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Abstract. Learning Bayesian networks from data is an NP-hard prob-
lem with important practical applications. Metaheuristic search on the
space of node orderings combined with deterministic construction and
scoring of a network is a well-established approach. The comparative
performance of different search and score algorithms is highly problem-
dependent and so it is of interest to analyze, for benchmark problems
with known structures, the relationship between problem features and
algorithm performance. In this paper, we investigate four combinations
of search (Genetic Algorithms or Ant Colony Optimization) with scoring
(K2 or Chain). We relate node juxtaposition distributions over a number
of runs to the known problem structure, the algorithm performance and
the detailed algorithmic processes. We observe that, for different reasons,
ACO and Chain both focus the search on a narrower range of orderings.
This works well when the underlying structure is compatible but poorly
otherwise. We conclude by suggesting future directions for research.
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1 Introduction

Bayesian networks (BNs) are probabilistic graphical models which are used to
represent knowledge about uncertain domain. The network consists of a directed
acyclic graph (DAG) whose nodes represent random variables, and whose edges
represent the direct dependencies between these variables, and a joint probability
distribution (JPD) over the random variables. The JPD factorises according to
the DAG structure. In many domains, the BN structure and parameters must be
learned from data. Learning BN structure is a NP hard problem. It is known that
the number of possible structures grows super-exponentially with the number of
nodes [1], and so evaluating all possible structures is infeasible in most practical
domains, where the number of variables is typically large. The process of finding



Yanghui Wu, John McCall, and David Corne

cheaper approaches for learning the structure of BNs from large datasets is now
a very research active area.

A well-established approach to learning BN structure uses metaheuristic
search on the space of node orderings combined with deterministic construc-
tion and scoring of a network. The comparative performance of different search
and score algorithms is highly problem-dependent and so it is of interest to an-
alyze, for benchmark problems with known structures, the relationship between
problem features and algorithm performance. In this paper, we investigate com-
binations of two metaheuristic search techniques, Genetic Algorithms (GA) and
Ant Colony Optimisation (ACO) with two scoring approaches, K2 and Chain.
All are previously published algorithms for which empirical trade-offs between
computational expense and structural accuracy with a high degree of problem
dependency have been observed [2–4].

In this paper, we attempt to understand this problem dependency. We ex-
plore the distributions of nodes juxtapositions in the best solutions found over
a number of runs and relate this to the known problem structure, the algorithm
performance and the detailed algorithmic processes.

The remainder of this paper is organized as follows: in section 2, we briefly
describe search and score approaches for BN structuring learning. In section
3 we describe experiments used to generated node juxtaposition distributions.
Results are discussed in section 4, and conclusions presented in section 5.

2 Background

2.1 Bayesian Network Structure Learning using Search and Score

Search and score approaches attempt to search for the BN structure which best
fits the data according to a scoring function. A range of well-known search tech-
niques have been applied in search and score, including Hill Climbing [5], Genetic
Algorithms [6], Simulated Annealing [7], Particle Swarm Optimization (PSO) [8],
and Ant Colony Optimization (ACO) [9, 10]. The most common scoring func-
tions used in these algorithms include the K2-CH metric [11], BDeu [12], BIC
[13], and Minimum Description Length (MDL) [14].

2.2 K2 Algorithm and K2-based Search and Score

K2 is a well-known greedy algorithm that constructs and evaluates a BN from
a database of cases [11]. K2 assumes that an ordering on the variables is avail-
able and that, a priori, all structures are equally likely. Moreover, it assumes a
maximum number of parents a node can have. It starts by assuming that all
nodes in the DAG are without parents (i.e. no edges). At each step, edges are
added where doing so increases the joint probability of the resulting structure.
K2 stops when no further edges can be added.K2 can thus be used as a scoring
approach by applying it to an ordering selected by a metaheuristic search. Sev-
eral K2-based search and score algorithms have been proposed. Here, we briefly
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introduce two relevant to this paper: K2GA and K2ACO. K2GA [2] uses a GA
to search the space of node orderings. The fitness of each ordering is evaluated
by running the K2 search algorithm on each ordering evaluated and returning
the score of the network structure found. Standard ordering based operators are
applied. Similarly, in K2ACO [4], node orderings are generated by a colony of
ants. Evaluations from K2 are then used for pheromone update.

