
Robust Atlas-Based Segmentation of Highly Variable Anatomy: 
Left Atrium Segmentation

Michal Depa1, Mert R. Sabuncu2, Godtfred Holmvang3, Reza Nezafat4, Ehud J. Schmidt5, 
and Polina Golland1

1Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA, USA

2Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA

3Cardiac MRI Unit, Massachusetts General Hospital, Boston, MA, USA

4Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, 
Boston, MA, USA

5Department of Radiology, Brigham & Women's Hospital, Boston, MA, USA

Abstract

Automatic segmentation of the heart's left atrium offers great benefits for planning and outcome 

evaluation of atrial ablation procedures. However, the high anatomical variability of the left atrium 

presents significant challenges for atlas-guided segmentation. In this paper, we demonstrate an 

automatic method for left atrium segmentation using weighted voting label fusion and a variant of 

the demons registration algorithm adapted to handle images with different intensity distributions. 

We achieve accurate automatic segmentation that is robust to the high anatomical variations in the 

shape of the left atrium in a clinical dataset of MRA images.
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1 Introduction

The high anatomical variability of the heart's left atrium makes its segmentation a 

particularly difficult problem. Specifically, the shape of the left atrium cavity, as well as the 

number and locations of the pulmonary veins connecting to it, vary substantially across 

subjects (Fig. 1). In this paper, we propose and demonstrate a robust atlas-based method for 

automatic segmentation of the left atrium in contrast-enhanced magnetic resonance 

angiography (MRA) images.

Clinically, left atrium segmentation is a highly relevant problem. Atrial fibrillation is known 

to be one of the most common heart conditions. It manifests itself by causing irregular 

contractions of the heart's atria and can have serious consequences such as stroke and heart 

failure [1, 2]. Catheter-based radio-frequency ablation has recently emerged as a treatment 

for this condition. It involves burning the cardiac tissue that is responsible for the re-entry 

electrical currents that cause fibrillation. The high anatomical variability of the left atrium 
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shape and the pulmonary veins that enter it presents significant difficulties for cardiac 

ablation since it is commonly performed at the junction of the atrial body and pulmonary 

veins. Consequently, accurate visualization of the patient's left atrium promises to 

substantially improve intervention planning. The knowledge of the shape of the left atrium 

can also aid in the subsequent segmentation of the resulting ablation scars and thus in the 

evaluation of the outcome of the procedure [3].

One approach to segment the left atrium is whole heart segmentation, where all of the heart 

chambers, and sometimes other structures, are included in a single model and segmented 

simultaneously. Unfortunately, most whole heart segmentation methods do not model the 

pulmonary veins of the left atrium [4, 5]. An exception is [6], where the geometrical model 

of the heart constructed from CT images includes the pulmonary veins. However, the 

approach involves building a mean shape model that will face considerable challenges in the 

presence of topological differences in anatomy.

An alternative approach is to focus on segmentation of the left atrium by first extracting the 

whole blood pool by intensity thresholding and then separating it into different heart 

chambers by making cuts at narrowings [7]. This work was extended to allow tracking of 

centerlines of the pulmonary veins entering the atrium [8, 9]. The method however suffers 

from requiring several thresholds to be set manually because of varying intensity 

distributions and anatomies of the left atrium across patients.

In this work, we perform the segmentation via a label fusion algorithm [10, 11] that uses a 

training set of MRA images of different patients with corresponding manual segmentations. 

We first align the training images to the test subject image to be segmented and apply the 

resulting deformations to the corresponding manual segmentation label maps to yield a set 

of left atrium segmentations in the coordinate space of the test subject. These form a non-

parametric subject-specific statistical atlas. We then use a weighted voting algorithm to 

assign every voxel to the left atrium or to the background. A similar approach was 

demonstrated in [12] for segmentation of the aorta and heart extent in CT images. In 

contrast, we aim to delineate the considerably more complex structure of the left atrium. 

This requires more powerful label fusion and registration algorithms. Notably, we use a 

weighted label fusion scheme that assigns higher weights to voxels in training segmentations 

that are located deeper within the structure of interest and that have similar intensities in 

training and test images [11]. We also handle varying intensity distributions between images 

by incorporating iterative intensity equalization in a variant of the demons registration 

algorithm [13, 14] used for the registration of the training images to the novel test image.

We demonstrate fully automatic, accurate segmentations of both the atrial body and 

pulmonary veins connected to it on a set of 16 clinical MRA images. Our method captures 

all of the pulmonary veins in all patients in our dataset. Comparison to traditional atlas-

based segmentation and majority voting non-parametric segmentation demonstrates the 

advantage of the proposed method for this problem.
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2 Methods

In this section we describe the registration and segmentation algorithms we employ in this 

work. We let {Ii} be the set of N training images, {Li} be the set of corresponding expert 

manual segmentations and {Φi} be the warps from the training images {Ii} to the test image 

I. Our goal is to estimate the label map L of the test image I.

2.1 Diffeomorphic Demons Registration with Intensity Equalization

We perform pairwise registrations by first aligning the images affinely using a mutual 

information metric [15], then using a diffeomorphic variant of the demons registration 

algorithm [16]. The method represents warps Φ with a smooth and stationary velocity field υ 

using a one-parameter subgroup of diffeomorphisms [17]. In this formulation, Φ(x) = exp(υ)

(x), i.e., the flow of the velocity field at time one is equal to its equivalent deformation. In 

addition to guaranteeing diffeomorphic registration, this parametrization is computationally 

efficient and offers convenient access to the inverse deformation Φ−1(x) = exp(−υ)(x). At 

each iteration, the incremental update velocity field u is found by minimizing the energy 

function [13]:

(1)

where IF and IM are the fixed and moving images respectively, and Φ is the warp at the 

current iteration. The new updated velocity field is then smoothed to optimize a 

regularization constraint.

One disadvantage of demons registration algorithms is that they are driven by intensity 

differences between images IF and IM. Although the MRA images we work with are of the 

same modality, the intensity distribution varies from one image to the next. To address this 

problem, we introduce an intensity transformation:

(2)

where {b1(·) … bK(·)} is the set of basis functions and θ = {θ1 … θK} is the vector of 

corresponding coefficients. This transformation effectively modifies the energy function we 

are optimizing:

(3)

Similar to [18], we use polynomial basis functions up to degree K. For a fixed velocity field 

u, Eq. (3) reduces to a standard linear least squares problem. We thus alternate between 

estimating coefficients {θi} from corresponding voxel pairs in IM ○ Φ and IF (using robust 

least squares with outlier detection) and performing the standard demons iteration.
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2.2 Label Fusion Segmentation

Rather than summarize the training set through average statistics, label fusion algorithms 

keep the atlas in the form of the original training images with their expert manual 

segmentations. After registering the training images {Ii} to the test image I, we obtain a non-

parametric subject-specific atlas composed of N warped images and corresponding label 

maps.

To perform the segmentation, we use a weighted voting scheme at each voxel, taking into 

account not only the number of occurrences of each label, but also their locations in the 

manually segmented structures and the similarity between the intensities of corresponding 

voxels in the training and test images, similar to [11]. Formally, we compute the maximum a 

posteriori (MAP) estimate of the label map:

(4)

We make a simplifying assumption that each voxel is generated from the training set 

independently from all other voxels. Furthermore, we assume that each training image is 

equally likely to generate any particular voxel a priori. The MAP estimation then reduces to 

an independent decision at each voxel:

(5)

(6)

where ℒ is the total number of possible labels (ℒ = 2 in our case). Eq. (6) assumes that the 

label and intensity values at each voxel of the test image are conditionally independent given 

the warp Φi and the fact that they were generated from training subject i. This decision rule 

can be viewed as weighted soft voting with p(L(x) = l|Li, Φi) providing the vote and p(I(x)|Ii, 

Φi) serving as a weight. We set weights using a Gaussian image likelihood:

(7)

where Ĩi(Φi(·)) is the training image Ii, registered to the test image I and intensity equalized 

by applying the intensity transformation estimated during the registration step. The weight is 

higher when the two corresponding voxels in the aligned images have similar intensities. We 

define the votes through the label likelihood term:

(8)
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where  is the signed Euclidean distance map of the manual segmentation of the 

training subject i in the coordinate space of the test subject and ρ is the slope parameter. 

Voxels that are inside the structure and farther from the boundary are assigned higher votes.

3 Results

We validate our method on a set of 16 electro-cardiogram gated Gadolinium-DTPA (0.2 

mmol/kg) contrast-enhanced MRA images (CIDA sequence, TR= 4.3ms, TE=2.0ms, θ=40°, 

in-plane resolution varying from 0.51mm to 0.68mm, slice thickness varying from 1.2mm to 

1.7mm, ±80 kHz bandwidth, atrial diastolic ECG timing to counteract considerable volume 

changes of the left atrium). We perform leave-one-out experiments by treating one subject 

as the test image and the remaining 15 as the training set, and repeating for each subject in 

the dataset. We use the Dice overlap score [19] between the automatic and expert manual 

segmentations as a quantitative measure of segmentation quality. Dice scores vary from 0 to 

1, with 1 corresponding to perfect overlap.

In the label fusion segmentation algorithm, we set σ = 100 and ρ = 1.5. We explored the 

parameter space by varying σ between 50 and 500, and ρ between 0.3 and 2.5. During this 

process, we confirmed that our method is in fact robust to the choice of the parameters. The 

difference between the best and the worst Dice scores obtained for each subject while 

varying the parameters was 0.05 ± 0.03. We also explored different values for the 

polynomial degree of the intensity transformation in the registration algorithm. We varied 

the degree from 1 to 5 and found that it had similarly little effect on the results, with a 0.008 

± 0.007 difference between the best and worst overlap scores for each subject. We chose a 

degree of 3 because it provided the highest overall Dice scores.

We compare our method of weighed voting (WV) label fusion to three alternative atlas-

based approaches: majority voting (MV) label fusion, parametric atlas thresholding (AT) 

and atlas-based EM-segmentation (EM). The majority voting label fusion is similar to 

weighted voting, except it assigns each voxel to the label that occurs most frequently in the 

registered training set at this voxel [10, 20]. We also construct a parametric atlas that 

summarizes all 16 subjects in a single template image and a probabilistic label map by 

performing group-wise registration to an average space. After registering this new atlas to 

the test subject, we segment the left atrium using two different approaches. In atlas 

thresholding, we simply threshold the warped probabilistic label map at 0.5 to obtain the 

segmentation. We also use this parametric atlas as a spatial prior in a traditional model-

based EM-segmentation [21]. Note that this construction favors the baseline algorithms as it 

includes the test image in the registration of all subjects into a single coordinate frame.

In our application, correctly segmenting all of the pulmonary veins of the left atrium is 

crucial. Therefore it is important to visually inspect the resulting segmentations to fully 

evaluate them. Fig. 2 shows segmentation outlines of expert manual segmentations and the 

four methods we compare on corresponding slices of four different subjects. In the first row, 

majority voting and atlas thresholding miss a pulmonary vein that is correctly identified by 

our approach. EM-segmentation segments that vein only partially while at the same time 

producing false positives in the aorta and atrial body. The second and third rows show 
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similar situations. In the last row, all methods correctly segment the pulmonary veins, but 

our method produces the most accurate outlines. Detailed analysis of all subjects shows that 

our method does not miss a single pulmonary vein in the whole dataset, in spite of the high 

anatomical variability.

Fig. 3 reports the segmentation accuracy for each method, as measured by the volume 

overlap Dice scores. We also report the differences in segmentation accuracy between our 

method and the benchmark algorithms. To compute the difference between two methods, we 

subtract the Dice score of the second method from the score of the first for each subject. Our 

approach clearly outperforms other algorithms (WV vs. MV: p < 10−9, WV vs. AT: p < 

0.002, WV vs. EM: p < 0.003; single-sided paired t-test). To focus the evaluation on the 

critical part of the structure, we manually isolate the pulmonary veins in each of the manual 

and automatic segmentations, and compare the Dice scores for these limited label maps. 

Again, we observe consistent improvements offered by our approach (WV vs. MV: p < 

10−7, WV vs. AT: p < 10−7, WV vs. EM: p < 0.03; single-sided paired t-test). Since atlas-

based EM-segmentation is an intensity based method, it performs relatively well in 

segmenting pulmonary veins, but suffers from numerous false positives in other areas, 

which lower its overall Dice scores.

In Table 1, we present the computational cost for the different methods. The computation 

time consists of the time needed to perform the registrations and the time required by the 

segmentation step. We use an ITK implementation of the diffeomorphic demons registration 

algorithm [14] and implement the segmentation step in MATLAB. The weighted voting and 

majority voting label fusion methods register all of the training images (15 in our case) to 

the test subject. Each registration takes on average 8 minutes. The parametric atlas can be 

computed without any knowledge about the test image. Therefore, the parametric atlas 

thresholding and the atlas-based EM-segmentation require only a single registration of the 

atlas to the test subject.

4 Discussion and Conclusions

We demonstrated a non-parametric atlas-based method for automatic left atrium 

segmentation. This label fusion style approach first registers the whole training set to the test 

subject and then combines weighted votes from training subjects to make decisions. These 

votes are computed independently at each voxel and depend on the intensity similarity 

between the training and test images, as well as the voxel's location in the structure of 

interest. To handle global shifts in the intensity distribution across images, we modified the 

diffeomorphic demons registration algorithm to perform iterative intensity equalization 

during registration.

Experimental results illustrate the capacity of our method to handle high anatomical 

variability, yielding accurate segmentation and detecting all pulmonary veins in all subjects. 

By explicitly modeling the anatomical variability represented in the label maps and the 

corresponding training images, the proposed method outperforms traditional atlas-based 

segmentation algorithms and a simple label fusion benchmark.
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This increased accuracy however comes at the cost of additional computation time since the 

whole training set needs to be registered to every test subject that is being segmented. 

Although the weighted voting label fusion approach is more computationally expensive than 

the other methods, this requirement does not pose a problem in our application because the 

left atrium segmentation does not need to be produced in real-time. The computation time 

can be substantially reduced by parallelizing the registration step since the registrations are 

independent from each other. Moreover, clustering training images, similar to the approach 

in [22], and using cluster centers as training templates can further reduce the number of 

necessary registrations. The registration algorithm itself also clearly affects the overall 

segmentation results and a careful study will be necessary to inform future development of 

the method.

We found that there was no clear relationship between our method's performance on a 

specific subject and the number of similar examples in the training set. For example, one 

subject in our dataset had a pulmonary vein that was not present in any of the other patients. 

Our method still produced an accurate segmentation of that vein, even with no similar left 

atrium anatomy in the training set. A more detailed analysis of the effects of sub-populations 

in the training set on the quality of the resulting segmentations is an interesting future 

research topic.

In addition to the benefits automatic segmentation offers for the planning stages of cardiac 

ablation, our method can also assist in the evaluation of the procedure outcome. 

Segmentation of the ablation scars in post-procedure images is a clinically relevant but 

difficult problem. Using left atrium segmentation as a prior for scar location is a promising 

future direction of research we will pursue.
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Fig 1. 
Manual segmentations of the left atrium in three different subjects, illustrating the variability 

of the anatomy.

Depa et al. Page 9

Stat Atlases Comput Models Heart. Author manuscript; available in PMC 2015 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. 
Example segmentations of four different subjects: (a) expert manual segmentation, (b) 

weighted voting label fusion (WV), (c) majority voting label fusion (MV), (d) parametric 

atlas thresholding (AT) and (e) EM-segmentation using the parametric atlas as a spatial prior 

(EM).
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Fig 3. 
Dice scores of results for weighted voting label fusion (WV), majority voting label fusion 

(MV), parametric atlas thresholding (AT) and atlas-based EM-segmentation (EM). For each 

box plot, the central red line indicates the median, the boxes extend to the 25th and 75th 

percentiles, and the whiskers extend to the most extreme values not considered outliers, 

which are plotted as red crosses. Stars indicate that the weighted label fusion method 

achieves significantly more accurate segmentation than the baseline method (single-sided 

paired t-test, *: p < 0.05, **: p < 0.01).
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Table 1

Computation times for different methods.

Method Registration Segmentation Total

WV 8 min × 15 5 min 125 min

MV 8 min × 15 0.5 min 120.5 min

AT 8 min 0.1 min 8.1 min

EM 8 min 15 min 23 min
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