Skip to main content

Towards High-Resolution Cardiac Atlases: Ventricular Anatomy Descriptors for a Standardized Reference Frame

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6364))

Abstract

Increased resolution in cardiac Magnetic Resonance Imaging (MRI) and growing interest in the effect of small structures in electrophysiology of the heart pose new challenges for cardiac atlases. In this paper we discuss the limitations of current atlas-building models when trying to incorporate cardiac small structure and argue for the need of developing a standard coordinate system for the heart that separates this from the macro-structure common to all individual hearts, in a way analogous to the stereotactic coordinate system from brain atlases. With this goal, we propose a set of methods to obtain two descriptors of the ventricular macro-structure that can be used to build a standardized reference frame: the central curve on the Left Ventricle cavity and the smoothed internal envelope of the Right Ventricle crest (i.e. the curve in the endocardial surface marking the junction between the right ventricular free wall and the septum).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, M.J., et al.: Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am. J. Physiol. Heart Circ. Physiol. 298, H699–H718 (2010)

    Article  Google Scholar 

  2. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. PAMI 11(6), 567–585 (1989)

    MATH  Google Scholar 

  3. Bordas, R., et al.: Integrated approach for the study of anatomical variability in the cardiac purkinje system: from high resolution MRI to electrophysiology simulation. In: IEEE EMBC 2010, Buenos Aires (2010) (in press)

    Google Scholar 

  4. Brandt, R., et al.: Three-dimensional average-shape atlas of the honeybee brain and its applications. J. Comp. Neurol. 492(1), 1–19 (2005)

    Article  Google Scholar 

  5. Burton, R.A.B., et al.: Three-dimensional models of individual cardiac histo-anatomy: tools and challenges. Ann. NY Acad. Sci. 1080, 301–319 (2006)

    Article  Google Scholar 

  6. Casero, R.: Left ventricle functional analysis in 2D+t contrast echocardiography within an atlas-based deformable template model framework, PhD Thesis, University of Oxford (2008)

    Google Scholar 

  7. Casero, R., et al.: Cardiac Valve Annulus Manual Segmentation Using Computer Assisted Visual Feedback in Three-Dimensional Image Data. In: IEEE EMBC 2010, Buenos Aires (2010) (in press)

    Google Scholar 

  8. Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002)

    Article  MathSciNet  Google Scholar 

  9. Collins, D.L.: 3D model-based segmentation of individual brain structures from magnetic resonance imaging data, PhD Thesis, McGill University, Montreal (1994)

    Google Scholar 

  10. Cootes, T.F., et al.: Training models of shape from sets of examples. In: BMVC 1992, pp. 266–275 (1992)

    Google Scholar 

  11. Frangi, A.F., et al.: Automatic Construction of Multiple-Object Three-Dimensional Statistical Shape Models: Application to Cardiac Modeling. TMI 21(9), 1151–1166 (2002)

    Google Scholar 

  12. Garny, A., et al.: Dimensionality in cardiac modelling. Prog. Biophys. Mol. Biol. 87, 47–66 (2005)

    Article  Google Scholar 

  13. LeGrice, I., et al.: The architecture of the heart: a data-based model. Phil. Trans. R Soc. Lond. A 359, 1217–1232 (2001)

    Article  MATH  Google Scholar 

  14. Lelieveldt, B.P.F., et al.: Anatomical Model Matching with Fuzzy Implicit Surfaces for Segmentation of Thoracic Volume Scans. TMI 18(3), 218–230 (1999)

    Google Scholar 

  15. Lorenzo-Valdés, M., et al.: Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 642–650. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Mazziotta, J., et al.: A Four-Dimensional Probabilistic Atlas of the Human Brain. J. Am. Medical Informatics Association 8(5), 401–430 (2001)

    Google Scholar 

  17. Romero, D., et al.: Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing: A Model Study. Ann. Biomed. Eng. 38(4), 1388–1398 (2010)

    Article  MathSciNet  Google Scholar 

  18. Schneider, J.E., et al.: Long-term stability of cardiac function in normal and chronically failing mouse hearts in a vertical-bore MR system. Magnetic Resonance Materials in Physics, Biology and Medicine 17(3-6), 162–169 (2004)

    Article  Google Scholar 

  19. Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System. An Approach to Cerebral Imaging. Thieme Medical Publishers (1988)

    Google Scholar 

  20. Plank, G., et al.: Generation of histo-anatomically representative models of the individual heart: tools and application. Phil. Trans. Series A, Math., phys., and eng. sciences 367(1896), 2257–2292 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Young, A.A., Frangi, A.F.: Computational cardiac atlases: from patient to population and back. Experimental Physiology 94(5), 578–596 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casero, R. et al. (2010). Towards High-Resolution Cardiac Atlases: Ventricular Anatomy Descriptors for a Standardized Reference Frame. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15835-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15834-6

  • Online ISBN: 978-3-642-15835-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics