Skip to main content

A Fine-Grained View of GP Locality with Binary Decision Diagrams as Ant Phenotypes

  • Conference paper
Book cover Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

The property that neighbouring genotypes tend to map to neighbouring phenotypes, i.e. locality, is an important criterion in the study of problem difficulty. Locality is problematic in tree-based genetic programming (GP), since typically there is no explicit phenotype. Here, we define multiple phenotypes for the artificial ant problem, and use them to describe a novel fine-grained view of GP locality. This allows us to identify the mapping from an ant’s behavioural phenotype to its concrete path as being inherently non-local, and show that therefore alternative genetic encodings and operators cannot make the problem easy. We relate this to the results of evolutionary runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Brameier, M., Banzhaf, W.: Linear genetic programming. Springer, New York (2006)

    Google Scholar 

  3. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolution. Genetic Programming and Evolvable Machines 4(1), 67–93 (2003)

    Article  MATH  Google Scholar 

  4. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Physica-Verlag (2006)

    Google Scholar 

  5. Langdon, W.B., Poli, R.: Why ants are hard. In: Koza, J.R. (ed.) Proceedings of the Third Annual Conference on Genetic Programming, pp. 193–201. Morgan Kaufmann, Madison (1998)

    Google Scholar 

  6. Galván-Lopéz, E., McDermott, J., O’Neill, M., Brabazon, A.: Towards an understanding of locality in genetic programming. In: GECCO 2010: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Portland, Oregon, USA. ACM Press, New York (2010)

    Google Scholar 

  7. Galván-Lopéz, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality in genetic programming to predict performance. In: CEC 2010: Proceedings of the 12th Annual Congress on Evolutionary Computation, Barcelona, Spain. IEEE Press, Los Alamitos (2010)

    Google Scholar 

  8. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)

    Article  Google Scholar 

  9. Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming. In: Proceedings of IEEE Congress on Evolutionary Computing, pp. 1336–1342 (2009)

    Google Scholar 

  10. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic programming: The case for real-valued function regression. In: Proceedings of the 12th European Conference on Genetic Programming, pp. 292–302. Springer, Heidelberg (2009)

    Google Scholar 

  11. Jackson, D.: Phenotypic diversity in initial genetic programming populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Hordijk, W.: A measure of landscape. Evolutionary Computation 4(4), 335–360 (1996)

    Article  Google Scholar 

  13. Altenberg, L.: NK fitness landscapes. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation. IOP Publishing Ltd./Oxford University Press (1997)

    Google Scholar 

  14. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico, Albuquerque (1995)

    Google Scholar 

  15. Vanneschi, L., Tomassini, M., Collard, P., Verel, S., Pirola, Y., Mauri, G.: A comprehensive view of fitness landscapes with neutrality and fitness clouds. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 241–250. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms. In: Proceedings of GECCO 2007, London, UK, pp. 1335–1342 (2007)

    Google Scholar 

  17. Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample. In: Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 57–64 (1997)

    Google Scholar 

  18. Vanneschi, L., Valsecchi, A., Poli, R.: Limitations of the fitness-proportional negative slope coefficient as a difficulty measure. In: Proceedings of the 11th Annual conference on genetic and evolutionary computation, pp. 1877–1878. ACM, New York (2009)

    Chapter  Google Scholar 

  19. Jansen, T.: On classifications of fitness functions. In: Theoretical aspects of evolutionary computing, pp. 371–386. Springer, Heidelberg (2001)

    Google Scholar 

  20. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Dawkins, R.: The Extended Phenotype. Oxford University Press, Oxford (1982)

    Google Scholar 

  22. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  23. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys (CSUR) 24(3), 318 (1992)

    Article  Google Scholar 

  24. Gomez, F.J.: Sustaining diversity using behavioral information distance. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, Montréal, Canada, pp. 113–120. ACM, New York (2009)

    Chapter  Google Scholar 

  25. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McDermott, J., Galván-Lopéz, E., O’Neill, M. (2010). A Fine-Grained View of GP Locality with Binary Decision Diagrams as Ant Phenotypes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics