representation (2) is 

called the quasi-Hebbian since all weights rμ  are different.  We hope that this representation would allow one to use 
statistical physics methods for analysis of an arbitrary connection matrix. First obtained results are presented in this 
publication. 
      In Section II with the aid of statistical physics methods the principal equation for a connection matrix of the type 
(2) is derived. Determination of conditions under which the equation has a solution provides information about local 
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minima of the functional (1). As an example the classical Hopfield model (all the weights are 1rμ ≡ ) is examined in 
details. In Section III we analyze the case when only one weight differs from the others, which are identically equal: 

1 2 3 ... 1Mr r r r≠ = = = = . This model case can be analyzed analytically up to the end. It wa nd that a single 
weight that differs from 1 substantially affects the properties of local minima. Computer simulations confirm this 

ns and remarks are given in Section IV. 
 

II. Principle Equation and

s fou

result. Some conclusio

 Hopfield Model 

1. Principle equation. Here an  with the quasi-Hebbian  
onn

 
d in what follows we analyze the functional (1)

ection matrix (2). Let 1 2( , ,..., )NS S S=S , where 1iS = ±  define a state of the system. The energy of th
be presented in the form 

c e state 
can 

2

1

1M ⎛ ⎞( ) ( )E r m
Nμ μ

μ=

= − −⎜ ⎟
⎝ ⎠

∑S S ,                                                (3) 

where  is the overlap of the state  with the pattern :   μξ( )mμ S S

  
1

1( ) im S
N

i
iN

μ
μ ξ

=

.  

hysics methods allow one to obtain equations for the 
with the patterns After solving these equations it is possible to understand under which conditions the overlap 

in

= ∑S

Statistical p overlap of a local minimum of the functional (1) 
μξ . 

of a local minimum with the k -th pattern is of the order of 1 ( 1~km ). In other words: under which conditions the 
local minimum co cides (or nearly coincides) with the k -th pattern.  
      Supposing the dimensionality of the problem to be very large ( 1>>N ), let us set that the number of patterns 
M is proportional to N : M Nα= ⋅ . In the theory of ne ral networksu efficient of proportionality  the co α  is called 

 th
Re  p ormed in
the load parameter. Let us suppose that in the vicinity of the pattern ere is a local minimum of the functional. 

peating calculations erf  [3]-[5] for the Hopfield model, we obtain the system of equations 

  

kξ

erf ,
2

k k
k

r m
m

σ
⎛ ⎞

= ⎜ ⎟  
⎝ ⎠

                                
2

2
2

1 ,
(1 )

M

k

r
N C r

μ

μ μ

σ
≠

=
− ⋅∑                                                                       (4) 

2
1 2 exp .

2
k kr m

C
σ π σ

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

Here  is the overlap of the local minimum with the -th pattern. In th of equal weights ( ) this system 
reduces to the well-known system for the Hopfield model (see Eqs. (2.71)-(2.73) in [5]). 

1rμ ≡k km e case 

σ2/kk mry = . Excluding σ  and C  from th      Let us introduce an auxiliary variable e system (4), we obtain the 
principle equation   

2

  2 2

1 1 1
( )

M

k k

r
M r r

μ

μ μα γ ϕ≠

= ⋅
⋅ −∑  (5) 

where 

22 yeγ
π

−=
2erf

2
yy e

y
πϕ =   and . (6) 

n ( )yγ γ=The functio  decreases monotonically, he function and t ( )yϕ ϕ=  increases monotonically from its 
minimal value 10 =)(ϕ . In what follows these functions are frequently used. For simplicity sometimes we omit 

d usetheir arguments, an  the notations γ  and ϕ  for these functions. 

       Let us fix the values of external pa ameters: 1N >> , / { }
1

M
r M Nα = , rμ  and . If  is a solution of Eq. (5), 

the overlap of the local minimum with the -th p  is equal to 
  

k  0y
k attern

0ymk erf= .  (7) 



With the aid of 0y the value of one other important char 2 2M

k
r macteristic k

2
μ μμ

σ
≠

 can be calculated. Roughly 

speaking, 2
k

= ∑
σ  is the weighted sum of squ red overlaps of the lo kξa cal minimum from the vicinity of  with all 

 th -th one. The expression for e k  has the form   patterns except kσ

0

0

erf
2k k

y
r

y
σ = (8) 

       An important role plays the analysis of conditions under which
to determine the critical value of the load param

. 

 Eq. (5) can be solved. For example, it is useful 
eter cα  for which the solution of Eq. (5) still exists, but for α that 

are larger than  there is no solution of Eq.(5). All characteristics corresponding to cα  are marked off with the cα
same subscript, namely they are  and c c cy , m σ .  

ha

 (9) 

 Eq. 

     2. The Hopfield model: 1≡μr . Since all patterns are equivalent, in Eqs. (4), (5) the subscript k  can be omitted. 
It is easy to see t t in this case Eq. (5) has the form  

  22 1)( −= ϕγα

The plot of right-hand side of (9) is shown in Fig. 1. We see that for all α  less than a critical v lue ca α , there are 

two solutions: αy  and αy  ( αyαα yy < ) . We are interested in the larger sol n . The solution αyutio  is a spurious 
as to be omitted. 

 Fig. 1. Graphical solu e graph of the function  
             in the right-han ad parameter 

one, and it h
 

 

tion of Eq. (9) for the Hopfield model is shown. Solid line is th
d side of Eq.(9). Dashed line corresponds to the value of lo

0.14

0.04α = . 
 
        In general, when Eq. (5) has some solutions, the solution with maximal overlap  corresponds to the minimal 

o 
e ri

Let us return to our analysis of the plot in Fig.1. When

m
value of the free energy. Consequently, it is necessary to pick out the solution that is located as much as possible t
th ght on the abscissa axis. In what follows we use this rule.  
  α  increases the solution  shifts to the left. In the 

o
αy

same time the overlap of the local minimum with the pattern also decreases. In other w rds, the local minimum little 
by little moves away from the pattern. Increasing α  we reach the critical value cα . The critical value cα  is 
determined by maximum of the right-hand side of Eq. (9). It is not difficult to calcul s value:ate it  0.138cα ≈ .  This 

et  [3

r  th

well-known result related to the critical value of the load param er firstly was obtained in ], [4]. 
 The expression in the right-hand side of Eq. (9) reaches its maximum value at the point 1.511cy ≈ .  Equation 
(7) allows one to calculate the critical value of the ove lap of the local minimum with e pattern: 0.967cm ≈ .  We 
see that even for the maximal load parameter cα  the local minimum is very close to the pa e load 
parameter 

ttern. If th
α  is less than cα , the overlap of the local minimum with the pattern even closer to 1. Since in this case 

 aran bitrary pattern is considered, we can say that while cα α<  there is a local minimum of the fun al (1) in the 
vicinity of each pattern. It can be shown that the depths of all these local minima are approximately t ]. 
 What happens when the parameter 

ction
he same [5

α  exceeds the critical value cα ? In this case there is no solution of Eq. (9). 
As they say, “a breakdown” of the solution happens. Detailed analysis [3]-[5] shows that the overlap decreases 
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abruptly almost to zero value. In terms of statistical phy his means that in our system the first kind transition 
takes place. The energy surface of the functional (1) changes: local minima in vicinities of patterns cease to exist. 

sics t

 
III. The Case of One Differing Pattern 

 
         Interesting is the case when all weights rμ  except one are equal to 1, and only one weight differs from other. 

ithout loss of generality we can write 
  
W

1 2 3, ... 1Mr r r rτ= = = = = . (10) 

th
 in the formation of the connection matrix and only one pattern provides a 

tribution. Intuition suggests that the influence of a single p

The first weight can be both larger and less than one. 
         It might seem that the difference from e classical Hopfield model has to be small: enormous number of 
patterns with the same weight takes part
different con attern with the individual weight τ  has to be 
negligible small comparing with contribution of infinitely large number of patterns with the same t 1rμ = .  weigh
However, this is not the case. One pattern with an individual weight τ can substantially affect the distribution of 
local minima. Let us examine separately what happens with local minimum in the vicinity of the pattern with the 
individual weight τ , and what happen with local minima near other patterns whose weights are equal to 1.  

1. Pattern with an individual weight: 1r τ= . For this pattern equation (5) has the form   

  ( )22 1α γ τ ϕ= ⋅ − . (11) 

If y  is a solution of Eq. (11), the overlap of the local minimum with the first pattern is (1) (m erf= )y . The 
super  the  number 1.    

oint of breakdow
script “(1)” emphasizes that we deal with overlap of the local minimum with the pattern

n (1) ( )cy τ , where the right-hand side           The p of Eq.(11) reaches its maximum, is the solution of 
the equation 

22( ) 1 yyϕ
τ

= + .                     (12) 

After finding (1) ( )y τ  the critical characteristics (1) (1)( )m erf y=  and (1)
c c c cα  can be calculated. It turns out that for 

1τ >  Eq.(12) has a nontrivial solution only if . When τ3τ ≤  is larger than 3, this equation has only trivial solution: 
0 . This means that the overlap of the local minimum with the p

. So, when

(1)3 ( )cyτ τ> ⇒ ≡ attern vanishes: 
(1) (1)( ) 0c cm erf y= ≡  3τ >  in the system the phase transition disappears. This is an unexpected result. We 

do n ase (1) 2
cσ τ

π
=  and  ot understand the reason why the ph transition disappears. (We have for 3τ ≥ : 

(1) 22( 1)cα τ= − π .) 

 In Fig.2a we hs ofpresent grap  right-hand side of Eq. (11) for three different values of the weight coefficient: 
1τ = , 2τ =  and 3τ = . The case of 1τ =  corresponds to the classical Hopfield model. We s at of the 

coefficient 
ee th increasing 

τ above 1 on the one hand is accompanied by an increase of the critical value (1) ( )cα τ and on the
om  by steady of the breakpoint 

,  other 
pa (1) ( )cy τ  hand it is acc nied  removal toward 0. As a result, when increases the τ

overlap of the local minimum with the pattern (1) ( )cm τ  in the critical point decreases.  

 Generally speaking, the decrease of the overlap, accompanying an increase of the weight coefficientτ , is very 
unusual. Let us point out that this behavior relates only to the critical values (1) ( )cy τ  and (1

cm ) ( )τ  ,  i.e. to their values 
at the breakdown point. Absolutely other situation takes place if c α α< . 

 Indeed, Fig.2a shows intersections betwee e parallel to abscissa axis n a straight lin and the graphs representing 
e rth ight-hand side of Eq. (11) for different values of τ . Abscissa values of each intersection are solutio s of the 

equation. We see that when 
n

τ  increases the point of intersection shifts to the , i.e. in irection of its greater 
values. This means that when 

 right  the d
τ increases the overlap (1) ( )m τ  of the local minimum with the pattern also increases. 

his T behavior of the overlap is in agreement with the common sense: the greater the weight of the pattern τ , the 
greater its influence.  Then the overlap of this pattern with the local minimum has to be greater. 
 Now let us examine the interval [0,1]  of the weight τ . Analysis of Eqs. (11), (12) shows that when τ  
decreases from 1 to 0 the maximum point (1) ( )cy τ  steadily shifts to the right, and the maximum value (1)

cα  steadily 
decreases (see the behavior of maxima of the curves in Fig.2b). In other words, when the weight coefficient 
τ decreases the critical value of the overlap (1) ( )cm τ  tends to 1. Note, when 1τ <  the function ( )y 1τ ϕ⋅ −  vanishes 



necessarily. By 0 ( )y τ  we denote the po here this functio  equals zero. The behavior of the curve to the left 
from 0 ( )y

int w n
τ  does not interesting for us, since s region Eq. (11) has only spurious solutions. 

 

 in thi

 

 The graphs of the right-hand side of Eq. (11) for different values of Fig. 2. τ . a) 1τ ≥ ; the dashed straight line 
intersects th aphs corresponding to different values ofe gr  τ ;  b) 1τ ≤ ; minima of each graph are equal to zero. 

 
Graphs showing the behavior of critical characteristics m(1) ( )c τ  and (1) ( )cα τ  are presented on two left panels of 
Fig.3.  
                                   

 

Fig. 3. Critical values of the load paramete

                                                                                                                                                         

r cα  (two upper panels) and overlap of the local minimum with the pattern  
 (two lower panels) as functions of the weight coefficient cm τ . The curves on the left panels (a and b) correspond to 

the pattern with individual weight 1r τ= ; the curves on the right panels (c and d) correspond to patterns with the same 
weight 1, 2rμ μ= ≥ . 

 
 
 
 
 

)a

)b

τ

τ

(1)
cm

)c

)d

τ

τ

(2)
cm

cαcα

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

3τ =

2τ =

1τ =

1τ =

0.8τ =

0.5τ =

y

α α
)a

y

)b



2. Patterns with the same weight: 1, 2rμ μ= ≥ .  t us examine how the overlap of the local minimum  

with one of the patterns whose weight coefficient is equa pends on the value 

Le

l to 1 de τ . 
m

Since all these patterns are 
equivalent, we choose the pattern with number “2”. With the superscript (2) we ark off the characteristics 

(2) (2) (2), ,m y α  that are interesting for us. Now Eq. (5) has the form:  

  ( )L y α= , where 
( ) ( )

( ) ( )2 2( ) 1 ( )yϕ ϕ τ− −2 ( )y yγ
2 22

( )
(1 ) ( ) ( ) 1

L y
y yε ϕ τ ετ ϕ

=
− − + −

 and 1
M

ε = . (13) 

, the quantity  M →∞ ε  tends to zero.  However, we cannot simply take , since (at least for When 0ε = 1τ > ) for 
some value of the denom of  necessarily vanishes. Then it is impossible to cancel identical functions 

rator and denomin . So, we analyze Eq. (13) for a small, but finite va
y  ( )L yinator 

in the nume ator of L y lue of ε  and then we ( )
tend it to zero. This way of analysis is correct. 

hen , the function ( )yϕ τ−  nowhere vanishes, and we can sim ake 0        W 1τ ≤ ply t ε = . In this  the 

expression for ( )y turns into )22 ( ) ) 1y yγ ϕ

case

(L ( − . Then Eq. (13) transforms in Eq. (9) that corresponds to the 
Hopfield model. Consequently, until the value of τ  belongs to the interval (0,1]τ ∈  the following is true: 

(2) (2)                      ( ) 1.51c cy yτ ≡ ≈ ( ) 0.138cτ α≡ ≈ , (2) ( ) 0.967c cm mτ ≡ ≈ . (14) 

 Let us exam  the region 

      cα

ine

, 1

1τ > . In this case the function ( )yϕ τ−  vanishes at the point 0 ( )y τ . The value of 

0 ( )y τ  is determined by equation: 

0( ( ))yϕ τ τ= . (15) 

of the sm poiOut all vicinity of the nt 0 ( )y τ  the parameter ε  in Eq. o zer

expre of the odel: ( ) ( ) 1y yγ ϕ − . At the point 

 (13) can be tended t o. At that the 

ssion for the function ( )L y 2 ( )2( )L y = is as in the case Hopfield m

0 ( )y τ  itself for small, but finite value of ε , the function is( )L y   equal to zero: 0( ( )) 0L y τ = . If y is from the 
vicinity of the point 0 ( )y τ  0 ( )y τ and it tends to , for any finite value of ε  the curve ( )L y  quickly drops to zero. 
Thus, for any finite value of ε  the grap the function ( )L y  practically everywhere coincides with the curve 

( )22 ( ) ( ) 1y yγ ϕ −  that corresp s to the Hopfield model.  And in the vicinit  th

h of 

y of e point 0 ( )y τond  th
r

e curve ( )L y  
narrow dip up to zero whose width is p oportional to the ue of has a  val ε .  

        As long as the weight ( ) 5.568cyτ ϕ< ≈ , the point 0 ( )y τ  is at the left of cy . For this case in Fig. 4a we show 
the curve ( )L y . The maximu  of the curve ( )L y  corresp s to the critical point 1.511cy ≈  and it does not m ond
depend on τ . Consequently, the equalities (14) are justified not only for [0,1]τ ∈ , but in the wider interval 
0 ( ) 5.568cyτ ϕ< ≤ ≈ .  

 

 

Fig. 4. The graph of the function ( )L y  from Eq. (13), when 510ε −=  (solid line): a) when ) , the point 3 ( cyτ ϕ= <

0 ( )y τ  is on the left of ; b) when 1.511cy ≈ 10 ( )cyτ ϕ= > , the point 0 ( )y τ  is on the right of . Dashed line 
shows the difference from the classical Hopfield model. 
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        On e w the contrary, for the values of th eight 5.568τ >  the p ( )oint y 0 τ  is on the right of is case an 
e curve ( )L y  is shown in Fig. 4b. T  point of t urve ( )L y , which is interesting for us, 

s with the peak of the curve that is slightly on the r

 cy .  For th
example of th m he c
coincide ight of the point

he maximu
 0 ( )y τ . From continuity conditions it is 

vident that when 0 ( )y τe  this peak shifts to the point . Consequently, when 0ε →  for  we have  0 5.568τ >ε →

(2)
0( ) ( ) 1.511cy yτ τ≡ > , (2) (2)( ) ( ( )) 0.96c cm erf yτ τ 7≡ > , ( ) 2

02 ( )2( ) 0.138y
c c

ττ τ α
π

−= − < = (16) 

 Let us summarize the obtained results for patterns with the same weigh 1μ = , 2

2(2) 1 eα . 

ts: r μ ≥ . Firstly, as far as the 
value of τ  is less t ( ) 5.568cyhan ϕ = , all characteristics  of local minima do not depe  on nd τ  and ex  

 the Hopfield model. Secondly, as soon as the value of 
actly coincide

with characteristics of  exceeds ( ) 5.568cyϕ =τ  the situation 
changes. In this case the break-down point of the solution depends on τ  and coincides with 0 ( )y τ  that is the 
solution of Eq. (15). Note, when τ  increases the critical load parameter ( )cα τ nd the overlap of the 
local min um with the ases and gradually tends to 1 (see Eq. (16)).  The graphs showing the behavior 
of the critical characteristics ( )cm

 decreases a
im  pattern inc  re

(2) τ  and (2) ( )cα τ  are presented at the two right panels in Fig.3. 

        3. Computer simulations. The obtained results were verified with the aid of computer simulat . For a given 
value of N  the load parameter 

ions
α  was fixed. Then M Nα=  randomized patterns were generate d they were 

used to construct the connection matrix with the aid of Eq. (2). The we were defined by Eq. (10). When 
choosing the weight coefficient 

d, an
ights 

τ  we proceeded from following reasons. Let α  be a fixed value of the load 
parameter. Then we found th  of the t ( )τ α  for which the given α  was a critical one (this can be done e v  weighalue
when solving Eqs. (11) and (12) simultaneously). We also defined the break-down point of the solution ( )cy α . If 
constructing the connection matrix with the weight τ  that is equal to ( )τ α , the mean value of the overlap of the 
local minimum with the pattern has to be close to ( ) ( ( ))c cm erf yα α= . If the weight τ  is less than ( )τ α  the mean 
value of the overlap with the pattern has to be close to 0. If the weight τ is larger than ( )τ α , the mean value of the 
overlap has to be larger than ( )cm α . Under further increase of τ  the mean overlap has to tend to 1. 

         To verify the theory relating to the pattern with the individual weig 1rht τ= , three experiments has been done. 
In all experiments the dimensionality of the problem 10000N = . was  rFor each load pa ameter α  the n value of 
overlap (with the single pattern) m< >  was calculated with the aid of ensemble averaging. Ensemble consisted of 
10 different matrices.  For testing three values of 

 mea

α  were chosen. Let us list them togeth ith values of  ( )er w τ α  and 
( )mc α : 1) 0.12α = , ( ) 0.944τ α ≈ , ( ) 0.971m α ≈ ; 2) 0.3c 8α = , ( ) 1.501τ α ≈ , ( ) 0.919m α ≈ ; 3) 3.0α = ; for this c

value of α  there is no jump of the overlap, but beginning from ( ) 3.171τ α ≈ , the overlap has to increase smoothly.  

 In Fig.5 the graphs for all three values of the load parameter are presented. Theoretical characteristics (1) ( )cm τ  
are shown by dashed lines. The results of compute  simulations are given by solid lines with markers. r
 

    
Fig. 5. Theory and experiments for the pattern with the individual weight 

m< >
0.12α =

0.38α =
3.0α =

τ
1r τ= . The graphs correspond to three different 

values of the load parameter 0.12, 0.38 and 3.0α = . Solid lines are the results of experiments; dashed lines show theory. 



 For  and 0.12α = 0.38α =
e vicinities of critical values of the 

on the experimental curves we clearly see expected jumps of mean overlap that 
have place in th weights ( ) 0.944τ α ≈  and ( ) 1.501τ α ≈

 this can be 
o

, respectively.  At the left 
side the values of the mean overlap are not equal to zero. First, due to not sufficiently large 
dimensionality of the problem. The point is that all theoretical results are related t  the case . For our 
computer simulations we used very large, but finite dimensionality . Second, the theory is correct when the mean 
overlap is close to 1 (but not to 0).  In this region of values of

N →∞
N

 τ  we have rather good agreement of the theory with 
computer simulations. 
 For the third load parameter 3.0α =  we expected a smooth increasing of the mean overlap rom 0 to 1. 
Indeed, the last right solid curve increases smoothly without any jumps. However,  
increasing ought to start beginning from

m< >  f
according our theory the

3.1τ ≈ , while the experimental curve differs from zero much earlier. This 
discrepancy between our theory and experiment can be explained in the same way as it has been done in the end of 
the previous paragraph. 
 To verify our theory relating to patterns with equal weights 1, 2rμ μ≡ ≥  we used the same procedure. For the 
load parameter 0.12α =  and several dimensionalities  (N 3000N = , 10000 and 30000) we calculated the mean 
overlap  of the local minimum with the nearest pattern for different weights m< >  1M −  τ . We averaged both over

 τpatterns of the given matrix and over 10 randomized matrices constructed for the given value of .  
m<  According to the theory, for 0.12α =   breakdown of the overlap >  has to take place when 17.1τ ≈ . In

ce is marked by the right dashed straight line with the label “ M →∞ ”.  If N  and 
 

Fig. 6 this pla M really were 
itely large just in this place m >  had to take place. In Fig. 6 the real dependency of  m< >infin e breakdown of th <  

on τ  that was observed in our experiments was shown by three solid lines corresponding to different 
dimensionalities N .   
 

 
 
Fig. 6. Theory a

m< >

30000N =

10000N =

3000N =

τ

nd experiments for patterns with the same weights 1rμ ≡ when 0.12α = . Solid lines show the results 

of experiments for three values of dimensionality N . 
 
 Noticeable difference between the theory and computer simulations must not confuse us. Apparently this 
difference is due to finite dimensionalities of experimental connection matrices. Earlier computer verifications of 
classical theoretic results faced just the same problems [10], [11]. As a way out the authors of these papers 
extrapolated their experimental results into the region of very large dimensionalities .  
 Note, wh  increases the experimental curve in Fig. 6 tends to “theoretical step-function”, which is 
indicated dashed line. A correction due to finite dimensionality of the problem can be taken into 
account if we xplicit expression 

N
en N

with the aid of 
insert the e 1

Mε = 30000N = 3600M Nα= = .  in Eq. (13). Then for  we have 

When this value of M is used in Eq. (13), we obtain that the breakdown of the overlap  has to take place not 
in the vicinity of 

m< >
3600M =  17.1τ ≈ , but much earlier when 7.1τ ≈ . The corresponding dashed line with the label 

is shown in Fig. 6. Its location noticeably better correlates with experimental curves. 
 4. Depths of local minima.  Let us find out how the depth of local minimum depends on the value of  τ . By 
the depth of the local minimum we imply the modulus of its energy (3), For different matrices the energies can 
be compared only if the same scale is used for calculation. We normalized elements of each matrix dividing them by 

| |E . 



the square root from the dispersion of matrix elements: 2
J Nσ τ α= +

ean value of ma
 is the standard deviation of quasi-Hebbian 

matrix elements of the form (2) for the weights (10); m trix elements is equal to 0. Then for the local 
minimum depth we obtain the expression 

                                                                2

1J

1 1M

E r m
Nμ μ

μσ =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ . 

1ξ τ=1r          Let us examine the local minimum in the vicinity of the pattern  with the weight .  For this minimum 
we obtain according  to Eqs. (5)-(12)  

                                         ( )2 2
1 1 1

J

1E mτ σ α
σ

= + −   ,    1σ τ γϕ= .                                                                          (17) 

 Here α  is the load parameter,  and 1m are calculated according to Eqs. (7) and (8),  γ  and ϕ  1σ are given by 
the expressions (6). Analysis of Eq. (17) and numerical calculations show that when τ  increases the depth of the 
minimum increases monotonically. While  is less than a critical value ( )cτ α  tτ he local minimum is very far from 
the pattern ) and its depth is equal to zero. When )(αττ c>( 1 0m ≈ , minimum quickly approaches to the pattern 

) and its depth increases in a jump-like way. After that ( 11 →m 1E  increases as 2/ Nτ τ α+ . In Fig. 7 fo  

different loa

r

d parameters α  the dependence of  1  on E τ  is shown. When τ  becom ry large ( Nτ α>es ve ) the 
inimum asymptotically tends to 1.  It could be thought th  suchdepth of the m at for  large τ  the matrix J  is 

ted with the aid of only one pattern 1ξ . construc
 
 

 
       Now let us examine local minima near patterns with the same weight 1rμ =  ( 2μ ≥ ). First, independent of the 
value of the weight τ , these local minima exist only when cα α≤  (see Eqs. (14), (16)). The expression for the 
depth of the μ -th m mum has the form: ini

                                      ( 2 21E mμ μ )
J

μσ α−    ,  μσ
= + σ γϕ= . (18) 

s that when Analysis of Eq. (18) show τ  increases depth of, the  the local minimum decreases (see Fig. 8). When τ  
becomes equal to some critical value ( )cτ α , the depth of the minimum reaches its minimal value )(αcc EE : 

                                                        

=

2( )c c
c

E
N

α α α
α

= − . 

For further in e of creas τ the overlap μm  step-wise becom  to zero: minimum abruptly “goes away” from

p

es equal  the 

attern μξ , and its depth μE  drops to zero. From the point of w of the assoc ry this means t
)(

vie iative memo hat for 
αττ c  the memory of network is destroy   

  
                                       IV. Discussion and Conclusions 
 

>  the ed.  

Local minima of the functional (1) are fixed points of an associative neural network. In this paper we 
xamined minima localized near patterns, which were used to construct the connection matrix. All obtained results e
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E μ
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Fig. 8. The dependence of the depth of the local 
minimum from the vicinity of one of the patterns μξ
( 1rμ = ) on τ . The load parameter α  changes from 
0
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Fig. 7. The dependence of the depth of the local 
minimum from the vicinity of the pattern 1ξ  on τ . The 
load parameter α  changes from 0.001 to 2.

.001 to 0.137. 



can be interpreted in terms of neural networks concepts, which are the storage capacity, patterns restoration and so 
on. From this point of view two results are of special interest. 
 First, notice that if  for the pattern with individual weight 1r τ=3τ ≥  the phase transition of the first kind 
disappears. We recall that when (1)

cαincreases the critical value of the load parameter τ  also increases, the overlap 
of the local minimum with the pattern steadily decreases. Beginning from(1)

cm  3τ =  the overlap in the critical point 
vanishes (see graphs on the left panels in Fig. 3). This means that the phase transition ceases to exist. As a rule 
disappearance of  phase transition signifies substantial structural changes in the system. 
 Second, it is interesting how characteristics of local minima located near patterns with weight coefficients 

1 ( 2)rμ μ= ≥  depend on the value of τ . We recall that at first increase in τ  does not affect these local minima at 
all. While 5.568τ <  neither the overlap of the local minimum with the pattern, nor its critical characteristics depend 
on 1rμ =(see Eq. (14)). It seems rather reasonable since the number of patterns with weight coefficients τ  is very 
large ( 1M >> ). Therefore, as would be expected, the influence of only one pattern with the weight τ is negligible 
small. However, as soon as exceeds the critical value τ 5.568cτ ≈ (which is not so large) its influence on the huge 
number of local minima from the vicinities of patterns with weight coefficients  becomes rather noticeable 

 sim
 with d

1rμ =
(see Eqs. (15)). Let us emphasize that all the results are justified by computer ulations. 

In conclusion we note that Hebbian connection matrix ifferent weight coefficients rμ  was also 
examined previously (see, for example [12], [13]). In [13] basic equations for this connection matrix were obtained. 

ystem of equations (4). ever, the
 was analyzed. We see that even rath

) 
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