2.3 Chain Based Search and Score

Chain scoring for BN structure learning is first proposed in [3]. It is based on
the hypothesis that an initial search phase of evaluating fixed chain structures
imposed on orderings provides a sufficiently good scoring function to locate
high scoring regions of the space of node orderings. A second phase then fol-
lows where K2 is applied directly to the best orderings found. Given a node
orderingX1,X2,. . . ,Xn, we define the chain structure by adding edges between
successive nodes. Thus Xi is the sole parent of Xi+1. Ei is the edge from Xi to
Xi+1 Figure 1.

Fig. 1. Chain structure on an ordering

In our previous work, GA (ChainGA) [3] and ACO (ChainACO) [4] are
developed as Chain-based search heuristics. At each evaluation step, a chain
structure of the given ordering is constructed and evaluated using the K2-CH [11]
score metric evaluations. At the end of evaluation, the ordering corresponding
to the best fitness score is then produced for K2 algorithm to construct the BN
structure. This is a relatively cheap evaluation in terms of the number of K2-
CH factor evaluations needed. Our previous results have shown that the Chain
structure model can get a significant reduction in computational cost for large
data sets. The pseudocode for ChainACO and ChainGA is given in Tables 1
and 2 respectively.

3 Experiments

The aim of our experiments is to investigate the behaviour of GA and ACO
metaheuristics searching the space of node orderings using the Chain and K2
evaluation methods. We try to explore the relationship between arcs derived from
node juxtapositions in the best orderings found (Figure 1) and arcs in the original
structure. We therefore make runs of each metaheuristic with each evaluation
method, which we denote ChainACO, ChainGA, K2ACO and K2GA. Note that
in these experiments, we only require to run the first phase of ChainACO and
ChainGA algorithms to obtain the best node orderings, as the search of ordering
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Table 1. Pseudocode of ChainACO Algorithm

Initialize pheromone
Initialize heuristic information
Loop

Each ant is positioned on a starting node
Loop
Each ant applies a state transition rule to incrementally
build a solution and a local pheromone updating rule

Until all ants have built a complete solution
A global pheromone updating rule is applied

Until termination criterion is met
Implement K2 Algorithm on best solution to learn the best
structure.

Table 2. Pseudocode of ChainGA Algorithm

Initialize population
Repeat

Select best-ranking individuals to reproduce
Apply crossover operator
Apply mutation operator

Until termination criterion is met
Implement K2 Algorithm on best solution to learn the best
structure.

space ends at this point - the second phase is deterministic. However we are not
comparing the computational efficiency or the scores of final networks produced
as that has been covered in our earlier work [3, 4].

Four well known benchmark problems have been selected in our research:
Asia, Car, Insurance and Alarm. The Asia network is a simple network with
8 binary nodes and 8 edges. It is a diagnostic demonstrative Bayesian network
[15]. The Car Diagnostic Network consists of 18 nodes and 17 edges. It can be
applied to diagnose malfunctioning of self-propelling vehicles [3] . The Insurance
network contains 27 nodes and 52 arcs, is a network for evaluating car insurance
risks [16] . The Alarm network is a medical diagnostic system for intensive care
patient monitoring consisting of 37 nodes and 46 edges [17]. All the data cases
are sampled using the Netica tool [18]. In this paper, the dataset sizes for Asia,
Car, Insurance and Alarm are 5000, 10000, 5000 and 3000 cases respectively.

In all cases, the scoring metric used to evaluate the node ordering is the
K2-CH metric. For ChainACO and ChainGA we carry out 200 experimental
runs each. For K2ACO and K2GA we carry out only 50 runs each due to time
complexity. The parameters used for ACO and GA based algorithms in this
paper are the same as those used in [3, 4].
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4 Results and Discussion

Table 3 presents the distribution of node juxtapositions recorded from the best
ordering found in each of 200 experimental runs of ChainACO on the Asia net-
work. The row index indicates the first node in a juxtaposition, the column
index indicates the second. For example, the Table shows that in 65 of the runs,
the node juxtaposition 1-2 appeared 65 times, and the node juxtaposition 2-1
appeared 135 times. This means that, in all runs of ChainACO on Asia, nodes
1 and 2 were juxtaposed in the best ordering found, with a 135:65 preference
for node 2 preceding node 1. In all of these cases, the ordering will have been
evaluated using a chain structure inserting a directed edge between these nodes.
It is not of course necessary that any particular juxtaposition will appear in all
experimental runs. Each ordering found will contain n− 1 juxtapositions where
n is the number of nodes. The sum of entries in the ordering distributions table
will therefore in general be r· (n−1), where r is the number of runs. In this case,
the entries sum to 1400 = 200× 7.

Table 3. Node Juxtaposition Distribution for 200 runs of ChainACO on Asia

1 2 3 4 5 6 7 8

1 0 65 0 135 0 0 0 0
2 135 0 19 21 9 7 0 0
3 10 76 0 3 12 4 0 4
4 44 0 4 0 0 145 0 0
5 0 9 65 0 0 0 2 31
6 0 3 0 37 0 0 158 2
7 0 0 0 0 0 42 0 158
8 0 2 3 0 155 0 40 0

It is noticeable from Table 3 that the distribution of node juxtapositions is
concentrated on a relatively small subset of possible node juxtapositions. This
indicates that ChainACO is highly consistent in the node orderings it produces
and suggests a strong convergence property of the search. In Figure 2, we present
a visual representation of the node distributions produced by all four algorithms
on Asia and Car. Here, the instance counts have been replaced by a normal-
ized grayscale representation running from white (juxtaposition occurs on 0%
of runs) through to black (juxtaposition occurs on 100% of runs). It is easy
to observe from Figure 2a that there is a marked difference in distribution be-
tween ChainACO (top-left) and K2GA (bottom right). ChainACO produces a
high contrast image consisting of mostly very dark or very light pixels whereas
the K2GA image is much more diffuse. It is hard to visually detect much of a
difference in contrast between K2ACO and ChainGA other than that they lie
somewhere in between the other two. Moreover the dark areas for ChainACO
do not particularly coincide with those for K2GA. However results in [4] show
that each algorithm reliably reproduces the Asia network.
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Fig. 2. Grayscale Grids of the Edges Occurrences in Asia and Car Networks within
the Four Algorithms.

In Figure 2b, there are more possible node juxtapositions and the visual con-
trast is more marked. In order from highest to lowest visual contrast, the images
are ordered ChainACO, K2ACO, ChainGA and K2GA. This ordering is con-
sistent with a hypothesis that both the Chain scoring approach and the ACO
metaheuristic result in more concentrated distributions than the K2 scoring ap-
proach and the GA metaheuristic respectively. Finally, the equivalent diagrams
for Insurance and Alarm are shown in Figure 3. As these networks have many
more possible node juxtapositions the diagrams have a finer granularity but the
same effects are observable.

Fig. 3. Grayscale Grids of the Edges Occurrences in Insurance and Alarm Networks
within the Four Algorithms.

We present node juxtaposition frequencies for all four algorithms for the
Insurance and Alarm problems as Box plots in Figure 4. These essentially show
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the same information. Here the effect of the Chain approach manifests as a
low median frequency for most possible juxtapositions with a small number of
high frequency outliers. This is particularly noticeable for ChainACO in both
Figures. Conversely, for K2 approaches, and K2GA in particular, there is a higher
median node distribution frequency and a large distribution of frequencies in the
interquartile range, corresponding to the more diffuse visual pattern observed
earlier.

Fig. 4. Comparison of Frequencies of Each Edges Found in Insurance and Alarm Net-
works within four Algorithms.

Overall, there appears to be a small reduction in variability of the final order-
ing produced deriving from the use of ACO rather than GA, but the dominant
difference in behaviour derives from the choice of scoring approach. We observe
that the Chain scoring approach concentrates the search on a smaller set of node
juxtapositions, and hence node orderings than the K2 scoring approach does.
This is because, for any particular ordering, Chain only inserts edges between
juxtaposed nodes whereas K2 may insert an edge between any two nodes. Thus
it is possible to discover valuable interactions from a wider range of orderings
with K2 than with Chain. Conversely, it takes longer to evaluate orderings with
K2 because a large number of possible edges have to be considered in turn for
each ordering. Therefore, the relative merits of Chain and K2 for any particular
problem lie in how amenable the dependencies in the data are to discovery using
the Chain approach.

Figure 5 and Figure 6 are diagrams of the known true structures for Asia
and Car respectively, annotated with the best ordering found by ChainACO.
For each node juxtaposition occurring in the best ordering that corresponds
with an edge in the true structure, an arrow is added in the middle of the
edge in the direction of the node juxtaposition. If there is no edge in the true
structure corresponding to the node juxtaposition, a dotted arrow is added to
the diagram. Solid directed edges with no central arrow therefore represent edges
that occur in the true structure but are not represented by node juxtapositions
in the best ordering found. We also annotate each node juxtaposition with the
overall percentage of runs in which it appeared in the best ordering for that run.
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Fig. 5. Asia - annotated by best ChainACO ordering 3-5-8-7-6-4-1-2.

Figure 5 shows that all but one of the node juxtapositions in the best ordering
found by ChainACO for Asia coincide with true arcs. Of these three out of six
are correct and three reversed. The solution adds one node juxtaposition corre-
sponding to a spurious arc and omits two arcs. However the nodes corresponding
to the two omitted arcs are correctly ordered and so could be discovered by K2
in the second phase of the algorithm. This analysis shows that it is possible to
create chains closely aligned to the structure. This explains why ChainACO and
ChainGA perform well on Asia.

Fig. 6. Car - annotated by best ChainACO ordering 17-16-12-18-14-7-6-10-11-5-9-8-
13-2-4-1-3-15.

Figure 6 shows that only six of the seventeen node juxtapositions in the best
ordering found by ChainACO for Car coincide with true arcs. Of these only
one out of six is correct and five are reversed. The solution adds eleven node
juxtapositions corresponding to spurious arcs and omits ten arcs. It is noticeable
that the true Car structure contains nodes such as 4, 7, 14 and 18 each of which is
a hub for a cluster of tightly-bound nodes. The binding between these clusters is
loose. Such a topology is not amenable to the construction of chains where many
node juxtapositions correspond to a true arc independent parents. For example,
only one node can be positioned before node 18, which immediately excludes at
least three true arcs in any ordering. Therefore in this case, the Chain approach
finds spurious arcs that can coexist as node juxtapositions in a single ordering
and give a better score than orderings that include correct node juxtapositions.
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This inherent difficulty in aligning chains of node juxtapositions with the true
structure explains why ChainACO and ChainGA perform poorly on Car.

Table 4 contains for each problem and for the best node ordering found over
all runs by ChainACO, the numbers: C, of node juxtapositions corresponding
to correct arcs; R to reversed arcs; A to additional, spurious, arcs; and O is the
number of arcs in the true structure to which no node juxtapositions correspond;
T represents the total arcs in true structure. The table shows that C and R
dominate for those problems (Asia and Alarm) where ChainACO performs well.
On the other hand, A and O dominate for those problems (Car and Insurance)
where ChainACO performs poorly.

Table 4. Alignment of best ChainACO ordering with true structures

C R A O T

Asia 3 3 1 2 8
Car 1 5 11 11 17
Insurance 10 8 8 34 52
Alarm 14 6 15 26 46

5 Conclusions

In this paper we have conducted experiments to investigate the behaviour of GA
and ACO metaheuristics searching the space of node orderings using the Chain
and K2 evaluation methods. We have explained problem-dependent performance
trade-offs between cost and structure quality in terms of the relationship between
the Chain scoring mechanism, which relies on ordering node juxtapositions and
true arcs in the original structure. In all problems investigated, the Chain scoring
approach focused the search on a narrower range of orderings than did the K2
scoring approach. A lesser effect was also observed in that ACO-based methods
appeared to concentrate search more than GA-based methods.

The major conclusion of our analysis of node juxtaposition statistics is that in
problems where the true structure of the data is amenable to alignment of node
juxtapositions in a single ordering, the Chain scoring approach is able to yield
high quality solutions with significantly less computational effort than the K2
scoring approach. In problems where such alignment is not possible, the Chain
scoring approach is likely to be unsuccessful in producing high quality structures
and so the relative benefit of reduced computational time is lost.

Finally our results suggest a possible direction for future work. A generaliza-
tion of the Chain scoring approach that could detect shorter series of well-aligned
node juxtapositions combined with a coarser-grain version of the K2 algorithm
could potentially assemble high quality structures at reduced cost, even in situ-
ations where a single ordering would not admit a set of well-aligned arcs. ACO
is a promising approach for more generalized construction approaches.
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