
On the Termination of

the Chase Algorithm

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat
der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

von
Herrn Dipl.-Inf. bacc.math. Michael Meier

geboren am 14.11.1982
in Freiburg im Breisgau

Dekan:
Prof. Dr. Hans Zappe

Gutachter:
Prof. Dr. Georg Lausen
Prof. Dr. Bernhard Nebel

Datum der Einreichung: 16. Dezember 2009
Datum der Disputation: 21. Juni 2010

Danksagung

Ich danke den Dozenten des Graduiertenkollegs 806 für das zwei-
jährige Promotionsstipendium. Auÿerdem danke ich meinem Be-
treuer Georg Lausen für die Freiheit mich das erforschen zu lassen,
was ich wollte und für die Weiter�nanzierung durch eine Lan-
desstelle nach Ablauf des Stipendiums.
Dem Mathematischen Institut der Universität Freiburg bin ich
zutiefst zu Dank verp�ichtet für die exzellente Ausbildung, die
ich dort erhalten durfte. Insbesondere die Kenntnisse, die ich
in den Lehrveranstaltungen von Jörg Flum erhalten habe, waren
essentiell für meine Arbeit.
Ohne meine beiden Kollegen Michael Schmidt und Thomas Hor-
nung hätte es diese Arbeit niemals gegeben. Die zahlreichen
nichtwissenschaftlichen Diskussionen, die wir geführt und die
Späÿe, welche wir zusammen gemacht haben, haben mir unendlich
viel bedeutet. Ich hätte ohne die beiden niemals eine Dissertation
in Informatik geschrieben. Besonders möchte ich Charlie dem
Einhorn für seine Existenz und Nicht-Eindeutigkeit danken. Ich
werde die Zeit mit den beiden sehr vermissen!
Ich möchte auch meinen anderen Kollegen Elisabeth Lott, Kerstin
Pfei�er, Fang Wei, Norbert Küchlin, Florian Schmedding, Kai Si-
mon, Matthias Ihle, Martin Weber, Philipp Sorst und Liaquat Ali
danken, auch wenn wir uns auÿer zu gelegentlichen gemeinsamen
Essensgängen nicht so viel gesehen haben. Die Atmosphäre und
der Umgang miteinander hier am Lehrstuhl ist sehr warm und
herzlich.
Ich danke Assja Ignatova, Miryana Mircheva, Sascha Fröschl,
Pablo Yanez Trujillo und Ingmar Berger für ihre Unterstützung
in allen Lebenslagen. Auÿerdem gebührt meiner geliebten Assja
ein weiterer Dank für die vielen Peperoni. Besbroi mnogo da be
muci!
Zuguterletzt möchte ich meine geliebten Schwestern Ingelore und
Marlene, meine Eltern und meine Tante Rita und ihren Mann
Martin dankend erwähnen.

v

Zusammenfassung

Die vorliegende Arbeit behandelt das Problem der Terminierung
des Chase-Algorithmus, einem wichtigen Hilfsmittel für viele
Datenbank-Anwendungen wie z.B. die Optimierung konjunktiver
Anfragen, Anfragebeantwortung mittels Sichten, Datenaustausch
und Datenintegration. Die grundlegende Arbeitsweise des Chase-
Algorithmus beruht darauf, gegeben eine Datenbankinstanz und
eine Menge von Integritätsbedingungen, Verletzungen dieser In-
tegritätsbedingungen auf der Instanz zu reparieren. Es ist seit
langem bekannt, dass der Chase-Algorithmus nicht notwendiger-
weise für alle möglichen Eingaben terminiert. Im Allgemeinen ist
dies sogar unentscheidbar. Diese Arbeit fasst bestehende Ansätze
bezüglich hinreichender Terminierungsbedingungen für den Chase
zusammen und entwickelt, darauf aufbauend, neue Techniken, die
es uns erlauben schwächere hinreichende Terminierungsbedingun-
gen aufzustellen. Insbesondere entwickeln wir, zum allerersten
Mal überhaupt in der Literatur, Methoden, die es uns erlauben,
die Terminierung mindestens einer Chase-Sequenz zu garantieren
und nicht notwendigerweise von allen. Wir untersuchen, wie un-
sere Bedingungen zu den bestehenden Ansätzen in Beziehung ste-
hen und geben obere Schranken für ihre algorithmische Komplex-
ität an. Diese Analyse führt zu einem Algorithmus, der die Kom-
plexität dieser Tests reduziert. Als weiterer Beitrag dieser Ar-
beit führen wir den Bereich der datenabhängigen Terminierungs-
bedingungen ein und präsentieren hinreichende Terminierungsbe-
dingungen bezüglich festvorgegebener Datenbankinstanzen. Diese
erlauben es uns, Aussagen über die Terminerung zu tre�en, wenn
die daten-unabhängigen Methoden keine Aussage erlauben. Als
Anwendungen unserer Techniken transferieren wir unsere Meth-
oden in den Bereich der semantischen Anfrageoptimierung und
entwickeln eine Theorie zur regel-basierten Minimierung.

vii

On the Termination of

the Chase Algorithm

Michael Meier

June 22, 2010

�Mathematics, rightly viewed, possesses not only truth, but
supreme beauty - a beauty cold and austere, like that of sculpture.�

Bertrand Russell (1872 - 1970)

Abstract

We study the termination problem of the chase algorithm, a cen-
tral tool in various database problems such as the constraint impli-
cation problem, conjunctive query optimization, rewriting queries
using views, data exchange, and data integration. The basic idea
of the chase is, given a database instance and a set of constraints
as input, to �x constraint violations in the database instance. It
is well-known that for an arbitrary set of constraints the chase
does not necessarily terminate (in general, it is even undecidable
if it does or not). Addressing this issue, we review the limitations
of existing su�cient termination conditions for the chase and de-
velop new techniques that allow us to establish weaker su�cient
conditions. For the �rst time in the literature, we develop meth-
ods that allow us to ensure the termination of at least one chase
sequence and not necessarily of all. We then study the interrela-
tions of our termination conditions with previous conditions and
the complexity of checking them. This analysis leads to an al-
gorithm that reduces the complexity of checking our termination
conditions. As another contribution, we study the problem of
data-dependent chase termination and present su�cient termina-
tion conditions with respect to �xed instances. They might guar-
antee termination when our data-independent techniques cannot.
As applications of our techniques beyond those already mentioned,
we transfer our results into the �eld of semantic query optimiza-
tion in the presence of types and develop the theory of rule-based
minimization under constraints.

xiii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Contributions . 3
1.3 How (Not) to Read this Thesis . 10
1.4 Summary of Publications . 12

2 Preliminaries 13

2.1 Mathematical Logic . 13
2.1.1 Set-theoretic Basics . 13
2.1.2 Signatures and Formulas . 14
2.1.3 Structures and Satisfaction 15
2.1.4 Complexity Theory . 16

2.2 Relational Databases . 17
2.2.1 Relational Database Instances 17
2.2.2 Examples and Motivation 17
2.2.3 Relational Constraints . 18
2.2.4 Satisfaction and Homomorphisms 20

3 The Chase Algorithm 21

3.1 Informal Description . 21
3.2 Formal Description . 22
3.3 A Formal Example . 24
3.4 Logical Properties . 24
3.5 The Oblivious Chase . 25
3.6 Previous Results on Chase Termination 26

3.6.1 Cascading of Labeled Nulls 26
3.6.2 Weak Acyclicity . 27
3.6.3 Strati�cation . 28
3.6.4 Super-weak Acyclicity . 29

4 Classical Areas of Application 33

4.1 The Implication Problem . 33
4.2 Query Optimization: Chase & Backchase 34

xv

xvi Contents

4.3 Data Exchange . 36
4.4 Query Answering Using Views . 37

5 Four Flavors of Chase Termination 39

6 A Study of CT∀∀ 43

6.1 C-Strati�cation . 44
6.2 Importance of Null Positions . 48
6.3 Safe Constraints . 49
6.4 Safely Restricted Constraints . 54
6.5 Inductively Restricted Constraints 61
6.6 The ∀∀-T-Hierarchy . 64
6.7 An Algorithmic Approach . 70

7 Exploring CT∀∃ 73

7.1 Strati�cation . 74
7.2 The ∀∃-T-Hierarchy . 79
7.3 A More E�cient Membership Test 82

8 Data-dependent Chase Termination 85

8.1 Motivation . 85
8.2 On CTI,∀ and CTI,∃ . 88
8.3 Results for CTI,∀ . 89
8.4 Results for CTI,∃ . 92
8.5 Stop the Chase: Monitoring . 94

9 Applications 99

9.1 Semantic Query Optimization in the Presence of Types 99
9.1.1 Additional Preliminaries . 103
9.1.2 Constraints and Types . 108
9.1.3 Semantic Query Optimization in Typed Relational Schemas 112
9.1.4 Complexity . 121
9.1.5 Chase Termination: Eliminating Negation and Disjunction . 125

9.2 Minimization of RDF Graphs . 128
9.2.1 Additional Preliminaries . 130
9.2.2 Formal Description and Examples 133
9.2.3 Complexity Results . 136
9.2.4 A Tractable Fragment . 138
9.2.5 Query Answering . 140

10 Related Work 143

10.1 Constraints in Databases . 143

xvii xvii

10.2 Previous Results on Chase Termination 144
10.3 Further Chase-Like Algorithms . 144
10.4 Classical Applications . 145
10.5 Semantic Query Optimization in the Presence of Types 147
10.6 Rule-Based Minimization . 147

11 Conclusions and Future Work 149

11.1 Conclusions . 149
11.2 Perspectives . 150

Bibliography 152

Index 161

List of Figures

1.1 High-level summary of contributions. 4
1.2 Data- and sequence-independent chase termination conditions. . . . 6
1.3 A reading graph. 11

3.1 Sample database schema and constraints. 29
3.2 Dependency graph for Σ from Example 9. 30

5.1 A summary of Proposition 25 and Theorem 26. 41

6.1 A sample constraint. 44
6.2 C-chase graph for Example 31. 46
6.3 On the left hand side is the dependency graph and on the right

hand side the propagation graph (it has no edges). 50
6.4 On the left hand side is the dependency graph and on the right

hand side the propagation graph (it has no edges). 52
6.5 Graph of the 2-restriction system for Example 51. 56
6.6 Algorithm to compute subsets of Σ. 62
6.7 Algorithm to decide membership in ∀∀-T[·]. 70
6.8 2-restriction system for Example 79. 71

7.1 Dependency graph for Example 84. 75
7.2 Chase graph for Example 86. 77
7.3 Chase graph for Example 93. 81
7.4 Chase graph for Example 95. 81
7.5 Algorithm ∀∃-check to decide membership in ∀∃-T[·]. 82

8.1 Sample database schema and constraints. 86
8.2 Dependency graph for Σ from Figure 8.1. 87
8.3 C-chase graph for Example 106. 93

9.1 Example type hierarchy. 101
9.2 An RDF graph modeling some train connections. 129
9.3 An RDF graph and three possible reductions along transitivity. . . 134

xix

Chapter 1

Introduction

Riccardo: �What is this all about?�

Sergio: �I don't know.�

Alice: �It's about a Swiss Army knife for database problems.�

1.1 Motivation

The chase procedure is a fundamental algorithm that has been successfully applied
in a variety of database applications [Maier et al., 1979; Johnson and Klug, 1982;
Beeri and Vardi, 1984; Halevy, 2001; Deutsch et al., 2007; Lenzerini, 2002; Fagin
et al., 2005; Fuxman et al., 2005; Deutsch et al., 2006; Olteanu et al., 2009].
Originally proposed to tackle the implication problem for data dependencies [Maier
et al., 1979; Beeri and Vardi, 1984] and to optimize conjunctive queries (CQs)
under data dependencies [Aho et al., 1979; Johnson and Klug, 1982], it has become
a central tool in semantic query optimization (SQO) [Popa and Tannen, 1999;
Deutsch et al., 2006; Schmidt et al., 2008]. For instance, the chase can be used to
enumerate minimal CQs under a set of dependencies [Deutsch et al., 2006], thus
supporting the search for more e�cient query evaluation plans. Beyond SQO,
it has been applied in many other contexts, such as data exchange [Fagin et al.,
2005], peer data exchange [Fuxman et al., 2005], data integration [Lenzerini, 2002],
query answering using views [Halevy, 2001; Deutsch et al., 2007], and probabilistic
databases [Olteanu et al., 2009].
The core idea of the chase algorithm is simple: given a set of dependencies (also
called constraints) over a database schema and a �nite database instance as input,
it �xes constraint violations in the instance. As a minimal and intuitive scenario we
consider a database graph schema that provides a relation E(src, dst), which stores
directed edges from node src to node dst, and a node relation S(s) containing nodes
with some distinguished properties enforced by constraints. These constraints will
vary from example to example and we will denote nodes in S as special nodes in
the following. We sketch the idea of the chase algorithm using a single constraint

α1 := ∀x(S(x)→ ∃y E(x, y)),

1

2 1.1 Motivation

stating that each special node has at least one outgoing edge. Now consider the
sample database instance

I := {S(a), S(b), E(a, b)}.

It is easy to see that I does not satisfy α1 because it does not contain any outgoing
edge for special node b. In its e�ort to �x the constraint violations in the database
instance, the chase procedure would create the tuple

t1 := E(b, n1),

where n1 is a so-called fresh null value. The instance

I ′ := I ∪ {t1}

satis�es α1, so the chase terminates and returns I ′ as result.
One major problem with the chase algorithm is that it does not terminate in the
general case. To give the reader an idea of the problem, let us sketch a scenario
that induces a non-terminating chase sequence. We replace the constraint α1 by

α2 := ∀x(S(x)→ ∃y E(x, y), S(y)),

which asserts that each special node links to another special node. Now consider
the instance I from before. Obviously, I does not satisfy α2 because special node
b has no outgoing edge. In response, the chase �xes this constraints violation
by adding the two tuples E(b, n1) and S(n1) to I, where n1 is a fresh null value.
Constraint α2 is then �xed with respect to value b, but now the special node n1

introduced in the last chase step violates α2. In subsequent steps the chase would
add

E(n1, n2), S(n2), E(n2, n3), S(n3), . . . ,

where n2, n3, . . . are fresh null values. Hence, given I and α2 as input, the chase
will never terminate.
In case several constraints are violated, we arbitrarily choose one of them and re-
pair it. Thus, the result of the chase depends on the order in which the constraints
are applied. We call such an order a chase sequence. We point out that in general
it is undecidable if the chase terminates for all or for at least one chase sequence,
even for a �xed instance [Deutsch et al., 2008].

Addressing the problem of non-terminating chase sequences, several su�cient con-
ditions for the input constraints have been proposed that guarantee termination
on every database instance and every possible chase sequence [Fagin et al., 2005;
Deutsch et al., 2008; Schmidt et al., 2008; Meier et al., 2009a]. The common idea

3 1.2 Contributions

is to statically assert that there are no positions in the database schema where
fresh null values are cyclically created in. The term position refers to a position
in a relational predicate, e.g. E(src, dst) has two positions, namely src, denoted as
E1, and dst, denoted as E2. The non-terminating chase sequence discussed before,
for instance, cyclically creates fresh null values in both position E1 and S1.

One well-known termination condition for the chase is weak acyclicity [Fagin et al.,
2005]. Roughly speaking, it implements a global study of the input constraints,
to detect cyclically connected positions in the constraint set that introduce some
fresh null values. In [Deutsch et al., 2008] it is claimed1 that a newly developed
condition called strati�cation improves weak acyclicity, showing that it su�ces to
assert weak acyclicity locally for subsets of constraints that might cyclically cause
to �re each other. It is important to notice that the techniques introduced in [Fagin
et al., 2005; Deutsch et al., 2008] take only the constraints into account and not
the database instance. We call such termination conditions data-independent; their
result is either the guarantee that the chase with these constraints terminates for
every database instance or that no predictions can be made.

1.2 Contributions

A high-level description of our results with respect to chase termination is de-
picted in Figure 1.1. It shows that we divide the problem of chase termina-
tion into two branches. The �rst one studies data-independent methods. As the
term data-independent suggests, these chase termination conditions work for every
database instance. In contrast the second branch studies methods that depend
on a given database instance, which is why they are called data-dependent. Both
branches are divided again into two subbranches, namely sequence-independent
and sequence-dependent methods. Sequence-independent chase termination con-
ditions can guarantee chase termination no matter what chase sequence has been
taken during the execution of the chase, in di�erence to that sequence-dependent
conditions give termination guarantees only for (at least) one chase sequence. So
far, the only branch that has been considered in the literature are the data- and
sequence-independent methods. We want to point out that the current thesis is
the �rst study of sequence-dependent methods and data-dependent termination
conditions at all. In the following we summarize the key concepts and ideas of our
analysis and survey the main results.

Data-independent chase termination. As discussed before, the source of
non-terminating chase sequences are fresh null values that are cyclically created

1We will later show that this claim turns out to be wrong.

4 1.2 Contributions

chase termination

data-independent

sequence-independentsequence-dependent

data-dependent

sequence-independentsequence-dependent

Figure 1.1: High-level summary of contributions.

at runtime in some position(s). We develop new techniques that allow us to
statically approximate the set of positions where null values are created in or
copied to during chase application, and use them to develop three hierarchies of
su�cient termination conditions that are strictly more general than the weakest
data-independent termination conditions known so far. The �rst hierarchy, the
so-called ∀∀-T-hierarchy, takes sequence-independent termination into account,
whereas the remaining ∀∃-T-hierarchy is sequence-dependent. Our results are
based on the following ideas.

(1) Correction and exploration of the strati�cation condition: We show that strat-
i�cation does not generally ensure termination of every chase sequence, as stated
by the authors of [Deutsch et al., 2008], but of at least one chase sequence. Besides,
we show that such a sequence can be statically determined independently of the in-
put instance. This opens the door for the area of su�cient termination conditions
for the chase that ensure, independently of the underlying data, the termination
of at least one chase sequence and not necessarily of all. Furthermore, we propose

5 1.2 Contributions

a possible correction of the strati�cation condition which ensures the termination
for every chase sequence, as intended by the authors of [Deutsch et al., 2008], using
the oblivious chase. This correction forms the basis for nearly all further results
on sequence-independent chase termination.

(2) Identi�cation of harmless null values: Often constraints introduce fresh null
values in a certain position, but the (�xed) size of the database instance implies
an upper bound on the number of null values that might be introduced in this
position. To give an example, consider the constraint

α3 := ∀x, y(S(x), E(x, y)→ ∃z E(z, x)),

which may create fresh null values in position E1. Whenever α3 is part of a con-
straint set that does not copy null values to or create null values in position S1,
the number of fresh null values that might be introduced in position E1 by α3 is
implicitly �xed by the number of entries in S.

(3) Analysis of the �ow of null values: We statically approximate the set of posi-
tions to which null values might be copied during chase application, by a sophisti-
cated study of the interrelations between the individual constraints. We illustrate
the idea by a simple example. Consider the constraints

β1 := ∀x, y(S(x), E(x, y)→ E(y, x)) and
β2 := ∀x, y(S(x), E(x, y)→ ∃z E(y, z), E(z, x)),

which assert that each special node with an outgoing edge has cycles of length
2 and 3 through all outgoing edges. We observe that none of these constraints
inserts fresh null values into relation S, so the chase will terminate as soon as
β1 and β2 have been �xed for all special nodes with an outgoing edge, i.e. after
a �nite number of steps. Somewhat surprisingly, none of the existing conditions
recognizes chase termination for the above scenario. The reason is that they do
not analyse the �ow of null values. Our approach exhibits such an analysis and
guarantees chase termination for the two constraints above.

(4) Inductive decomposition of the constraint set: The constraint set in the previ-
ous example is not dangerous because no fresh null values are created in position
S1. Let us, in addition to β1 and β2, consider the constraint

β3 := ∃x, y S(x), E(x, y),

stating that there is at least one special node with an outgoing edge. Clearly, β3

�res at most once, so the chase for the constraint set {β1, β2, β3} will still termi-
nate. However, β3 complicates the analysis because it �infects� position S1 in the

6 1.2 Contributions

weakly
acyclic

safec-strati�ed

inductively restricted

∀∀-T[3]

∀∀-T[4]

∀∀-T[5]

.

.

.

Figure 1.2: Data- and sequence-independent chase termination conditions.

sense that now null values may be created in this position. We resolve such situa-
tions by an (inductive) decomposition of the constraint set. When applied to the
above example, our approach would recognize that β3 is not cyclically connected
with β1 and β2, and decompose the constraint set into the two subsets {β1, β2}
and {β3}, which then are recursively inspected.

Based upon these ideas we develop two novel su�cient chase termination condi-
tions, called safety and inductive restriction. Figure 1.2 surveys our main results
in the �eld of sequence-independent termination conditions and relates them to
the previous termination condition weak acyclicity and to c-strati�cation, the cor-
rected version of strati�cation. All classes in the �gure guarantee chase termina-
tion in polynomial-time data complexity and all inclusion relationships are strict.
As it can be seen, safety generalizes weak acyclicity and is further generalized by
inductive restriction. On top of inductively restricted constraints we ultimately

7 1.2 Contributions

de�ne a hierarchy of su�cient termination conditions called ∀∀-T-hierarchy. To
give an intuition for a �xed class in this hierarchy, say ∀∀-T[k], we study the �ow
and creation of fresh null values in detail for chains of up to k constraints that
might cause to �re each other in sequence.

Based on the ∀∀-T-hierarchy and strati�cation, we develop a hierarchy of sequence-
dependent termination conditions for the chase. The ∀∃-T-hierarchy combines
sequence-dependent decomposition of the constraint with the ideas of the ∀∀-T-
hierarchy. In particular, every level of the ∀∃-T-hierarchy is strictly contained in
the same level of the ∀∀-T-hierarchy.

An algorithm. It can be checked in polynomial time if a constraint set is safe;
in contrast, the recognition problem for inductively restricted constraints and all
classes in the ∀∀-T-hierarchy is in coNP. We develop an e�cient algorithm that
accounts for the increasing complexity of the recognition problem. The algo-
rithm can be used to test membership of a constraint set in a �xed level of the
∀∀-T-hierarchy. The basic idea is to combine the di�erent su�cient termination
conditions in order to reduce the complexity of the termination check where pos-
sible. We discuss that the algorithm can be easily adapted so that it yields an
e�cient membership test for the ∀∃-T-hierarchy.

Data-dependent chase termination. Whenever the input constraint set does
not fall into some �xed level of the ∀∀-T-hierarchy, no termination guarantees for
the general case can be derived. Arguably, reasonable applications should never
risk non-termination, so the chase cannot be safely applied to an arbitrary instance
in this case. Tackling this problem, we study data-dependent chase termination:
given constraint set Σ and a �xed instance I, does the chase with Σ terminate
on I for every chase sequence or at least for one? This setting makes particularly
sense in the context of SQO, where the query � interpreted as database instance
� is chased: typically, the size of the query is small, so the �data� part can be
e�ciently analyzed as opposed to the case where the input is a large database
instance. We propose two complementary approaches.

(1) Static analysis: Our �rst, static, scheme relies on the observation that if the
instance is �xed, we can ignore constraints in the constraint set which will never
�re when chasing the instance, i.e. if general su�cient termination guarantees hold
for those constraints that might �re. As a fundamental result, we show that in
general, it is undecidable if a constraint will never �re on a �xed instance. Still,
we give a su�cient condition that allows us to identify such constraints in many
cases. We derive, based on the previous data-independent methods, su�cient data-
dependent conditions for both the sequence-dependent and -independent side.

8 1.2 Contributions

(2) Monitoring: Whenever the static approach fails, our second, dynamic, ap-
proach comes into play: we run the chase and track cyclically created fresh null
values in a so-called monitor graph. We then �x the maximum depth of cycles in
the monitor graph and stop the chase when this limit is exceeded: in such a case,
no termination guarantees can be made. However, we show that each �xed search
depth implicitly de�nes a class of constraint-instance pairs for which the chase
terminates. Intuitively, the search depth limit can be seen as a natural condition
that allows us to stop the chase when �dangerous� situations arise. Under these
considerations, our approach adheres to situations that are likely to cause non-
termination, so it is preferable to blindly running the chase and aborting after a
�xed amount of time, or a �xed number of chase steps. Applications may �x the
search depth following a pay-as-you-go principle.

Ultimately, the combination of our static and dynamic analysis often allows us to
safely apply the chase procedure although no data-independent termination guar-
antees can be made.

Applications. Finally, we apply our methods in di�erent contexts. First, we con-
sider semantic query optimization in the presence of types and type hierarchies,
then we look at an application in the Semantic Web. Both of these areas have in
common that they use the chase as a central tool. Therefore, our results on chase
termination directly apply to them.

(1) Semantic query optimization in the presence of types. Both semantic and type-
based query optimization rely on the idea that queries often exhibit non-trivial
rewritings if the state space of the database is restricted. Despite their close con-
nection, these two problems to date have always been studied separately. We
present a unifying, logic-based framework for query optimization in the presence
of data dependencies and type information. It builds upon the classical chase algo-
rithm and extends existing query minimization techniques to considerably larger
classes of queries and dependencies. As a technical challenge, our setting involves
chasing of (possibly unions of) conjunctive queries in the presence of constraints
containing negation and disjunction.

In the following, we sketch the major contributions of our work in more detail.

• We develop a framework that allows to integrate type-based optimization
into the semantic optimization process. In this framework, data dependen-
cies (modeled as �rst-order sentences) coexist with a so-called type system,
which is represented as

9 1.2 Contributions

� a set T of unary predicate symbols, one for each type,

� a type interpretation for constants appearing in the query and the con-
straints, and

� a set of full constraints (i.e., constraints without existential quanti�-
cation) modeling interrelations between the types, such as inclusion or
disjointness relationships.

We are not aware of database-related type interrelations that cannot be
encoded using this framework.

• On top of our framework, we develop a variant of the C&B algorithm
from [Deutsch et al., 2006] that can be used to optimize and minimize unions
of conjunctive queries with negation with respect to a constraint base, a type
system, and a generic cost function. Whether or not this framework gives us
the power to compute minimal rewritings of an input query lastly depends on
the termination of the underlying chase, just like in the context of standard
TGDs and EGDs. Although stated for our speci�c optimization framework,
these results can be understood as consequent enhancements of previous
results on containment testing and minimization under data dependencies
using the chase.

• In response to the central role of chase termination in our setting, we develop
novel chase termination conditions for constraint sets involving disjunction
and negation. Rather than developing these termination conditions from
scratch, our approach is to carry over existing su�cient termination con-
ditions for standard TGDs and EGDs, i.e. we show how to make existing
conditions applicable in the context of constraint sets involving disjunction
and negation.

• We study the complexity of decision problems related to our type-based se-
mantic optimization scheme. In particular, our results con�rm that � when-
ever we can guarantee chase termination � important problems like testing
query equivalence or minimality under constraints and types with respect to
a generic cost function fall into low levels of the polynomial hierarchy. We
therefore shall expect that our techniques are feasible in practice if the size
of the queries is small.

(2) Rule-based minimization of RDF graphs under constraints: The Semantic Web
[Berners-Lee et al., 2001] facilitates semantic interoperability and exchange of data
between applications. The Resource Description Framework [World Wide Web
Consortium, 2003a] was proposed by the World Wide Web consortium as a stan-
dard language for data in the Semantic Web. Conceptionally, RDF graphs are

10 1.3 How (Not) to Read this Thesis

collections of so-called triples of knowledge, where each knowledge triple in the
database has the form (subject, predicate, object) and models the binary relation
predicate between the subject and the object. While structurally homogeneous,
the triple format o�ers great �exibility and allows to establish statements about
and connections between resources. As RDF has only very simple language con-
structs, RDF data often becomes large. There has been a line of research [World
Wide Web Consortium, 2003c; Gutierrez et al., 2004, 2003; Iannone et al., 2005;
Esposito et al., 2005] to minimize RDF graphs without losing any information,
i.e. retaining homomorphic equivalence. This allows applications to exchange re-
duced data, thus minimizing storage cost, data-shipping and query evaluation
time. In [World Wide Web Consortium, 2003c; Gutierrez et al., 2004, 2003] the
notion of lean graphs was introduced as a minimal representation of an RDF graph.
Basically, a lean graph eliminates triples which contain blank nodes that specify
redundant information. For example, in the graph

{(a1, a2, a3), (X, a2, Y)}

the triple (X, a2, Y) can be eliminated (X, Y are blank nodes) because both X and
Y are treated like existentially quanti�ed variables in the RDF semantics [World
Wide Web Consortium, 2003c] and the triple (a1, a2, a3) witnesses the existence
of such a resource (X, a2, Y). In [Iannone et al., 2005; Esposito et al., 2005]
di�erent algorithms are introduced that approximately compute a lean version of
a given RDF graph. The notion of a lean graph is orthogonal to derivability by
application-speci�c rules. If such rules exist, a lean graph may still contain triples
that are redundant in the sense that they need not be explicitly stored because
they could be derived by the rules as well. We propose a user-speci�c redundancy
elimination technique based on rules. Usually, rules are interpreted generatively,
i.e. if we have a rule of the form

P(X, Y)← R(Y,X)

and we �nd R(a, b) in our data, we add P(b, a) to it. In our work, we use rules in
the following sense: whenever P(b, a) and R(a, b) are in our data, we delete P(b, a).
If later needed, we can recompute the tuple P(b, a) with the help of our rule, i.e. we
minimize a given RDF graph such that all deleted triples can be reconstructed. It
may not be surprising that we will use the chase as an important tool during the
process of redundancy elimination.

1.3 How (Not) to Read this Thesis

Although we provide all relevant basics to the chase algorithm, we would not
recommend this document for a beginner in this �eld. Furthermore, it is not

11 1.3 How (Not) to Read this Thesis

2

34

5

6

7

8

9

10

Figure 1.3: A reading graph.

suited for selective or cross-reading. This is due to the simple fact that some
chapters depend on the techniques introduced in previous ones. A reading graph
for this document is depicted in Figure 1.3. In order to further facilitate reading,
we have included all proofs in the main text and not in an appendix. We expect
the reader to be familiar with mathematical thinking, common notation, and proof
techniques.

The thesis is structured as follows. Chapter 2 introduces the usual background of
mathematical logic including some specializations to database theory. The chase
algorithm, main subject of this thesis, is informally and formally presented in
Chapter 3 together with its logical properties and previous results on termination.
Afterward, we explore some of the chase's main applications like query optimiza-
tion, data exchange and query answering using views. Chapter 5 explains four
di�erent aspects of chase termination, three of them not considered in the litera-
ture so far. Next, in Chapter 6, we come to the core part of this thesis, namely
data- and sequence-independent chase termination, followed by data-independent
and sequence-dependent termination in Chapter 7. In Chapter 8, we introduce
data-dependent termination techniques. The subsequent Chapter 9 is devoted to
our application scenarios. The last two Chapters 10 and 11 contain related work,
a summary of the thesis and possible directions for future work.

12 1.4 Summary of Publications

1.4 Summary of Publications

Parts of the work that is discussed in the course of this thesis have been published
at major database venues and as technical reports. In the following, we summarize
publications that are related to this thesis and sketch their relations to this work.

Most of the author's publications are related to the chase algorithm. The �rst ter-
mination conditions were published in [Schmidt et al., 2008], followed by [Meier
et al., 2009b] and its technical report [Meier et al., 2009a]. The main results of
Chapters 6 and 8 come from the work in [Meier et al., 2009d] and its corresponding
technical report [Meier et al., 2009c]. Our contributions to the �eld of semantic
query optimization in the presence of types and sequence-dependent chase termi-
nation are from [Meier et al., 2010].

Another line of publications is related to the Semantic Web. In [Lausen et al.,
2008] we demonstrated the use of integrity constraints for SPARQL processing in
RDF databases. In the follow-up paper [Meier, 2008] we presented our idea of a
rule-based minimization method under constraints from Section 9.2.
Our works in [Schmidt et al., 2008, 2010] related to the complexity of the SPARQL
query language and possible optimization approaches are not covered in this thesis.

Chapter 2

Preliminaries

Riccardo: �I'm getting out of patience!�

Alice: �Calm down, we �rst need the very basics.�

In this chapter we introduce the necessary background from mathematical logic
and database theory, that forms the basis for this thesis. We mostly follow the
standard de�nitions from these areas.

2.1 Mathematical Logic

We will introduce the usual background from mathematical logic as in [Ebbinghaus
et al., 1996] making some specializations to database theory. We closely follow
the presentation in [Ebbinghaus et al., 1996] and [Flum, 2002] and present the
usual de�nitions such as some basic set-theoretic notations, signatures, formulas,
structures and satisfaction of formulas.

2.1.1 Set-theoretic Basics

The natural numbers N do not include 0; N0 is used as a shortcut for N∪{0}. As
usual in algebra, N[X] is the set of polynomials with coe�cients in N. For n ∈ N,
we denote by [n] the set {1, ..., n} and [0] := ∅.
Further, for a set M , we denote by 2M its powerset and by |M | its cardinality.
For two sets M,N we write M ⊆ N is M is a subset of N . We write M ⊂ N if
M ⊆ N and M 6= N .
When we have two partial functions f, f ′ : M ↪→ N , we write f ⊆ f ′ i�1

{(x, f(x))|x ∈M, f(x) is de�ned} ⊆ {(x, f ′(x))|x ∈M, f ′(x) is de�ned}.
In some proofs we will require basic knowledge on quotient sets, which are well-
known in model theory. An equivalence relation is a binary relation that is re-
�exive, symmetrical, and transitive. The idea is that we take a set A and an

1We use �i�� as an abbreviation for �if and only if�.

13

14 2.1 Mathematical Logic

equivalence relation B ⊆ A × A and treat a, b ∈ A as equal if (a, b) ∈ B. The
resulting set A/B is called a quotient set. As a technical de�nition we set [a] to
be {b ∈ A|(a, b) ∈ B}. Then, we de�ne A/B to be the set {[a]|a ∈ A}.
Abusing notation, we denote by |s| also the length of a logical formula. Given
a tuple t = (t1, . . . , tn) we de�ne the tuple obtained by projecting on positions
1 ≤ i1 < · · · < im ≤ n as pi1,...,im(t) := (ti1 , . . . , tim).
We choose three pairwise disjoint in�nite sets ∆,∆null and V . We will refer to ∆
as the set of constants, to ∆null as the set of labeled nulls and to V as the set of
variables. Often we will denote a sequence of variables, constants or labeled nulls
by a if the length of this sequence is understood from the context.

2.1.2 Signatures and Formulas

A relational signature R is a �nite set of relational symbols {R1, ..., Rn}. To every
Ri ∈ R we assign a natural number ar(Ri) ∈ N, which we call the arity of Ri. The
arity of R, denoted by ar(R), is de�ned as max{ar(Ri)|i ∈ [n]}. Throughout the
rest of the thesis, we assume the database schema, the set of constants, and the set
of labeled nulls to be �xed. This is why we will suppress these sets in our notation.

AnR-formula is an expression which is obtained by a �nite number of applications
of the following rules:

1. If t1, t2 ∈ ∆ ∪ V , then t1 = t2 is an R-formula.

2. If R ∈ R and t1, ..., tar(R) ∈ ∆ ∪ V , then R(t1, ..., tar(R)) is an R-formula.

3. If ϕ is an R-formula, then ¬ϕ is an R-formula.

4. If ϕ, ψ are R-formulas, then (ϕ ∨ ψ) and (ϕ ∧ ψ) are R-formulas.

5. If ϕ is an R-formula and x ∈ V , then ∃xϕ and ∀xϕ are R-formulas.

We also de�ne abbreviations and write (ϕ→ ψ) instead of the expression (¬ϕ∨ψ)
and ϕ1, ..., ϕn instead of

∧
i∈[n] ϕi.

We assume that the reader is familiar with the concept of unique decomposition of
formulas into its subexpressions. Therefore, we de�ne the notion of free variables
in an R-formula by induction on its structure. For any R-formula ϕ, the set of
free variables , free(ϕ), is inductively de�ned as follows:

1. free(t1 = t2) := {t1, t2} ∩ V ,

2. free(R(t1, ..., tar(R))) := {t1, ..., tar(R)} ∩ V ,

15 2.1 Mathematical Logic

3. free(¬ψ) := free(ψ),

4. free((ψ1 ∨ ψ2)) := free(ψ1) ∪ free(ψ2),

5. free((ψ1 ∧ ψ2)) := free(ψ1) ∪ free(ψ2),

6. free(∀xψ) := free(ψ)\{x} and

7. free(∃xψ) := free(ψ)\{x}.

If for some R-formula ϕ, we have free(ϕ) = ∅, then we say that ϕ is a sentence.
We denote the set of R-formulas that are sentences by L0.

2.1.3 Structures and Satisfaction

An R-structure is a pair I = (A, a), where A is a non-empty set and a is a function
that is de�ned onR and assigns to every R ∈ R a subset of Aar(R), i.e. a(R) ⊆ Aar(R).
Instead of a(R), we will often write RI and (A,RI1, ...,R

I
n) instead of I = (A, a). An

assignment of variables in an R-structure I is a mapping γ : V → A. If γ is
an assignment of variables in I, then γ a

x
is the assignment that maps x to a and

otherwise coincides with γ. An R-interpretation I is a pair (I, γ), where I is
an R-structure and γ an interpretation in I. We write I a

x
for the interpretation

(I, γ a
x
).

We now turn toward the de�nition of satisfaction, but �rst we de�ne the value
of an R-interpretation on variables and constants. Let I = (I, γ) be an R-
interpretation. For every x ∈ V we set I(x) := γ(x) and for every c ∈ ∆, we
de�ne I(c) := c.
We de�ne the notion of satisfaction of R-formulas by R-interpretations by induc-
tion on the structure of an R-formula as follows:

1. I |= t1 = t2 ⇐⇒ I(t1) = I(t2),

2. I |= R(t1, ..., tn)⇐⇒ RI(I(t1), ..., I(tn)),

3. I |= ¬ϕ⇐⇒ not I |= ϕ,

4. I |= (ϕ ∨ ψ)⇐⇒ I |= ϕ or I |= ψ,

5. I |= (ϕ ∧ ψ)⇐⇒ I |= ϕ and I |= ψ,

6. I |= ∃xϕ⇐⇒ there is some a ∈ ∆ ∪∆null such that I a
x
|= ϕ and

7. I |= ∀xϕ⇐⇒ for all a ∈ ∆ ∪∆null it holds that I ax |= ϕ.

16 2.1 Mathematical Logic

From the famous coincidence lemma in classical logic [Ebbinghaus et al., 1996] we
can conclude that if ϕ is a sentence, then for all R-structures I and assignments
of variables γ1, γ2 in I it holds that

(I, γ1) |= ϕ⇐⇒ (I, γ2) |= ϕ.

Therefore, we introduce the abbreviation I |= ϕ which we use instead of (I, γ) |= ϕ
for any assignment of variables γ. For Φ ⊆ L0, we write I |= Φ i� I |= ϕ for every
ϕ ∈ Φ. Given ψ ∈ L0, we write Φ |= ψ i� for every R-structure I such that I |= Φ
it holds that I |= ψ.

2.1.4 Complexity Theory

As usual, we denote by PTime (or P, for short) the complexity class comprising
all problems that can be decided by a deterministic Turing machine (TM) in
polynomial time, and by Np the set of problems that can be decided by a non-
deterministic TM in polynomial time.
Given a complexity class C we denote by coC the set of decision problems whose
complement can be decided by a TM in class C. Given complexity classes C1 and
C2, the class C

C2
1 captures all problems that can be decided by a TM M1 in class

C1 enhanced by an oracle TM M2 for solving problems in class C2. Informally,
engine M1 can use M2 to obtain a yes/no-answer for a problem in C2 in a single
step. We refer the interested reader to [Arora and Barak, 2009] for a more formal
discussion of oracle machines. Finally, we de�ne the classes ΣP

i and ΠP
i inductively

as

ΣP
0 = ΠP

0 :=P and ΣP
n+1:=NPΣP

n , and put ΠP
n+1:=coNPΣP

n .

The polynomial hierarchy PH [Stockmeyer, 1976] is then de�ned as

PH =
⋃
i∈N0

ΣP
i

It is folklore that ΣP
i = coΠP

i , and that ΣP
i ⊆ ΠP

i+1 and ΠP
i ⊆ ΣP

i+1 holds. More-
over, the following inclusion hierarchies for ΣP

i and ΠP
i are known.

P = ΣP
0 ⊆ NP = ΣP

1 ⊆ ΣP
2 ⊆ · · · ⊆ PSPACE, and

P = ΠP
0 ⊆ coNP = ΠP

1 ⊆ ΠP
2 ⊆ · · · ⊆ PSPACE.

We consider hardness and completeness only with respect to polynomial-time
many-one reductions. 3Sat is the problem to determine, given a formula from
propositional logic in 3cnf as input, whether it is satis�able. It is well-known
that 3Sat is NP-complete [Arora and Barak, 2009]. The containment problem
for conjunctive queries with inequality predicates was proved to be ΠP

2 -complete
in [Kolaitis et al., 1998].

17 2.2 Relational Databases

2.2 Relational Databases

We will introduce the usual background from database theory while following the
standard de�nition from this area. We present the de�nition of relational database
instances, classes of relational constraints, an alternative characterization for their
satisfaction and provide a short motivation for them.

2.2.1 Relational Database Instances

A database schema R is a �nite set of relational symbols. A database position is
a pair (R, i) where R ∈ R and i ∈ [ar(R)], for short we write Ri, e.g. a three-ary
predicate S has three positions S1, S2, S3.
An R-atom is an expression of the form R(a1, ..., an), where a1, ..., an ∈ ∆∪∆null∪
V . We say that a variable, labeled null, or constant c appears e.g. in a position
R1 if there exists an R-atom R(c, ...).

In the rest of the thesis, we assume the database schema, the set of constants and
the set of labeled nulls to be �xed and therefore, we will omit them in our notations.

A database instance I is a set of equality-free R-atoms that contains only ele-
ments from ∆ ∪ ∆null in its positions, i.e. it contains only R-atoms of the form
R(a1, ..., an), where a1, ..., an ∈ ∆∪∆null. Please note that, by de�nition, a database
may be in�nite.
The domain of I, dom(I), is the set of elements from ∆ ∪∆null that appear in I,
i.e. dom(I) = {a1, ..., an|R(a1, ..., an) ∈ I} ⊆ ∆ ∪∆null.

For every sentence ϕ, we write I |= ϕ if and only if I |= ϕ, where the R-structure
I is de�ned as follows. For every R ∈ R we set RI := {(a1, ..., an)|R(a1, ..., an) ∈ I}.
Then, I := (dom(I), (RI)R∈R).

2.2.2 Examples and Motivation

We give a small example. Consider a database schema {flight, hasAirport},
where flight has arity two and hasAirport has arity one. Intuitively, these
predicates are supposed to contain information about �ights between cities and if
a city has an airport or not. Let the instance

{flight(Nuremberg, Amsterdam), flight(Amsterdam, New York),
hasAirport(New York)}

be given. It states the existence of an airport in New York and of �ights from
Nuremberg to Amsterdam and from Amsterdam to New York. Intuitively, this

18 2.2 Relational Databases

database is not really �complete� because there are �ights scheduled for cities for
which it is not known that they have an airport. So, if we know that there is an
incoming or outgoing �ight scheduled for a city, we should be able to deduce that
this city must have an airport.

So, the de�nition of a database alone does not satisfy all of our needs. It is desirable
to allow only meaningful data, re�ecting the part of the world we want to model,
to be inserted into the database. But what is meaningful data? This strongly
depends on the application domain and is usually only known to the database
schema designer or the users of the database. These people should have a way to
specify what meaningful data is, i.e. to restrict the kind of data so that it re�ects
the part of the real world to be modeled. This is where relational constraints come
into play.

2.2.3 Relational Constraints

Integrity constraints in databases have been intensively studied [Abiteboul et al.,
1995; Deutsch et al., 2007; Deutsch and Nash, 2008a; Deutsch et al., 2006; Aho
et al., 1979; Beeri and Vardi, 1984; Calì et al., 2008, 2009; Cheng et al., 1999;
Cosmadakis and Kanellakis, 1986; Deutsch et al., 2008; Fagin et al., 2005; Fuxman
et al., 2005; Gottlob and Nash, 2008; Johnson and Klug, 1982; Maier et al., 1979;
Marnette, 2009]. Relational constraints allow the database schema designer to
restrict the contents of a database to meaningful data. Integrity constraints ensure
that the contents of the database obey certain real-life properties. E.g. a constraint
of the form

∀x, y(flight(x, y)→ hasAirport(x), hasAirport(y))

ensures that whenever there is a �ight connection stored in the database, then the
source and the destination of the �ight both have an airport.

This section introduces the classes of relational constraints considered in this the-
sis, namely equality- and tuple-generating dependencies. These are able to ex-
press virtually all database constraints from the literature [Abiteboul et al., 1995;
Deutsch and Nash, 2008a], e.g. functional dependencies, key dependencies, join
dependencies, multi-valued dependencies, inclusion dependencies and foreign key
dependencies. For a more thorough introduction to relational constraint types and
their �rst-order representation, we recommend reading article [Deutsch and Nash,
2008a].

Whenever we use the term constraint in this thesis, we mean a mix of
equality- and tuple-generating dependencies.

19 2.2 Relational Databases

Equality-Generating Dependencies

Let x, y be tuples of variables. An equality-generating dependency (EGD) is a
�rst-order sentence

ϕ := ∀x(φ(x)→ xi = xj) ∈ L0,

where

• xi, xj either occur as universally quanti�ed variables in φ or are elements
from ∆ and

• φ is a non-empty conjunction of equality-free R-atoms (possibly with con-
stants from ∆).

We denote by body(ϕ) the set of atoms in φ and by head(ϕ) the set {xi = xj}.

For brevity, we will often omit the ∀-quanti�er and the respective list of universally
quanti�ed variables.

Tuple-Generating Dependencies

Let x, y be tuples of variables. A tuple-generating dependency (TGD) is a �rst-
order sentence

ϕ := ∀x(φ(x)→ ∃yψ(x, y)) ∈ L0

such that

• both φ and ψ are conjunctions of atomicR-formulas (possibly with constants
from ∆),

• ψ is not empty,

• φ is possibly empty,

• both φ and ψ do not contain equality atoms, and

• all variables from x that occur in ψ must also occur in φ.

We denote by body(ϕ) the set of atoms in φ and by head(ϕ) the set of atoms in
ψ.

20 2.2 Relational Databases

2.2.4 Satisfaction and Homomorphisms

This section introduces a di�erent characterization of constraint satisfaction in
terms of homomorphisms, which is important to be understood because the chase
algorithm is based on homomorphisms.

A homomorphism from a set of R-atoms A1 to a set of R-atoms A2 is a mapping

µ : ∆ ∪∆null ∪ V → ∆ ∪∆null,

such that the following conditions hold:

1. if c ∈ ∆, then µ(c) = c and

2. if R(c1, ..., cn) ∈ A1, then R(µ(c1), ..., µ(cn)) ∈ A2.

We can use homomorphisms to characterize the satisfaction of EGDs and TGDs
as follows.

Proposition 1.

• For every TGD ϕ and every database instance I it holds that I |= ϕ ⇐⇒
for every homomorphism h from body(ϕ) to I it holds that there is a homo-
morphism h′ ⊇ h that maps head(ϕ) to I.

• For every EGD ϕ with head(ϕ) = {xi = xj} and every database instance I
it holds that I |= ϕ ⇐⇒ for every homomorphism h from body(ϕ) to I it
holds that h(xi) = h(xj).

Chapter 3

The Chase Algorithm

Riccardo: �What are we going to do with it?�

Alice: �De�ne our algorithm.�

This chapter introduces the main tool of interest in this thesis: the chase algorithm.
After an informal and a formal discussion, we will brie�y review its most important
logical properties before inspecting some classical areas of application. Although
this chapter is self-contained, we recommend article [Deutsch and Nash, 2008b]
for further reading and more references related to the chase and its applications.

3.1 Informal Description

The chase algorithm takes as input a set of constraints Σ and a �nite database
instance I. Let e.g. the following scenario be given: the database instance

I := {fly(Amsterdam,New York)}

and the set of TGDs Σ := {α, β}, where

α := fly(x1, x2)→ ∃y fly(x2, y) and
β := fly(x1, x2)→ fly(x2, x1).

Constraint α states that if there is an incoming �ight, then there must also be
an outgoing �ight scheduled, whereas constraint β ensures that �ight connections
are symmetrical. Obviously, it holds that if a database instance satis�es β, then
it must also satisfy α, but for the sake of the discussion of the chase algorithm
we will consider both constraints and observe the chase's di�erent e�ects for these
constraints.
Intuitively, the chase repairs violations of Σ in I. Consider the violation of β. We
have that I |= fly(Amsterdam,New York), but I 6|= fly(New York,Amsterdam),
which is why β is not satis�ed in this setting. So, in this case the chase adds the
tuple fly(New York,Amsterdam) to I resulting in the instance

21

22 3.2 Formal Description

I ′ = {fly(Amsterdam,New York), fly(New York,Amsterdam)}.

We note that I ′ |= fly(New York,Amsterdam). Again, we look for constraint
violations in I ′, but we will not �nd any because I ′ |= Σ. Here, the chase terminates
and returns I ′ as result.
But there is no need for the chase to choose a violation for β to repair. It could
also have chosen a violation of α. E.g. we have that I |= fly(Amsterdam,New
York), but I 6|= ∃y fly(New York,y), which means that there is no outgoing �ight
scheduled for New York. In this case the chase adds a tuple of the form fly(New
York,n1) to I, where n1 ∈ ∆null\dom(I), resulting in the instance

I ′′ = {fly(Amsterdam,New York), fly(New York,n1)}.

We note that I ′′ |= ∃y fly(New York,y), so the constraint is locally satis�ed. We
see that I ′′ 6|= Σ because e.g. there is no outgoing �ight scheduled for n1 or both
�ight connections are not symmetrical. Again, we can choose whether we repair
a violation of β or α. We decide to repair a violation of α, i.e. we specify an
outgoing �ight for n1 and obtain as our new instance

I ′′′ = {fly(Amsterdam,New York), fly(New York,n1), fly(n1,n2)},

where n2 ∈ ∆null\dom(I ′′). We note that I ′′′ |= ∃y fly(n1,y), so the constraint is
locally satis�ed.
The reader may observe that if we continue to repair violations of α, this process
will never terminate, which means that the chase does not terminate in the general
case.

3.2 Formal Description

Let Σ be a set of TGDs and EGDs and I an instance, represented as a set of
R-atoms. Further let α ∈ Σ be a TGD and x the list of universally quanti�ed
variables in α. We say that α is applicable to I if I 6|= α, i.e. if there is a
homomorphism µ from body(α) to I and µ cannot be extended to a homomorphism
µ′ ⊇ µ from head(α) to I. In such a case the chase step

I
α,µ(x)−→ J

is de�ned as in the following way. We take a homomorphism ν such that:

• ν agrees with µ on all universally quanti�ed variables in α,

• for every existentially quanti�ed variable y in α we choose a labeled null
ny ∈ ∆null\dom(I) and de�ne ν(y) := ny.

23 3.2 Formal Description

We set J to be I ∪ ν(head(α)).

Let α ∈ Σ be an EGD and x the list of universally quanti�ed variables in α. We
say that α is applicable to I if there is a homomorphism µ from body(α) to I and
µ(xi) 6= µ(xj), where head(α) = {xi = xj}. In such a case the chase step

I
α,a−→ J

is de�ned as follows. We set J to be

• I except that all occurrences of µ(xj) are substituted by µ(xi) =: a, if µ(xj)
is a labeled null,

• I except that all occurrences of µ(xi) are substituted by µ(xj) =: a, if µ(xi)
is a labeled null,

• unde�ned, if both µ(xj) and µ(xi) are constants. In this case we say that
the chase fails.

A chase sequence is an exhaustive application of applicable constraints

I0
α0,a0−→ I1

α1,a1−→ . . .,

where we impose no strict order what constraint must be applied in case several
constraints apply. If this sequence is �nite, say Ir being its �nal element, the chase
terminates and its result IΣ

0 is de�ned as Ir. The length of this chase sequence is
r. Note that di�erent orders of application of applicable constraints may lead to a
di�erent chase result. However, as proved in [Fagin et al., 2005], two di�erent �nite
chase orders lead to homomorphically equivalent results if these exist. Therefore,
we can write IΣ for the result of the chase on an instance I under constraints
Σ. It has been shown in [Maier et al., 1979; Beeri and Vardi, 1984; Johnson and
Klug, 1982] that IΣ |= Σ (cf. Proposition 1). In case that a chase step cannot be
performed (e.g., because a homomorphism would have to equate two constants)
the chase result is unde�ned. In case of an in�nite chase sequence, we also say
that the result is unde�ned.

Proviso. We will make a simplifying assumption. Let I be a database instance and
Σ some constraint set. Without loss of generality we can assume that whenever
two labeled nulls, say n1, n2, are equated by the chase and n1 ∈ dom(I), then all
occurrences of n2 are mapped to n1 in the chase step. This does not a�ect chase
termination as substituting n1 with n2 would lead to an isomorphic instance.

24 3.4 Logical Properties

3.3 A Formal Example

We will review the example from Section 3.1 more formally with the actual de�-
nition of the chase at hand. Consider Σ and I from Section 3.1 again.
We have a homomorphism

h = {x1 7→ Amsterdam, x2 7→ New York}

from body(β) to I. Note that the same variables occur in body(β) and head(β). It
cannot be extended to a homomorphism that maps head(β) to I because fly(New
York, Amsterdam) /∈ I. Therefore, β is applicable to I. The chase step yields the
new instance

I ′ = I ∪ h(head(β))
= {fly(Amsterdam,New York), fly(New York,Amsterdam)}.

It holds that I ′ |= Σ, so the chase terminates and returns I ′.

Like in Section 3.1 another option would have been to repair the violation of α
instead of β. We have that h is also a homomorphism from body(α) to I and it
cannot be extended in such a way that head(α) can be mapped to I. Therefore,
we de�ne

h ⊆ h′ := {x1 7→ Amsterdam, x2 7→ New York, y 7→ n1},

where n1 ∈ ∆null\dom(I), and obtain the instance

I ′′ = I ∪ h′(head(α)) = {fly(Amsterdam,New York), fly(New York,n1)}.

3.4 Logical Properties

Having introduced the basics of the chase algorithm, we now turn our attention
to more general logical properties of it, namely its termination and its property
to output universal solutions.
As we have already seen in the example in Section 3.1, the chase does not neces-
sarily terminate on an arbitrary input. This is not a mere coincidence as chase
termination is an undecidable property:

Theorem 2. (see [Deutsch et al., 2008]) Consider an instance I and a set Σ of
TGDs.

• It is undecidable whether there is some chase sequence of I and Σ that
terminates.

25 3.5 The Oblivious Chase

• It is undecidable whether all chase sequences of I and Σ terminate.

This still holds if I = ∅.

Because of Theorem 2 there is no algorithm that can decide chase termination,
therefore we focus on su�cient conditions for chase termination, which is the cen-
tral topic of this thesis.

The most important property of the chase is that it produces universal instances
with respect to its input (strongly universal solutions in [Deutsch et al., 2008]).
This is explained in the next theorem:

Theorem 3. (see [Beeri and Vardi, 1984]) Consider an instance I and a set Σ of
constraints. Let IΣ be de�ned. For all database instances J such that J |= Σ and
there is a homomorphism from I to J , there is a homomorphism from IΣ to J .

Intuitively, this theorem states that a chase result is the most general instance
that satis�es Σ and I, which is why IΣ is called a universal solution [Fagin et al.,
2005; Deutsch et al., 2008]. It is exactly this property that makes the chase useful
for so many applications.
As an easy corollary we obtain:

Theorem 4. (see [Beeri and Vardi, 1984]) Consider an instance I and a set
Σ of constraints. Let J, J ′ be two chase results obtained by a di�erent order of
constraint application. It holds that J and J ′ are homomorphically equivalent,
i.e. there is a homomorphism from J to J ′ and vice versa.

3.5 The Oblivious Chase

We will not only use the chase but also a variant of it, called the oblivious chase.
Basically, the idea is that an oblivious chase step applies even if a constraint is
satis�ed. We illustrate this by an example.

Example 5. Consider the constraint set Σ = {R(x1, x2) → ∃y R(x1, y)} and
note that this constraint is a tautology. To be more explicit, we examine the
constraint set together with the instance {R(a, b)}. Although it holds that I |= Σ,
the oblivious chase makes a modi�cation here, that is to say, an atom of the form
R(a, n1) is added to the instance, where n1 ∈ ∆null. Yet, the oblivious chase does
not terminate. It will successively add atoms R(a, n2), R(a, n3), R(a, n4) . . . , where
n2, n3, n4, . . . ∈ ∆null.

26 3.6 Previous Results on Chase Termination

A more formal de�nition for an oblivious chase step is the following one. Consider
a TGD of the syntactic form ∀xϕ. The oblivious step applies to an instance I
if there is a homomorphism µ from body(∀xϕ) to I. In such a case the oblivious

chase step I
∗,∀xϕ,µ(x)−→ J is de�ned as follows. We de�ne a homomorphism ν such

that:

• ν agrees with µ on all universally quanti�ed variables in ϕ,

• for every existentially quanti�ed variable y in ∀xϕ we choose a �fresh� labeled
null ny ∈ ∆null and de�ne ν(y) := ny.

We set J to be I ∪ ν(head(∀xϕ)). An oblivious chase step for an EGD is a chase
step for an EGD except that we also add an ∗ on the arrow (like in the case of
TGDs) that indicates the step. Intuitively, an oblivious chase step always applies
when the body of a constraint can be mapped to an instance even if the constraint
is satis�ed.

The essential point here is to keep in mind that an oblivious chase step is applicable
to an instance even if the head of the constraint is satis�ed by the instance. This
thesis will not be about the oblivious chase, but we will often use it for technical
reasons.

3.6 Previous Results on Chase Termination

In the past, research e�ort has been spent on chase termination. More precisely,
conditions on the constraint set have been found such that if the constraint set sat-
is�es these conditions then every chase sequence starting with every �nite database
is �nite. This section explains the methods used in these previous works.

3.6.1 Cascading of Labeled Nulls

In order to be able to understand how the techniques that ensure chase termination
work, we �rst need to clarify why the chase may not terminate. To be more precise,
we identify a bad event that occurs in non-terminating chase sequences over and
over again. The absence of in�nitely many of such bad events then ensures the
termination of every chase sequence. How can such a bad event be structured? We
resume the example from the Introduction. Consider the set of TGDs Σ := {α}
and the instance I0, where

α := fly(x1, x2)→ ∃y fly(x2, y),
I0 := {fly(Amsterdam,New York)}.

27 3.6 Previous Results on Chase Termination

As pointed out earlier, we have an in�nite chase sequence

I1 = {fly(Amsterdam,New York), fly(New York,n1)},
I2 = {fly(Amsterdam,New York), fly(New York,n1), fly(n1, n2)},
I3 = {fly(Amsterdam,New York), fly(New York,n1), fly(n1, n2), fly(n2, n3)},
. . .

We observe that in this chase sequence it will in�nitely many times occur that
a labeled null, which is not in dom(I0), is copied from the body to the head of
a constraint, while a new labeled null is created by some existential quanti�er.
We call a situation in which this happens cascading of labeled nulls. For instance,
consider the chase step from I2 to I3. We have that I2 |= fly(n1, n2), but I2 6|= ∃y
fly(n2, y). Applying this step, we see that n2 is copied from the body to the head
of the constraint, while n3 is newly created. So, we have a cascading of labeled
nulls here.

We formalize the notion of cascading of labeled nulls as follows:

De�nition 6. Let S = I0
α0,a0−→ I1

α1,a1−→ . . . be a chase sequence. Then, CS :=
{ i ∈ N0 | dom(Ii+1)\dom(Ii) 6= ∅ 6= (dom(Ii+1\Ii)\dom(I0)) ∩ dom(Ii) }.

It is easy to observe that if we have such as cascading only �nitely many times in
a chase sequence, then this is equivalent to the chase sequence itself being �nite.

Proposition 7. Let S = I0
α0,a0−→ I1

α1,a1−→ . . . be a chase sequence. Then, it holds
that S is �nite ⇐⇒ CS is �nite.

With this instrument at hand we will be able to better understand the following
sections.

3.6.2 Weak Acyclicity

In the following, we are only interested in constraints for which every chase se-
quence is �nite. In [Fagin et al., 2005] weak acyclicity was introduced, which is
the starting point for our work.

The key idea of weak acyclicity is to statically estimate the �ow of data between
the database positions during the execution of the chase. It syntactically asserts
that there is no in�nite cascading of labeled nulls, i.e. CS being �nite for every
chase sequence S.

28 3.6 Previous Results on Chase Termination

De�nition 8. (see [Fagin et al., 2005]) The dependency graph dep(Σ) of a set
of constraints Σ is the directed graph de�ned as follows. The set of vertices is the
set of positions that occur in some TGD in Σ. There are two kinds of edges. Add
them as follows: for every TGD ∀x(φ(x) → ∃yψ(x, y)) ∈ Σ and for every x in x
that occurs in ψ and every occurrence of x in φ in position π1

• for every occurrence of x in ψ in position π2, add an edge π1 → π2 (if it does
not already exist).

• for every existentially quanti�ed variable y and for every occurrence of y in
a position π2, add a special edge π1

∗→ π2 (if it does not already exist).

A set Σ of TGDs and EGDs is called weakly acyclic i� dep(Σ) has no cycles
through a special edge.

Intuitively, normal edges track the �ow of data between the database positions and
special edges cover the case of cascading of null values. Hence, if the dependency
graph contains no cycles through a special edge, it cannot happen that fresh null
values are added to the instance over and over again. It was shown in [Fagin
et al., 2005] that the chase terminates in polynomial-time data-complexity, i.e. in
time polynomial in the size of the input instance's domain, for weakly acyclic
constraint sets. Note that weak acyclicity can be decided in polynomial time. We
illustrate the de�nition by an example for a situation in which weak acyclicity
cannot guarantee the termination of the chase.

Example 9. The dependency graph for the constraint set Σ := {α1, α2, α3}
from Figure 3.1 is shown in Figure 3.2. We observe that Σ is not weakly acyclic,
as witnessed by the self-loop special edge for position fly2.

3.6.3 Strati�cation

In [Deutsch et al., 2008] strati�cation was set on top of the de�nition of weak
acyclicity. The main idea of strati�cation is to decompose the given constraint
set into independent subsets that are separately tested for weak acyclicity. More
precisely, the decomposition splits the constraint set into subsets of constraints
that may cyclically cause to �re each other. Termination guarantees for the full
constraint set follow if weak acyclicity holds for each subset in the decomposition.
However, we will prove that the strati�cation condition does not generally ensure
chase termination, which is why we will discuss it in Section 7.1.

29 3.6 Previous Results on Chase Termination

Sample Schema: hasAirport(c_id)
fly(c_id1, c_id2, dist)
rail(c_id1, c_id2, dist)

Constraint Set: Σ = {α1, α2, α3}, where

α1 : If there is a �ight connection between two cities,
both of them have an airport:
fly(c1, c2, d)→ hasAirport(c1), hasAirport(c2)

α2 : Rail-connections are symmetrical:
rail(c1, c2, d)→ rail(c2, c1, d)

α3 : Each city that is reachable via plane has at
least one outgoing �ight scheduled:
fly(c1, c2, d)→ ∃c3, d

′ fly(c2, c3, d
′)

Figure 3.1: Sample database schema and constraints.

3.6.4 Super-weak Acyclicity

In [Marnette, 2009], in the context of data exchange, weak acyclicity was improved
to super-weak acyclicity. It is important to notice that this new termination con-
dition is limited to sets of TGDs, i.e. EGDs are not covered by it. The overall
idea is to check whether a constraint α can trigger a �ring of another constraint
β. A constraint set Σ is super-weakly acyclic if this trigger relation is acyclic. We
now formally introduce super-weak acyclicity and follow closely the presentation
in [Marnette, 2009].

Let a set of TGDs Σ be given. Let P(Σ) be a skolemization of Σ. A place (a, i)
is a pair, where a is an atom of P(Σ) and 1 ≤ i ≤ ar(a). Two places (a, i) and
(a′, i′) are called uni�able, (a, i) ∼ (a′, i′), i� i = i′ and there are substitutions s, s′

such that s(a) = s′(a′), where a substitution is a mapping from logical terms to
logical terms.

Example 10. Let the places (B(f(x), x), 1) and (B(x, x), 1) be given. It holds
that (B(f(x), x), 1) 6∼ (B(x, x), 1) because x should be mapped to itself and at the
same time to f(x).

Given a constraint α ∈ Σ and an existential variable y in the head of α, we denote

30 3.6 Previous Results on Chase Termination

hasAirport1 fly1

fly2

fly3

rail1

rail2

rail3

∗

∗

Figure 3.2: Dependency graph for Σ from Example 9.

by Out(α, y) the set of places in the head of P(α) where a term of the form fαy (...)
occurs.

Example 11. Let the TGD α := A(x) → ∃y B(x, y), B(y, x), C(y) be given.
Then,

P(α) = A(x)→ B(x, fα1
y (x)), B(fα1

y (x), x), C(fα1
y (x)).

It holds that Out(α, y) = {(B(x, fα1
y (x)), 2), (B(fα1

y (x), x), 1), (C(fα1
y (x)), 1)}.

Given a universally quanti�ed variable x in the body of α, we denote by In(α, x)
the set of places in the body of α in which x occurs.

Example 12. Consider α from Example 11. It holds that In(α, x) = {(A(x), 1)}.

Given two sets of places Q,Q′ we write Q/Q′ i� for all q ∈ Q there is some q′ ∈ Q′
such that q ∼ q′.

Example 13. Consider the sets of places

P1 := {(C(x), 1), (B(f(x), y), 2)} and
P2 := {(C(y), 1), (B(x, f(y)), 2)}.

Clearly,

31 3.6 Previous Results on Chase Termination

(C(x), 1) ∼ (C(y), 1) and
(B(f(x), y), 2) ∼ (B(x, f(y)), 2).

Therefore, P1 / P2.

We set Move(Σ, Q) as the smallest set of places Q′ such that Q ⊆ Q′ and for all
expressions r = Br → Hr ∈ P(Σ) and for all variables x it holds that if γx(Br)/Q

′

then γx(Hr) ⊆ Q′, where γx(Br) and γx(Hr) denote the set of places in Br and Hr

where x occurs.

Example 14. Consider the constraint Σ = {α1, α2}, where

α1 := A(x, y)→ ∃z B(x, z), B(z, y) and
α2 := B(x, y), B(y, z)→ C(x, z).

The logic program P(Σ) consists of the two constraints

A(x, y)→ B(x, fα1
z (x, y)), B(fα1

z (x, y), y) and
B(x, y), B(y, z)→ C(x, z).

It follows from the de�nitions that Move(Σ, {(A(z1, z2), 1)}) is the set of places

(A(z1, z2), 1), (B(x, fα1
z (x, y)), 1), (B(x, fα1

z (x, y)), 2),
(B(fα1

z (x, y), y), 1), (B(fα1
z (x, y), y), 2), (C(x, z), 1), (C(x, z), 2).

De�nition 15. [Marnette, 2009] Given a set of TGDs Σ and α, β ∈ Σ, we say
that α triggers β, α ↪→Σ β, if there exists an existentially quanti�ed variable y in
the head of α and a universally quanti�ed variable x occurring both in the head
and body of β such that In(β, x) /Move(Σ,Out(α, y)).

Please note that if α ↪→Σ β, then α contains existentially quanti�ed variables.
Intuitively, the trigger relation holds for two TGDs α and β if a �ring of α can
cause a �ring of β (in the case that β could not �re before). This de�nition is the
main ingredient for super-weak acyclicity.

De�nition 16. [Marnette, 2009] Given a set of TGDs Σ. We say that Σ is
super-weakly acyclic i� the trigger relation ↪→Σ is acyclic.

It was proved in [Marnette, 2009] that super-weak acyclicity guarantees the ter-
mination of the chase for every database and every chase sequence taken and

32 3.6 Previous Results on Chase Termination

is strictly weaker than weak acyclicity. The method of super-weak acyclicity is
strongly related to the termination conditions we introduce in the subsequent
chapters. We defer this discussion to Chapter 10 and �nish this chapter with an
example that was obtained as a result of an email discussion with the author of
[Marnette, 2009].

Example 17. Let Σ = {α1, α2}, where

α1 := A(x)→ ∃y B(x, y), B(y, x), C(y) and
α2 := B(x, x), C(y)→ A(x), C(y).

The logic program P(Σ) consists of the two constraints

A(x)→ B(x, fα1
y (x)), B(fα1

y (x), x), C(fα1
y (x)) and

B(x, x), C(y)→ A(x), C(y).

It holds that ↪→Σ= ∅. The tuple (α1, α2) is not in ↪→Σ because the relation symbols
in the body and the head are disjoint and (α1, α1) /∈↪→Σ because B(x, fα1

y (x))
and B(fα1

y (x), x) cannot unify with B(x, x). Therefore, it is super-weakly acyclic
although it is not weakly acyclic.

We want to point out that the constraint α2 is unnatural because the atom C(y)
appears both in its body and head. Nevertheless, this example will be quite sig-
ni�cant for showing that there are constraint sets which we cannot recognize with
the help of some of our chase termination conditions that we develop throughout
this thesis. The main reason for this constraint not being contained in some of
our termination conditions is C(y) appearing both in α2's body and head.

Chapter 4

Classical Areas of Application

Riccardo: �What is all this good for?�

Alice: �Guess what a Swiss Army knife can be good for?�

Riccardo: �Having a meal?�

This chapter clari�es why the chase can be compared to a Swiss Army knife tool
for many database problems. We will sketch the most important applications of
the chase and show that all of them ultimately depend only on the termination
of the chase, i.e. these methods can always be applied if the chase algorithm
terminates. If we can make the chase terminate in strictly more cases, then this
is a contribution to all research sub-areas mentioned next.
We will explain how the implication problem for TGDs and EGDs can be solved,
how it can be applied to query optimization in the Chase & Backchase algorithm.
Finally, we will explicate its importance in data exchange and in answering queries
using views.
The goal of this chapter is not to make the reader an expert in these research
areas, but to show him how the chase is used in these applications and to make
him understand that they solely depend on the termination of the chase.
We also want to mention that there are several other application scenarios we do
not explain in this thesis which use the chase as a subroutine, like data integra-
tion [Lenzerini, 2002], peer data exchange [Fuxman et al., 2005] and probabilistic
databases [Olteanu et al., 2009].

4.1 The Implication Problem

The implication problem is fundamental for many applications. It is de�ned as
follows. Given a set of constraints Σ and a single constraint α, decide whether
Σ |= α holds. So, the implication problem is to decide whether a given constraint
is logically implied by a constraint set.

33

34 4.2 Query Optimization: Chase & Backchase

Unfortunately, the implication problem for keys and foreign keys is undecidable
(see [Fan and Siméon, 2000; Fan and Libkin, 2002]). This is why we need to restrict
ourselves to meaningful subclasses of constraints, which guarantee the decidability
of the implication problem. The following result can be obtained using the chase.

Theorem 18. (see [Beeri and Vardi, 1984]) Consider a set Σ of constraints and
a constraint α such that body(α)Σ is de�ned.

If α is a TGD, then

Σ |= α⇐⇒ there is a homomorphism from head(α) to body(α)Σ.

If α is an EGD and head(α) = {xi = xj}, then

Σ |= α⇐⇒ for every homomorphism h from body(α) to body(α)Σ

it holds that h(xi) = h(xj).

The theorem illustrates how the implication problem for TGDs and EGDs can be
reduced to the chase if it terminates.

4.2 Query Optimization: Chase & Backchase

The chase is a central tool in logic-based optimization of conjunctive queries. It can
be used to reduce the problem of query containment under constraints to general
query containment. This method is used in the well-known Chase & Backchase
(C&B) algorithm [Popa, 2000; Deutsch et al., 2006]. For the case of relational
databases an implementation and an evaluation of C&B can be found in [Popa
et al., 2000]. It turned out that it can post signi�cant time reductions in query
execution.
It has also been applied in the context of XML [World Wide Web Consortium,
2003d] data and XQuery [World Wide Web Consortium, 2000] in the MARS
system [Deutsch and Tannen, 2003]. Here, the idea is to translate the XQuery
expression to a relational query, apply C&B, and translate the result back to an
XQuery expression.
We start the presentation of C&B by de�ning conjunctive queries and their con-
tainment problem, which forms the basis of the algorithm.

A conjunctive query q is an expression of the form

ans(x)← ϕ(x, z),

35 4.2 Query Optimization: Chase & Backchase

where ϕ is a conjunction of relational atoms, x, z are sequences of variables and
constants, and it holds that every variable in x also occurs in ϕ. If x is empty we
call the query boolean. We denote by db(q) the set of atoms in ϕ and by head(q)
the atom ans(x).
The semantics of such a query q on database instance I is de�ned as

q(I) := {a ∈ ∆|x||I |= ∃zϕ(a, z)}.

Let q, q′ be conjunctive queries and Σ a set of constraints. We say that q is
contained in q′ under Σ, q vΣ q′, if and only if for all database instances I such
that I |= Σ it holds that q(I) ⊆ q′(I). We write q v q′ if and only if q v∅ q′ as an
abbreviation. The following result is folklore.

Theorem 19. (see [Chandra and Merlin, 1977]) Let q, q′ be two conjunctive
queries. It holds that q v q′ if and only if there is a homomorphism h that maps
db(q′) ∪ {head(q′)} to db(q) ∪ {head(q)}.

So far, the chase is not involved. However, when non-empty constraint sets Σ
come into play, then the chase can be used to reduce the containment problem
under constraints to the containment problem under an empty constraint set as
the next theorem states.

Theorem 20. (see [Johnson and Klug, 1982]) Let q, q′ be two conjunctive queries
and Σ a set of constraints such that db(q)Σ is de�ned. It holds that q vΣ q

′ if and
only if ({head(q)} ∪ db(q))Σ v q′.

We see that this method solely depends on the termination of the chase. But
how can we apply this in query optimization? The next theorem answers this
question, but before that, we need to introduce what a minimal rewriting of a
conjunctive query is. A Σ-equivalent rewriting of a query q is a query q′ such that
q vΣ q′ and q′ vΣ q. A minimal rewriting of q under Σ is a conjunctive query
q′ such that q′ is a Σ-equivalent rewriting of q and q′ is minimal with respect to
the number of subgoals in its body. Minimal rewritings are considered the most
e�cient representation of a given query because they usually have lower execution
cost than the original query. Note that this is not a general law. In [Cheng et al.,
1999] it was shown that introducing semantics-preserving join operations into a
query can reduce the execution cost in some cases.

Theorem 21. (see [Deutsch et al., 2006]) Let q be a conjunctive query and Σ a
set of constraints such that the chase with Σ has a terminating chase sequence for
every input database. There is an algorithm (called C&B) that precisely outputs
all minimal rewritings (up to isomorphism) of q under Σ.

36 4.3 Data Exchange

The chase is used as a subprocedure of this algorithm. The �rst step in the
Chase & Backchase algorithm is the computation of ({head(q)} ∪ db(q))Σ. All
minimal rewritings of q are then subqueries of db(q)Σ that are Σ-equivalent to
q. Σ-equivalence of the queries can be tested via Theorem 20. Again, the only
property that is important here, is that the chase terminates. If it does, we can
obtain minimal rewritings for conjunctive queries.

4.3 Data Exchange

Data exchange was �rst considered in [Fagin et al., 2005]. It is the problem of
migrating a data instance from a source schema to a target schema such that the
materialized data on the target schema satis�es the integrity constraints speci�ed
by it. Data exchange is very similar to data integration [Lenzerini, 2002] but the
main di�erence is that the data is indeed materialized at the target schema, which
is not always the case for data integration settings.

The mapping of the data from the source to the target schema is given by source-
to-target TGDs. Additionally, the target schema speci�es target constraints in
form of EGDs and TGDs, which the imported data must satisfy. Exchanging the
data from source to target can be seen as the execution of the chase with source-
to-target plus target constraints. The resulting data instance is called a universal
solution. Of course, the termination of the chase is a big issue there.
We now de�ne what a data exchange problem is. Given a source database schema
R1, a target database schema R2 such that R1 ∩ R2 = ∅, a set of constraints Σ
over R1∪R2 and a database instance I over the source schema, �nd a database J
over the target schema such that I ∪ J |= Σ. Our constraint set Σ is the disjoint
union of Σst and Σt. Σt is a set of constraints over R2. The TGDs in Σst are
of the form ϕ(x)→ ∃yψ(x, y), where ϕ contains only predicate symbols from the
source schema and ψ only from the target schema. It was shown in [Fagin et al.,
2005] that IΣ\I is a solution to the data exchange problem if it is de�ned. As
the result of the chase is not unique, solutions to data exchange problems are not
unique either. What does that mean for conjunctive queries? Does the answer
of a conjunctive query depend on the chase result? As it turns out, this is not
the case. It was proved in [Fagin et al., 2005] that we always get the same an-
swers, independently of the chase result materialized at the target. Again, we see
that the data exchange problem crucially depends on the termination of the chase.

We also want to mention that the data exchange framework was extended in
[Fuxman et al., 2005] to peer-to-peer networks. The computation of solutions to
the peer data exchange problem also uses the chase.

37 4.4 Query Answering Using Views

4.4 Query Answering Using Views

In query answering using views we try to answer a database queries using mate-
rialized views, accessing non-view relations in the database only if necessary. The
idea is that the de�nition of a view may involve some costly join operations that
need to be computed by the query to be answered, too. If the view is materialized,
we can probably use it as an intermediate result for the computation of the query
answer, thus saving time and memory consumption. An exhaustive overview on
this topic can be found in [Halevy, 2001; Deutsch et al., 2007].

In [Deutsch et al., 2006] it was shown that in some cases it is not possible to com-
pute equivalent rewritings of the input query using views only, but a minimally-
containing one. A minimally-containing rewriting is characterized as follows. Usu-
ally, the views are de�ned in terms of a set of TGDs Σ that explicate how the
tuples in the views are obtained from the base relations. Let q be a conjunctive
query. A conjunctive query q′ is a minimally-containing rewriting of q under Σ
and a set of views V if and only if q vΣ q

′ and for all conjunctive queries q′′ such
that q vΣ q

′′ it follows that q′′ vΣ q
′.

Theorem 22. (see [Deutsch et al., 2006]) There is an algorithm that, given a
conjunctive query q and a set of constraints Σ, computes a minimally-containing
rewriting of q under Σ and V if db(q)Σ exists.

How can a minimally-containing rewriting under Σ be obtained from q? First,
we compute db(q)Σ using the chase if this is possible. Then, we drop all atoms
from db(q)Σ that do not belong to a view predicate in V , except for the head
predicate ans. We call the remaining part head(q) ← view(db(q)Σ). If this is a
valid conjunctive query, i.e. all variables in the ans predicate appear also in some
other predicate that is di�erent from ans, then it is also a minimally-containing
rewriting of q under Σ and V .
Again, we see that the applicability of this method depends only on the termination
of the chase algorithm.

Chapter 5

Four Flavors of Chase

Termination

Sergio: �What next?�

Alice: �Let's spice things up.�

The chase algorithm [Maier et al., 1979; Beeri and Vardi, 1984; Johnson and Klug,
1982] has had a tremendous success since the time of its proposal. Initially, it was
only used to decide logical implication of �rst-order constraints. Today, it is the
key technique in all application areas mentioned in Section 4. The basic idea of
this algorithm is simple: as input it takes a database and a set of constraints
and then �xes constraint violations of the database instance. But unfortunately,
the chase does not terminate for every input. Even worse, it has just recently
been proved that, given a set of constraints, it is undecidable whether the chase
terminates for every database instance, see Section 3.4. Although this result was
just recently obtained, in the past much research e�ort has been spent to �nd
syntactic restrictions for the constraints such that the chase terminates on every
database instance and every chase sequence [Abiteboul et al., 1995; Johnson and
Klug, 1982; Cosmadakis and Kanellakis, 1986; Deutsch and Tannen, 2005; Deutsch
et al., 2006; Fagin et al., 2005; Deutsch et al., 2008].
So far, the whole research on chase termination has concentrated on �nding syn-
tactic restrictions on the constraint set that ensure the termination of the chase for
every database instance and every chase sequence taken. To the best of our knowl-
edge, there has been no work to ensure chase termination for at least one chase
sequence. To be more precise, we distinguish four �avors of chase termination,
namely the termination of the chase

• for every database instance and every chase sequence,

• for every database instance and at least one chase sequence,

• for a given database instance and every chase sequence, and

39

40 CHAPTER 5. FOUR FLAVORS OF CHASE TERMINATION

• for a given database instance and at least one chase sequence.

The �rst �avor of termination is the usual one as considered by weak acyclicity
or super-weak acyclicity. The latter three �avors have not yet been considered.
They are less restrictive than the �rst one and may allow us to derive termination
guarantees in cases where the �rst approach fails. We proceed with a more formal
de�nition.

De�nition 23. Let J denote a �nite database instance. We denote our four
�avors of chase termination as follows:

• CT∀∀ := { Σ | for every �nite database instance I and for every chase
sequence the chase with Σ and I terminates },

• CT∀∃ := { Σ | for every �nite database instance I there exists a chase
sequence such that the chase with Σ and I terminates },

• CTJ,∀ := { Σ | for every chase sequence the chase with Σ and J
terminates }, and

• CTJ,∃ := { Σ | there exists a chase sequence such that the chase with Σ
and J terminates }.

The core part of this thesis will be the study of these classes. As already mentioned
above, it holds that weak acyclicity and super-weak acyclicity are both contained
in CT∀∀. We were rather surprised to �nd that CT∀∃,CTJ,∀ and CTJ,∃ have not
yet been considered and therefore, this thesis constitutes the �rst study of them.
We start by repeating a result that we already mentioned in the preliminaries,
now stating it in the light of the previous de�nition.

Theorem 24. (see Theorem 2) It holds that CT∅,∀ and CT∅,∃ are undecidable.

There are some obvious subset-relationships between these four classes. We state
them in the following. Their proof follows straightforwardly from the de�nitions
and is therefore omitted here.

Proposition 25. Let J be a �nite database instance.

1. CT∀∀ ⊆ CTJ,∀ ⊆ CTJ,∃,

2. CT∀∀ ⊆ CT∀∃ ⊆ CTJ,∃,

41 CHAPTER 5. FOUR FLAVORS OF CHASE TERMINATION

CT∀∀

CT∀∃CTJ,∀

CTJ,∃

Figure 5.1: A summary of Proposition 25 and Theorem 26.

3.
⋂
I �nite instance

CTI,∀ = CT∀∀, and

4.
⋂
I �nite instance

CTI,∃ = CT∀∃.

Apart from these obvious consequences of the de�nitions, we can also show that
CT∀∃,CTJ,∀ and CTJ,∃ contain constraint sets which are not already in CT∀∀, i.e.
we will show that all other containment relationships of our four classes do not
hold.

Theorem 26.

1. There is some J such that CTJ,∀\CT∀∀ 6= ∅.

2. There is some J such that CTJ,∃\CTJ,∀ 6= ∅.

3. It holds that CT∀∃\CT∀∀ 6= ∅.

4. There is some J such that CTJ,∃\CT∀∀ 6= ∅.

5. There is some J such that CTJ,∀\CT∀∃ 6= ∅.

6. There is some J such that CT∀∃\CTJ,∀ 6= ∅.

42 CHAPTER 5. FOUR FLAVORS OF CHASE TERMINATION

Proof.

1. We can set J := {E(a, a)}, I := {E(a, b)} and Σ := {E(x1, x2)→ ∃y E(x2, y)}.
We see that the chase will terminate for J and run forever on I.

2. We can set J := {E(a, b)} and Σ := {E(x1, x2) → ∃y E(x2, y); E(x1, x2) →
E(x2, x1)}. We see that the chase will terminate if we apply the second
constraint on J . We can create an in�nite chase sequence by never applying
the second constraint.

3. The constraint set Σ = {α1, α2} can be used where

α1 =E(x1, x2)→ ∃y E(x2, y), and
α2 =E(x1, x2)→E(x2, x1).

It holds that Σ /∈ CT∀∀ because {α1} has no terminating chase sequence
on the instance {E(a, b)}. But we have that Σ ∈ CT∀∃ because the chase
starting with α2 alone terminates for every input and α2 |= α1.

4. Take J to be {E(a, a)} and Σ := {E(x1, x2) → ∃y E(x2, y)}. Note that
Σ /∈ CT∀∀ because there is no terminating chase sequence for the instance
{E(a, b)}.

5. Analogously to the previous bullet's proof we take J to be {E(a, a)} and
Σ := {E(x1, x2) → ∃y E(x2, y)}. Note that Σ /∈ CT∀∃ because there is no
terminating chase sequence for the instance {E(a, b)}.

6. The constraint set Σ = {α1, α2} can be used where

α1 =E(x1, x2)→ ∃y E(x2, y), and
α2 =E(x1, x2)→E(x2, x1).

We have that Σ ∈ CT∀∃ because the chase with α2 alone terminates for
every input and α2 |= α1. However, given the start instance {E(a, b)}, we
obtain a non-terminating chase sequence by chasing with α1 alone. �

A graphical overview of all containments is given in Figure 5.1. Note that all
containments are strict. We can see that by taking CT∀∃,CTJ,∀ and CTJ,∃ into
account, and not only CT∀∀, we can detect more situations in which the chase can
be safely applied without the risk of non-termination.

As we have already mentioned, CT∅,∃ and CT∅,∀ are undecidable. It is open
whether CT∀∀ and CT∀∃ are decidable or not. This is why we focus on decidable
subsets. The subsequent chapters will introduce decidable fragments of all four
�avors of chase termination.

Chapter 6

A Study of CT∀∀

Sergio: �What next?�

Alice: �Let's do some fancy theory stu�.�

Riccardo: �I'm getting a schnitzel.�

As a minimalistic motivating example for our study of novel chase termination
conditions in CT∀∀ let us consider the constraint set Σ from Figure 6.1, which
is settled in our graph database schema from the Introduction. As we shall see
later, the chase with Σ terminates for every database instance. Still, none of the
existing termination conditions is able to recognize termination for this constraint
set, i.e. Σ is neither weakly acyclic nor super-weakly acyclic. With the techniques
and tools that we develop within this section, we will be able to guarantee chase
termination for Σ on every database instance and every chase sequence taken.

In this chapter we discuss the su�cient data-independent chase termination condi-
tions presented in Figure 1.2 and put them into context. First, we will introduce
the novel classes of c-strati�ed1 and safe constraints, which strictly generalizes
weak acyclicity, but is di�erent from super-weak acyclicity. Building upon the
de�nition of safety and c-strati�cation, we will then introduce safely restricted
and inductively restricted constraints as a consequent advancement of our ideas.
The latter class strictly subsumes safe restriction. Finally, we will de�ne a hierar-
chy of su�cient termination condition on top of inductively restricted constraints,
the so-called ∀∀-T-hierarchy. Each level ∀∀-T[k] in this hierarchy is strictly con-
tained in the next level ∀∀-T[k + 1]. Our novel su�cient termination conditions
extend the applicability of the chase algorithm, as they guarantee chase termina-
tion for larger classes of constraints than previous conditions. We show that they
all guarantee polynomial length for every chase sequence like weak acyclicity, thus
a chase result can be e�ciently computed.

1C-strati�cation is the corrected version of strati�cation in [Deutsch et al., 2008].

43

44 6.1 C-Strati�cation

Schema: S(n), E(src, dst)
Constraint Set: Σ := {α}, where

α : If x2 is a special node and has some
predecessor x1, then x1 has itself a predecessor:
S(x2), E(x1, x2)→ ∃y E(y, x1)

Figure 6.1: A sample constraint.

6.1 C-Strati�cation

In Chapter 7 we will show that the strati�cation condition introduced in [Deutsch
et al., 2008] does not ensure chase termination in the sense of CT∀∀, but in the
sense of CT∀∃. However, according to this thesis's structure, we already propose
a possible correction of strati�cation, called c-strati�cation, which has the prop-
erty of ensuring the termination of the chase independently of the data and the
chase sequence used. The underlying ideas are similar to [Deutsch et al., 2008]:
decompose the constraint set such that if a termination guarantee can be made
for every subset, then the same guarantee can be made for the overall set.

De�nition 27. Given two TGDs or EGDs α, β ∈ Σ we de�ne α ≺c β i� there
exists a relational database instance I and a, b such that

1. I |= β(b),

2. I
∗,α,a→ J , and

3. J 6|= β(b).

Note that in this de�nition di�erent from [Deutsch et al., 2008] we use an oblivious
chase step and not a standard chase step. We give two examples to illustrate this
de�nition.

Example 28. Let the constraint set Σ = {α1, α2} be given, where and let the
constraint

α1 := S(x1, x2)→ ∃z T(x2, z) and
α2 := T(x1, x2), T(x1, x3), T(x3, x1)→ R(x2).

45 6.1 C-Strati�cation

We can observe that α1 ≺c α2 because the instance {S(c, d), T(c, d), T(d, c)} to-
gether with the tuples a = c, d and b = d, n1, c satisfy the requirements in De�-
nition 27. Note that n1 is the null value which is created by the oblivious chase

step {S(c, d), T(c, d), T(d, c)} ∗,α1,a→ {S(c, d), T(c, d), T(d, c), T(d, n1)}.

Example 29. (see [Deutsch et al., 2008]) Let predicate E store the edge relation
of a graph and let the constraint

α := E(x1, x2), E(x2, x1)→ ∃y1, y2 E(x1, y1), E(y1, y2), E(y2, x1)

be given, stating that each node having a cycle of length 2 also has a cycle of
length 3. A 3-cycle cannot be homomorphically mapped into 2-cycle again, so it
holds that α 6≺c α.

The actual de�nition of c-strati�cation then relies, as outlined before, on the notion
of weak acyclicity.

De�nition 30. (see [Deutsch et al., 2008]) The c-chase graph Gc(Σ) = (Σ, E)
of a set of constraints Σ contains a directed edge (α, β) between two constraints
i� α ≺c β. We call Σ c-strati�ed i� the constraints in every cycle of Gc(Σ) are
weakly acyclic.

Example 31. Given the set of TGDs Σ = {α1, ..., α4}, where

α1 := R(x1)→ S(x1, x1),
α2 := S(x1, x2)→ ∃z T(x2, z),
α3 := S(x1, x2)→ T(x1, x2), T(x2, x1) and
α4 := T(x1, x2), T(x1, x3), T(x3, x1)→ R(x2).

We will give now an instance for which the chase does not necessarily terminate.
Consider the database {R(a)} and the chase sequence which applies the constraints
in the order α1, ..., α4, α1, ..., α4, ... and so on. The �rst steps of the resulting chase
sequence look as follows:

{R(a)}
α1,a−→ {R(a), S(a, a)}
α2,a,a−→ {R(a), S(a, a), T(a, n1)}
α3,a,a−→ {R(a), S(a, a), T(a, n1), T(a, a)}
α4,a,n1,a−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1)}
α1,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1)}

46 6.1 C-Strati�cation

α1

α2

α3

α4

Figure 6.2: C-chase graph for Example 31.

α2,n1,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1), T(n1, n2)}
α3,n1,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1), T(n1, n2), T(n1, n1)}
α4,n1,n2,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1), T(n1, n2), T(n1, n1),

R(n2)},
α1,n2−→ . . .

where n1, n2 are fresh null values. It can be easily seen that this sequence is
in�nite. The c-chase graph for this constraint set is depicted in Figure 6.2. The
only strongly connected component in it is Σ itself, which is not weakly acyclic. So,
Σ is not c-strati�ed, as witnessed by the non-terminating chase sequence above.
In order to illustrate why α2 ≺c α4 holds, we set I0 = {S(a, b), T (a, b), T (b, a)},
a = a, b and b = b, n1, a. Then, we can apply an oblivious chase step to obtain
I1 = I0 ∪ {T (b, n1)} and see that I1 6|= α4(b).

From the de�nition of ≺c it is not immediately clear that it is decidable, however
the test for membership in ≺c can be done with linearly-sized databases.

Proposition 32. It can be decided in coNP whether a set of constraints is
c-strati�ed.

Proof Sketch. We start with an additional claim: let α, β be constraints. Then,
the mapping (α, β) 7→ α ≺c β? can be computed by an NP-algorithm. The proof
of this claim proceeds like the proof of Theorem 3 in [Deutsch et al., 2008]. It is
enough to consider candidate databases for I of size at most |α|+ |β|, i.e. unions
of homomorphic images of the premises of α's and β's bodies. To prove that Σ is
not c-strati�ed, guess some strongly connected component Σ′ of the c-chase graph
and verify that it is not weakly acyclic. �

47 6.1 C-Strati�cation

C-strati�cation ensures the termination of the chase in the sense of CT∀∀, i.e. in-
dependently of the data and the chase sequence, as the following theorem states.

Theorem 33. Let Σ be a �xed set of c-strati�ed constraints. Then, there exists
a polynomial Q ∈ N[X] such that for any database instance I, the length of every
chase sequence is bounded by Q(|dom(I)|). Thus, Σ ∈ CT∀∀.

To prepare the proof of this theorem, we will show two lemmas.

Lemma 34. Let α and β be two constraints. If there exists 1 ≤ r ∈ N, �nite
databases I1, ..., Ir+1, and (α1, a1), ..., (αr, ar) such that I1

α1,a1−→ ...
αr,ar−→ Ir+1 and

(I2\I1) ∩ body(αr)(ar) 6= ∅, then there is a directed path from α1 to αr in Gc(Σ).

Proof Sketch. We introduce some additional notation needed for this proof.
We say that every atom t ∈ I1 has rank zero, i.e. rank(t) = 0. For every atom
t ∈ I2\I1 we set rank(t) = 1. For i ∈ [r] every atom in t ∈ Ii+1\Ii we set
rank(t) = 1 + max{rank(t′) | t′ ∈ body(αi)(ai)} if there is some t′ ∈ body(αi)(ai)
such that rank(t′) > 0. Otherwise, we set rank(t) = 0. For a set of atoms A we
set rank(A) = max{rank(t) | t ∈ A}.
If rank(body(αr)(ar)) = 1, then the claim of this lemma follows immediately
from the chase sequence from the prerequisites. We set I := body(α1)(a1) ∪
body(αr)(ar)\(I2\I1), a = a1, b = ar in order ro satisfy the conditions of De�nition
27.
Otherwise rank(body(αr)(ar)) > 1. Let t ∈ body(αr)(ar) of maximal rank. Say, t
was created by the chase step (αi, ai). Then, I := body(αi)(ai)∪body(αr)(ar)\(Ii+1\Ii)
together with a = ai, b = ar satis�es the conditions of De�nition 27. Thus,
αi ≺c αr. We have that rank(body(αi)(ai)) < rank(body(αr)(ar)). By induction
hypothesis we can conclude that there is a directed path from α1 to αi in Gc(Σ),
which �nishes this proof. �

Intuitively, this lemma can be understood as follows: if α is able to create some
atom(s) that can be �plugged� into the body of β, then there is a path from α to
β in Gc(Σ). This does not hold for the case of strati�cation.

Lemma 35. Let Σ be a set of constraints and C1, .., Cn all strongly connected
components of Gc(Σ). If for all i ∈ [n] it holds that Ci ∈ CT∀∀, then Σ ∈ CT∀∀.

Proof Sketch. Assume that we have a database instance I0 such that the chase
does not terminate. We will construct an in�nite chase sequence that uses only
constraints from some of the Ci.

48 6.2 Importance of Null Positions

We have an in�nite chase sequence S = I0
α1,a1−→ I1

α2,a2−→
We construct a �partial c-chase graph� (Σ, ES) as follows. For every i, j ∈ N such

that Ii−1
αi,ai−→ Ii

αi+1,ai+1−→ ...
αj−1,aj−1−→ Ij−1

αj ,aj−→ Ij and (Ii\Ii−1) ∩ body(αj)(aj) 6= ∅,
we add the edges to ES according to the previous lemma. Let Gc(Σ) = (Σ, E) the
c-chase graph for Σ. It follows from Lemma 34 that ES ⊆ E.
Without loss of generality, we can assume that every constraint from Σ �res in-
�nitely often and that for every j ∈ N there is some i > j such that I ′i−1 |= αi(ai),

where I ′0 := I0, Il−1
αl,al→ Jl for l 6= j and Jj := Jj−1.

Therefore, for every i ∈ N there exists r ∈ N0 such that Ii−1
αi,ai−→ Ii

αi+1,ai+1−→
...

αr+i−3,ar+i−3−→ Ir+i−3
αr+i−2,ar+i−2−→ Ir+i−1 and (Ii\Ii−1) ∩ body(αr+i−2)(ar+i−2) 6= ∅,

so every constraint is contained in some cycle in ES. If we have only one strongly
connected component in ES, we are done. Otherwise, we choose a strongly con-
nected component Ci0 such that every α ∈ Ci0 has predecessors only in Ci0 . It
follows that there is a non-terminating chase sequence for the instance I0 and the
constraint set Ci0 . �

We now turn toward the proof of the theorem.

Proof of Theorem 33. Let Σ be the set of constraints under consideration.
Let C1, ..., Cn be the strongly connected components of Gc(Σ). The proof of the
theorem's termination part follows by application of Lemma 35.
The polynomial time data complexity is derived as follows. First, note that by
assumption, Ci is weakly acyclic and therefore terminates terminates in time
Qi(|dom(I)|) for some Qi ∈ N[X]. It holds that every constraint outside

⋃
j∈[n] Cj

can �re at most polynomially many times from which the rest of the claim follows.
�

6.2 Importance of Null Positions

Before going on, we want to shortly discuss the main idea of all following termi-
nation conditions in this chapter. As we have already seen, the reason for in�nite
chase sequences is an in�nite cascading of labeled nulls (see Subsection 3.6.1).
Therefore our idea is as follows. Given a constraint violation

I 6|= α(a)

during the application of the chase algorithm, we try to estimate what values in
a are null values that were newly introduced by the chase algorithm and have not
been in the input instance.

49 6.3 Safe Constraints

With this idea at hand we are not only able to improve the weak acyclicity con-
dition but also the method that lifts weak acyclicity to c-strati�cation, �nally
leading to the introduction of the ∀∀-T-hierarchy.

6.3 Safe Constraints

This section introduces the class of so-called safe constraints. We will show that
this class guarantees termination of the chase and that it extends the notion of
weak acyclicity but does not coincide with strati�cation as depicted in Figure 1.2.
It will be later our main tool to de�ne more powerful su�cient termination con-
ditions for the chase.

The basic idea of our �rst new termination condition safety is to estimate the
set of positions where labeled nulls may be copied to and statically analyze the
data �ow only between these positions. As a useful tool, we borrow the notion of
so-called a�ected positions from [Calì et al., 2008], which is an overestimation of
the positions in which a null value that was introduced during the chase may occur.

De�nition 36. (see [Calì et al., 2008]) Let Σ be a set of TGDs over R. The
set of a�ected positions a�(Σ) of Σ is inductively de�ned as follows. Let π be a
position in the head of a TGD σ ∈ Σ.

• If an existentially quanti�ed variable appears in π, then π ∈ a�(Σ).

• If the same universally quanti�ed variable x appears both in position π and
in the body of σ in a�ected positions only, then π ∈ a�(Σ).

Although we borrow this de�nition from [Calì et al., 2008], our focus is di�erent.
We use a�ected positions to extend known classes of constraints for which the
chase terminates, whereas [Calì et al., 2008] investigates query answering in cases
the chase may not terminate. Our work neither subsumes [Calì et al., 2008] nor
the other way around.

We motivate the safety termination condition using the single constraint

β := R(x1, x2, x3), S(x2)→ ∃y R(x2, y, x1).

The dependency graph of constraint set {β} is shown in Figure 6.3 (left). As can
be seen, there is a cycle going through a special edge, so the set is not weakly
acyclic. We next study the a�ected positions in β:

50 6.3 Safe Constraints

R1

R2

R3 S1

∗

∗
∗

R2

Figure 6.3: On the left hand side is the dependency graph and on the right hand
side the propagation graph (it has no edges).

Example 37. Let us consider the constraint set Σ := {β}. Clearly, position R2 is
a�ected because it contains an existentially quanti�ed variable. S1 is not a�ected
because S does not occur in the head of β. Finally, we observe that also R1 is not
a�ected because x2 occurs not only in R2 but also in S1, which is not an a�ected
position. It follows that R3 cannot be a�ected, too. We conclude that position R2

is the only a�ected position in constraint set Σ.

We now argue that for constraint β a cascading of labeled nulls cannot occur,
i.e. no fresh labeled null can repeatedly create new labeled nulls in position R2

while copying itself to position R1. The reason is that β cannot be violated with
a fresh labeled null in R2, i.e. if R(a1, a2, a3) and S(a2) hold, but ∃y R(a2, y, a1)
does not, then a2 is never a newly created labeled null. This is due to the fact
that a2 also occurs in S1, but S1 is not an a�ected position. Hence, the chase
sequence always terminates. We will later see that this is not a mere coincidence:
the constraint is safe.

Like in the case of weak acyclicity, we de�ne the safety condition with the help of
the absence of cycles containing special edges in some graph. In order to distin-
guish it from the dependency graph, we call this graph the propagation graph.

De�nition 38. Given a set of constraints Σ, the propagation graph prop(Σ) :=
(a�(Σ), E) is the directed graph de�ned as follows. There are two kinds of edges
in E. Add them as follows: for every TGD ∀x(φ(x) → ∃yψ(x, y)) ∈ Σ and for
every x in x that occurs in ψ and every occurrence of x in φ in position π1

• if x occurs only in a�ected positions in φ then, for every occurrence of x in
ψ in position π2, add an edge π1 → π2 (if it does not already exist).

• if x occurs only in a�ected positions in φ then, for every existentially quan-
ti�ed variable y and for every occurrence of y in a position π2, add a special
edge π1

∗→ π2 (if it does not already exist).

51 6.3 Safe Constraints

As an improvement over weak acyclicity, in the propagation graph we do not
supervise the whole data �ow but only the �ow of labeled nulls that might be
introduced at runtime. Consequently, the graph contains edges only for null values
that stem exclusively from a�ected positions. We now can easily de�ne the safety
condition on top of the propagation graph.

De�nition 39. A set Σ of constraints is called safe i� prop(Σ) has no cycles
going through a special edge.

Note that given a set of constraints it can be decided in polynomial time whether
it is safe.
The intuition of these de�nitions is that we forbid an unrestricted cascading of
null values, i.e. with the help of the propagation graph we impose a partial order
on the a�ected positions such that any newly introduced null value can only be
created in a position that has a higher rank in that partial order in comparison
to null values that may occur in the body of a TGD. To state this more precisely,
assume a TGD of the form ∀x(φ(x) → ∃yψ(x, y)) is violated. Then, I |= φ(a)
must hold, but I 6|= ∃yψ(a, y)). The safety condition ensures that any position
in the body that has a newly created labeled null from a in itself and also occurs
in the head of the TGD has a strictly lower rank in our partial order than any
position in which some element from y occurs. The main di�erence in comparison
to weak acyclicity is that we look in a re�ned way (see a�ected positions) on where
a labeled null can be propagated to.

Note that if Σ is safe, then every subset of Σ is safe, too. We will now compare
safety to other termination conditions. We start with weak acyclicity and consider
an example.

Example 40. Consider the TGD R(x1, x2, x3), S(x2) → ∃y R(x2, y, x1) from
earlier. The dependency graph and the propagation graph are depicted in Figure
6.3. The only a�ected position is R2. From the respective de�nitions it follows
that this constraint is safe, but not weakly acyclic.

In the last example, the propagation graph was a subgraph of the dependency
graph. This turns out not to be a mere coincidence.

Proposition 41. Let Σ be a set of constraints. Then, prop(Σ) ⊆ dep(Σ).
Therefore, it holds that if Σ is weakly acyclic, then it is also safe.

52 6.3 Safe Constraints

R1 R3

S2R2S1
∗

∗

∗

R2

Figure 6.4: On the left hand side is the dependency graph and on the right hand
side the propagation graph (it has no edges).

The proposition follows directly from the de�nitions of safety and weak acyclicity.
In the propagation graph stronger conditions have to be satis�ed than in the de-
pendency graph in order to add special or non-special edges.

We give two more examples for safety, respectively non-safety. They show that
neither c-strati�cation implies safety nor the other way round.

Example 42. Let the TGDs

α := S(x2, x3), R(x1, x2, x3)→ ∃y R(x2, y, x1) and
β := R(x1, x2, x3)→ S(x1, x3)

be given. It can easily be shown that α ≺c β and β ≺c α. Together with the
fact that {α, β} is not weakly acyclic (cf. Figure 6.4) it follows that {α, β} is not
c-strati�ed. However, {α, β} is safe (cf. Figure 6.4).

Example 43. (see Example 29) Let the constraint

γ := E(x1, x2), E(x2, x1) → ∃ y1, y2 E(x1, y1), E(y1, y2), E(y2, x1)

be given. It was argued earlier that {γ} is c-strati�ed. However, it is not safe
because both E1 and E2 are a�ected and therefore dep({γ}) = prop({γ}). It was
seen in [Deutsch et al., 2008] that it is not weakly acyclic.

The next result shows that safety guarantees termination in the sense of CT∀∀
while retaining the property of polynomial time data complexity.

Theorem 44. Let Σ be a �xed set of safe constraints. Then, there exists a
polynomial Q ∈ N[X] such that for every database instance I, the length of every
chase sequence is bounded by Q(|dom(I)|). Thus, Σ ∈ CT∀∀.

53 6.3 Safe Constraints

Proof. First we introduce some additional notation. We denote constraints in the
form φ(x1, x2, u)→ ∃yψ(x1, x2, y), where x1, x2, u are all the universally quanti�ed
variables and

• u are those variables that do not occur in the head,

• every element in x1 occurs in a non-a�ected position in the body, and

• every element in x2 occurs only in a�ected positions in the body.

The proof is inspired by the proof of Theorem 3.9 in [Fagin et al., 2005], especially
the notation and some introductory de�nitions are taken from there. In a �rst
step we will give the proof for TGDs only, i.e. we do not consider EGDs. Later,
we will see what changes when we add EGDs.
Note that Σ is �xed. Let (V,E) be the propagation graph prop(Σ). For every
position π ∈ V an incoming path is a, possibly in�nite, path ending in π. We
denote by rank(π) the maximum number of special edges over all incoming paths.
It holds that rank(π) <∞ because prop(Σ) contains no cycles through a special
edge. De�ne r := max{ rank(π) | π ∈ V } and p := |V |. It is easily veri�ed
that r ≤ p, thus r is bounded by a constant. This allows us to partition the
positions into sets N0, ..., Np such that Ni contains exactly those positions π with
rank(π) = i. Let n be the number of values in I. We de�ne dom(Σ) as the set of
constants in Σ.

Choose some α := φ(x1, x2, u) → ∃yψ(x1, x2, y) ∈ Σ. Let I → . . . → G
α,a1a2b−→ G′

and let c be the newly created null values in the step from G to G′. Then

1. newly introduced labeled nulls occur only in a�ected positions,

2. a1 ⊆ dom(I) ∪ dom(Σ) and

3. for every labeled null Y ∈ a2 that occurs in π in φ and every c ∈ c that
occurs in some position ρ in ψ it holds that rank(π) < rank(ρ).

This intermediate claim is easily proved by induction on the length of the chase
sequence. Now we show by induction on i that the number of values that can
occur in any position in Ni in G′ is bounded by some polynomial Qi in n that
depends only on i (and, of course, Σ). As i ≤ r ≤ p, this implies the theorem's
statement because the maximal arity ar(R) of a relation is �xed. We denote by
body(Σ) the number of characters of the largest body of all constraints in Σ.

Case 1: i = 0. We claim that Q0(n) := n + |Σ| · nar(R)·body(Σ) is su�cient for our
needs. We consider a position π ∈ N0 and an arbitrary TGD from Σ such that
π occurs in the head of α. For simplicity we assume that it has the syntactic

54 6.4 Safely Restricted Constraints

form of α. In case that there is a universally quanti�ed variable in π, there can
occur at most n distinct elements in π. Therefore, we assume that some existen-
tially quanti�ed variable occurs in π in ψ. Note that as i = 0 it must hold that
|x2| = 0. