
PUBLISHED IN: PROCEEDINGS OF THE FUTURE INTERNET SYMPOSIUM 2010 1

Design and Evaluation of a Socket Emulator for
Publish/Subscribe Networks

George Xylomenos, Blerim Cici
Mobile Multimedia Laboratory & Department of Informatics

Athens University of Economics and Business, Patision 76, Athens, 104 34, Greece
Email: xgeorge@aueb.gr, blerim153@gmail.com

Abstract—In order for a Future Internet architecture to be
globally deployed, it must ensure that existing applications will
continue to operate efficiently on top of it. As part of the Publish
Subscribe Internet Routing Paradigm (PSIRP) project, we have
explored various options for making endpoint centric applications
based on the Sockets Application Programming Interface (API)
compatible with the information centric PSIRP prototype im-
plementation. We developed an emulator that mediates between
the client/server socket calls and the publish/subscribe PSIRP
calls, transforming the exchange of packets to distribution of
publications. To assess the overhead of our emulator, we measure
the execution time of a simple file transfer application in
native socket mode, in emulated socket mode and in native
publish/subscribe mode.

Index Terms—TCP/IP, Sockets, Publish/Subscribe, PSIRP.

I. INTRODUCTION

A large fraction of current Internet traffic is due to peer to
peer content distribution applications [5], in which participants
are solely interested in the exchanged data rather than in
the endpoint addresses of their peers. This indicates that
the Internet is evolving from a network connecting pairs of
end hosts to a substrate for information dissemination. There
are many proposals for evolving or redesigning the Internet
architecture based on an information centric paradigm, for
example, the Content Centric Networking (CCN) [3] project
and the Publish/Subscribe Internet Routing Paradigm (PSIRP)
project [2]. The PSIRP project in particular is working on
a network architecture based entirely on publish/subscribe
principles, and its prototype implementation employs pub-
lish/subscribe concepts throughout the protocol stack [4]. In
the publish/subscribe model, publishers announce available
data, subscribers express their interests, and the network allows
them to rendezvous for the exchange of data.

In order to be deployed, an information centric architecture
must ensure that it will be possible to efficiently execute
existing applications on top of it. While content distribu-
tion applications may be expected to be rewritten so as to
operate optimally over an information centric architecture,
a vast number of existing endpoint centric applications will
have to operate in some kind of compatibility mode. Since
most existing Internet applications were written on top of
the Sockets Application Programming Interface (API) [7],
the most direct way to make them compatible with a new

Work supported by the ICT PSIRP project under contract ICT-2007-216173.

architecture is to develop middleware to translate Socket API
calls to the information centric calls of the new architecture.

In this paper we describe and evaluate a Socket API emula-
tor for PSIRP, which allows unmodified Internet applications
to operate on top of a native publish/subscribe protocol stack.
In Section 2 we introduce the basic concepts of the PSIRP
architecture and implementation. In Section 3 we discuss
the different emulation options available and motivate our
selection. In Section 4 we explain how IP addresses and socket
calls are translated into PSIRP calls. In Section 5 we evaluate
our emulator by comparing the performance of an application
in native socket mode, in emulated socket mode and in native
publish/subscribe mode. Finally, in Section 6 we summarize
our work.

II. PSIRP IMPLEMENTATION CONCEPTS

In the PSIRP prototype implementation, which uses the
FreeBSD operating system, publications are handled via a
set of calls encapsulated in the libpsirp library [4]. To
understand how publish/subscribe communication is achieved,
in this section we provide an introduction to the libpsirp
concepts and calls. In the PSIRP architecture, the central entity
is a publication which is made available by publishers to
subscribers. The network provides mechanisms for publishers
and subscribers to rendezvous in order for publications to be
transported from the former to the latter. A publication is iden-
tified by a Scope Identifier (SId) and a Rendezvous Identifier
(RId) [2]; the SId represents an information collection, while
the RId represents an information item within this collection.
For example, a user may publish a set of holiday pictures, each
identified by an RId, within a scope representing his friends,
identified by an SId.

Publications consist of data and metadata; data are mapped
to the memory space of the publishers and subscribers. A
publisher creates a new publication via psirp_create().
This allocates a memory area of a specified size for the
publication data, initializes a data structure for the publication
and returns a handle to this structure. The publisher can call
psirp_pub_data() using that handle to get a pointer to
the memory block of the publication. When the publication
is ready, it is passed to the kernel via psirp_publish(),
which takes as parameters the desired SId and RId for the
publication, as well as a handle to it. The kernel can then
decide where to forward the publication to. If a publication



2 PUBLISHED IN: PROCEEDINGS OF THE FUTURE INTERNET SYMPOSIUM 2010

with the same SId/RId already exists, the new publication is
assumed to be a new version, therefore its version number is
increased. A SId or RId in ASCII format is converted to the
internal libpsirp format by psirp_atoid().

A subscriber calls psirp_subscribe_sync() with a
specific SId/RId pair to subscribe to a publication. This blocks
the subscriber until a matching publication is found or until a
timeout expires; in the former case, a handle is returned to the
latest version of the publication. The caller can distinguish
new from old versions of a publication by asking for their
version numbers via psirp_pub_version_count().
To retrieve previous versions, the subscriber must call
psirp_subscribe_versions(), which returns an array
of handles to earlier versions of a specified publication.
Finally, psirp_free() frees the publication structure and
unmaps the memory allocated for the publication.

III. EMULATION OPTIONS

In the Sockets API, a socket represents a communication
endpoint, identified by an IP address and a TCP/UDP port.
Communication takes place by having each application at-
tach to a local socket and perform calls on it. The actual
communication between sockets is achieved by exploiting the
services of the TCP/UDP protocols. As shown in Figure 1.(a),
the socket uses either TCP or UDP at the transport layer,
the transport layer uses IP at the network layer, and IP uses
some lower layer protocol (such as Ethernet) for data transmis-
sion [7]. In contrast, in the PSIRP prototype, publish/subscribe
applications talk to libpsirp which implements its own
transport and network layer protocols on top of the lower
layers. The goal of the Sockets API emulator is therefore to
translate between socket calls and libpsirp calls, despite
their different approaches.

One emulation approach, shown in Figure 1.(b) is to exploit
an existing TCP/UDP/IP implementation to transform the
socket calls to IP packets, and then exchange these packets via
libpsirp calls. The advantage of this approach is that the
emulator only has to provide a best effort service, analogous
to that offered by IP. For TCP in particular, flow, congestion
and error control are essentially provided by TCP, and the
emulator only sees IP packets. The disadvantage is that by
treating PSIRP as a dumb transport, not only do we lose the
advantages of its redesigned architecture, we also apply IP
specific TCP assumptions to an entirely different architecture.
A similar approach has been found to be very detrimental
for the performance of TCP applications on top of ATM
networks [1]. In addition, going through the TCP/UDP/IP im-
plementation represents a significant communication overhead
for the emulator.

The other approach, shown in Figure 1.(c) is to translate
each socket call directly to libpsirp calls. While this is
roughly the same as above for UDP, for TCP it is considerably
harder, as the emulator needs to deal with flow, congestion and
error control. However, in addition to avoiding TCP/UDP/IP
overhead, in this manner the emulator can take full advantage
of the facilities provided by libpsirp. For example, if the
PSIRP prototype provided a reliable transport service for pub-
lish/subscribe networks, this transport could be used instead

of TCP. Despite the additional complexity, this approach will
provide better performance in the long term, therefore we have
selected it for the emulator.

IV. EMULATOR IMPLEMENTATION

A. Mapping Addresses to Identifiers

Since there is no notion of endpoint identifiers in PSIRP,
the Sockets API emulator must translate the TCP/UDP/IP ad-
dresses used by sockets to the SId/RId pairs used to exchange
publications in PSIRP. The scheme that we implemented is
to create an SId for each machine based on its IP address
and an RId for each socket in that machine by combining its
IP address, its port number and the protocol (TCP or UDP).
Therefore publishing to an SId translates to sending data to a
machine, while publishing to an RId translates to sending data
to a port of that machine.

A client can communicate with a server via the socket
emulator based only on the server’s endpoint details, exactly
as in TCP/UDP/IP. Say that a client with an IP address of
a.b.c.d uses port e of protocol z to communicate with
a server with an IP address of f.g.h.i using port j of
protocol z, as shown in Figure 2.(a). The emulator translates
the client to server messages to publications to the SId
generated by f.g.h.i (the server’s IP address) and the RId
generated by f.g.h.i:j:z. In the server to client direction,
messages are translated to publications to the SId generated by
a.b.c.d (the client’s IP address) and the RId generated by
a.b.c.d:e:z. This arrangement is shown in Figure 2.(b).
New messages sent in the same direction are represented by
new versions of the same publication, thus allowing sequences
of packets to be transmitted.

B. Datagram Socket Calls

Sockets come in two varieties: Datagram sockets, imple-
mented on top of UDP, and Stream sockets, implemented on
top of TCP. In this subsection we explain how Datagram socket
calls are emulated, while the next one deals with Stream socket
calls. Figure 3 shows how Datagram calls are emulated; dotted
arrows show how Socket calls are mapped to emulator actions,
while solid arrows show the publications exchanged between
machines. The server first calls socket() to create a data
structure for its communication endpoint and get a handle to it
for later use; this translates to the creation of an equivalent data
structure in the emulator. In order for the socket to become
accessible to clients, the server calls bind() to assign an IP
address and a UDP port to the socket; the emulator uses this
information to calculate an SId/RId pair for incoming data and
stores both the socket address and the PSIRP identifiers in its
own structure. The client performs the exact same calls before
communication.

In order to receive data, the server issues the recvfrom()
call on the socket, which is translated by the emulator to a
psirp_subscribe_sync() call on its incoming SId/RId
pair. To distinguish consecutive packets, the emulator ensures
that each recvfrom() call returns the next version of the
same publication; the last version number seen is stored in
the socket structure. Each publication contains in its metadata



PUBLISHED IN: PROCEEDINGS OF THE FUTURE INTERNET SYMPOSIUM 2010 3

Application

Socket

TCP/UDP

IP

Lower Layers

Emulator

libpsirp

Lower Layers

Application

Socket

TCP/UDP

IP

Emulator

libpsirp

Lower Layers

Application

Socket

(a) (c)(b)

Fig. 1. Socket emulator structure: (a) standard TCP/IP stack, (b) network level emulation, (c) transport level emulation.

Client

Socket
IP: a.b.c.d

Port: e
Protocol: z

(a)

Server

Socket
IP: f.g.h.i

Port: j
Protocol: z

Client

Emulator

Server

Emulator

Publication
SID: a.b.c.d

RID: a.b.c.d:e:z

(b)

Publication
SID: f.g.h.i

RID: f.g.h.i:j:z

Subscribe Subscribe

Publish

Fig. 2. Address translation: (a) standard TCP/IP socket, (b) emulated socket.

field the IP address and UDP port from which the message
was sent. The emulator passes these data to the server via the
return parameters of the recvfrom() call, so that the server
may later use them to send replies. The sendto() call is
translated by the emulator to a psirp_publish() call on
the outgoing SId/RId pair generated by the IP address and
UDP port provided by the caller in the socket call. In addition,
the IP address and UDP port stored in the socket structure
of the sender are inserted as metadata in the publication, as
explained above. The behavior of the client is symmetric;
the only difference is that the client must know in advance
the IP address and UDP port of the server to issue the first
sendto() call.

C. Stream Socket Calls

Figure 4 shows how Stream calls are emulated. The
socket() and bind() calls (the latter is optional on the
client side) operate exactly as in the Datagram case, leading
to the calculation of an SId/RId pair for incoming publications
at each endpoint. Only the structure created in the emulator is
different: a connected Stream socket must store both local and
remote endpoint address and SId/RId pairs, since in Stream
sockets data transfer calls do not indicate addresses, unlike
in Datagram sockets. The listen() call is only used for
housekeeping: it creates a list for storing incoming connection
requests until the emulator can service them.

The main differentiation from a Datagram Socket however
is that in a Stream socket a new socket needs to be created
on the server side when a connection is established, leaving

the original socket to handle additional connection requests.
When accept() is called to indicate that the server is
ready to receive a new connection request, the emulator calls
psirp_subscribe_sync() on its incoming SId/RId pair
in order to receive the next connection request. On the client
side, when connect() is called to initiate a connection, the
emulator first uses the IP address and TCP port passed to
that call, which the client knows in advance, to calculate the
SId/RId pair of the server and then calls psirp_publish()
to send it an empty publication, containing as metadata
its own IP address and TCP port. Finally, the client calls
psirp_subscribe_sync() on its incoming SId/RId pair
and waits for a reply from the server.

When the server receives the client’s publication, the emu-
lator creates a new socket structure, using the local endpoint
address from the existing socket and the remote endpoint
address from the publication metadata. The server calculates
the SId and RId for each endpoint as usual, but then it
XORs the original local and remote RId and stores the result
as its new local RId. As a result, connected sockets are
differentiated in the server from unconnected ones as they
use both endpoint addresses to calculate the RId for incoming
data. Finally, the server calls psirp_publish() to send an
empty publication to the client’s incoming SId/RId pair. When
this publication is received by the client, the client’s socket
structure is also updated by calculating the new incoming
SId/RId pair of the server as above and the connect() call
returns.

At this point connection establishment is complete, and



4 PUBLISHED IN: PROCEEDINGS OF THE FUTURE INTERNET SYMPOSIUM 2010

socket()

bind()

recvfrom()

sendto()

Process

Server

psirp_subscribe_sync()

psirp_publish()

psirp_publish()

psirp_subscribe_sync()

Socket calls

Process

Blocks

PSIRP calls

socket()

bind()

sendto()

recvfrom()

Blocks

Client

Socket callsPSIRP calls

Blocks

Process

Blocks

Process

Calculate SId/RId Calculate SId/RId

Fig. 3. Datagram socket calls

socket()

bind()

recv()

send()

Process

Server

psirp_subscribe_sync()

psirp_publish()

psirp_publish()

psirp_subscribe_sync()

Socket calls

Process

Blocks

PSIRP calls

socket()

connect()

send()

recv()

Blocks

Client

Socket callsPSIRP calls

Blocks

Process

Blocks

Process

listen()

accept()

psirp_subscribe_sync()

Blocks

psirp_publish()

psirp_publish()

psirp_subscribe_sync()

Blocks

bind()

Calculate SId/RIdCalculate SId/RId

Calculate SId/RId

Fig. 4. Stream socket calls.



PUBLISHED IN: PROCEEDINGS OF THE FUTURE INTERNET SYMPOSIUM 2010 5

either side can use the send() and recv() calls to send
and receive data, respectively, without indicating a destination
address. Due to the modified server RId used for connected
sockets, there is no confusion between publications to con-
nected sockets (data) and unconnected sockets (connection
requests).

V. PERFORMANCE ASSESSMENT

In order to assess the overhead of the Socket API emulator,
we implemented a Trivial File Transfer Protocol (TFTP) [6]
application which transfers files using a simple stop and
wait protocol over a Datagram socket. This application can
execute either over a native UDP/IP implementation or over
our emulator. Since the emulator operates over the PSIRP
prototype implementation which introduces its own overhead,
we also wrote a native libpsirp version of the TFTP
client and server, by manually replacing socket calls with
the corresponding publish and subscribe calls, as explained
in the previous section. By executing the same experiments
with each TFTP version we can assess the overhead incurred
by libpsirp when a socket application is ported to it,
and the additional overhead incurred by our emulator to run
unmodified socket applications.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

UDP/IP Libpsirp Emulator

T
F

T
P

 O
ve

rh
ea

d 
(s

ec
)

System Time
User Time

Fig. 5. User and System overhead for each TFTP version.

Due to limitations in the PSIRP prototype, we use the TFTP
client and server to transport a small file consisting of 98
data packets with 1 KByte data payloads over an Ethernet. In
all versions, a TFTP header is attached to each data packet,
and then either UDP/IP headers, PSIRP headers or Socket
API emulator metadata and PSIRP headers are added to each
packet. We use the time command to compute the user space
and system space computation time incurred by each version.
Due to the coarse (10 ms) granularity of these timers, in each
experiment we perform 3 transfers back to back to reduce zero
timings; we repeated each experiment 25 times. In Figure 5 we
show the average user and system time for the TFTP versions
considered: the native socket version, the native libpsirp
version and the emulated socket version.

Despite the coarse timer granularity, it is clear that the
PSIRP prototype is slower than the native UDP/IP stack:
even the native libpsirp TFTP version is much slower

than the UDP/IP version. This is not surprising considering
that this is an early prototype, while the UDP/IP stack is
being optimized for 20 years. On the other hand, the emulated
socket version is only 17% slower than the native libpsirp
version, indicating that even though the emulator is unaware
of the nature of the application, the automated translation
between socket and libpsirp calls is not very costly. This is
very encouraging, as it means that as the PSIRP prototype im-
plementation becomes more optimized, the performance of the
emulated socket applications will also improve accordingly.

VI. CONCLUSIONS

We have presented the design and implementation of a
Sockets API emulator for the publish/subscribe oriented proto-
type implementation of the PSIRP architecture. This emulator
translates the socket calls used by existing Internet applications
into the calls provided by the libpsirp library of the PSIRP
prototype implementation. Our preliminary performance eval-
uation indicates that the performance overhead introduced by
the emulator is quite low, on the order of 17%, thus it is a
reasonable option for the execution of socket applications over
PSIRP.

REFERENCES

[1] D.E. Comer and J.C. Lin. TCP buffering and performance over an ATM
network. Internetworking: Research and Experience, 6(1):1–13, March
1995.

[2] N. Fotiou, G.C. Polyzos, and D. Trossen. Illustrating a publish-subscribe
Internet architecture. In Proc. of the 2nd Euro-NF Workshop on Future
Internet Architectures, June 2009.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N. Briggs, and
N. Braynard. Networking Named Content. In Proc. of the ACM CoNEXT,
pages 1–12, 2009.

[4] P. Jokela and J. Tuonnonen. Progress report and evaluation of imple-
mented upper and lower layer. PSIRP Deliverable 3.3, June 2009.

[5] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should Internet
service providers fear peer-assisted content distribution? In Proc. of the
Internet Measurement Conference (IMC), pages 63–76, 2005.

[6] K. Sollins. The TFTP protocol (revision 2). RFC 1350, July 1992.
[7] W.R. Stevens. UNIX Network Programming: Networking APIs, volume 1.

Prentice Hall, second edition, 1998.


