Skip to main content

Incorporating Domain Knowledge into Evolutionary Computing for Discovering Gene-Gene Interaction

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

  • 2825 Accesses

Abstract

Understanding the genetic underpinnings of common heritable human traits has enormous public health benefits with implications for risk prediction, development of novel drugs, and personalized medicine. Many complex human traits are highly heritable, yet little of the variability in such traits can be accounted for by examining single DNA variants at a time. Seldom explored non-additive gene-gene interactions are thought to be one source of this “missing” heritability. Approaches that can account for this complexity are more aptly suited to find combinations of genetic and environmental exposures that can lead to disease. Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene interactions that influence human traits, yet the search space is nearly infinite because of the vast number of variables collected in contemporary human genetics studies. In this work we assess the performance and feasibility of sensible initialization of an evolutionary algorithm using domain knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S., Manolio, T.A.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106(23), 9362–9367 (2009)

    Article  Google Scholar 

  2. Maher, B.: Personal genomes: The case of the missing heritability. Nature 456(7218), 18–21 (2008)

    Article  Google Scholar 

  3. Pietilainen, K.H., Soderlund, S., Rissanen, A., Nakanishi, S., Jauhiainen, M., Taskinen, M.R., Kaprio, J.: HDL subspecies in young adult twins: heritability and impact of overweight. Obesity (Silver. Spring) 17(6), 1208–1214 (2009)

    Google Scholar 

  4. Kathiresan, S., et al.: Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41(1), 56–65 (2009)

    Article  Google Scholar 

  5. Manolio, T.A., et al.: Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009)

    Article  Google Scholar 

  6. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proc. 6th Intl. Congress of Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

  7. Moore, J.H., Williams, S.M.: Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27(6), 637–646 (2005)

    Article  Google Scholar 

  8. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)

    Article  Google Scholar 

  9. Goldstein, D.B.: Common Genetic Variation and Human Traits. N. Engl. J. Med. 360(17), 1696–1698 (2009)

    Article  Google Scholar 

  10. Shao, H., et al.: Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc. Natl. Acad. Sci. USA 105(50), 19910–19914 (2008)

    Article  Google Scholar 

  11. He, X., Qian, W., Wang, Z., Li, Y., Zhang, J.: Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat. Genet. 42(3), 272–276 (2010)

    Article  Google Scholar 

  12. Kooperberg, C., Leblanc, M.: Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet. Epidemiol. 32(3), 255–263 (2008)

    Article  Google Scholar 

  13. Carlson, C.S., Eberle, M.A., Kruglyak, L., Nickerson, D.A.: Mapping complex disease loci in whole-genome association studies. Nature 429(6990), 446–452 (2004)

    Article  Google Scholar 

  14. Turner, S.D., Crawford, D.C., Ritchie, M.D.: Methods for optimizing statistical analyses in pharmacogenomics research. Expert Reviews in Clinical Pharmacology 2(5), 559–570 (2009)

    Article  Google Scholar 

  15. Bishop, C.M.: Neural Networks for Pattern Recognition, pp. 475–482. Oxford University Press, London (1995)

    Google Scholar 

  16. Ritchie, M.D., Coffey, C.S., Moore, J.H.: Genetic Programming Neural Networks as a Bioinformatics Tool for Human Genetics. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 438–448. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Motsinger-Reif, A.A., Dudek, S.M., Hahn, L.W., Ritchie, M.D.: Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genetic Epidemiology 32(4), 325–340 (2008)

    Article  Google Scholar 

  18. Koza, J., Rice, J.: Genetic generation of both the weights and architecture for a neural network. IEEE Transactions II (1991)

    Google Scholar 

  19. O’Neil, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, 1st edn. Kluwer Academic Publishers, Norwell (2003)

    Google Scholar 

  20. Turner, S.D., Ritchie, M.D., Bush, W.S.: Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 80–91. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. White, B.C., Gilbert, J.C., Reif, D.M., Moore, J.H.: A statistical comparison of grammatical evolution strategies in the domain of human genetics. In: Proceedings of the IEEE Congress on Evolutionary Computing, pp. 676–682 (2005)

    Google Scholar 

  22. Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic programming: The critical need for expert knowledge. Genetic Programming Theory and Practice 4, 11–28 (2007)

    Article  Google Scholar 

  23. Moore, J.H., Barney, N., White, B.C.: Solving complex problems in human genetics using genetic programming: The importance of theorist-practitioner-computer interaction. Genetic Programming Theory and Practice 5, 69–85 (2008)

    Article  Google Scholar 

  24. Greene, C.S., White, B.C., Moore, J.H.: An expert knowledge-guided mutation operator for genome-wide genetic analysis using genetic programming. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 30–40. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Moore, J.H., Andrews, P.C., Barney, N., White, B.C.: Development and Evaluation of an Open-Ended Computational Evolution System for the Genetic Analysis of Susceptibility to Common Human Diseases. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 129–140. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Greene, C.S., Gilmore, J., Kiralis, J., Andrews, P.C., Moore, J.H.: Optimal Use of Expert Knowledge in Ant Colony Optimization for the Analysis of Epistasis in Human Disease. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 92–103. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Edwards, T.L., et al.: Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 24–35. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Turner, S.D., Dudek, S.M., Ritchie, M.D.: Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 86–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Cohen, P., et al.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd edn. Lawrence Erlbaum, Philadelphia (2002)

    Google Scholar 

  30. Schmidt, M.A., Hauser, E.R., Martin, E.R., Schmidt, S.: Extension of the SIMLA Package for Generating Pedigrees with Complex Inheritance Patterns: Environmental Covariates, Gene-Gene and Gene-Environment Interaction. Statistical Applications in Genetics and Molecular Biology, Article 15, 4(1), 1–21 (2005)

    Google Scholar 

  31. Bush, W.S., Dudek, S.M., Ritchie, M.D.: Biofilter: A knowledge-integration system for the multi-locus analysis of genome-wide association studies. In: Pac. Symp. Biocomput., vol. 14, pp. 368–379 (2009)

    Google Scholar 

  32. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises, United Kingdom (2008)

    Google Scholar 

  33. Holzinger, E.R., Buchanan, C., Turner, S.D., Dudek, S.M., Torstenson, E.S., Ritchie, M.D.: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. ACM Press, New York (in press, 2010)

    Google Scholar 

  34. Moore, J., Parker, J., Olsen, N., Aune, T.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genet. Epidemiol. 23, 57–69 (2002)

    Article  Google Scholar 

  35. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4), 445–455 (2010)

    Article  Google Scholar 

  36. Kurkova, V.: Kolmogorov’s Theorem is Relevant. Neural Computation 3, 617–622 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turner, S.D., Dudek, S.M., Ritchie, M.D. (2010). Incorporating Domain Knowledge into Evolutionary Computing for Discovering Gene-Gene Interaction. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics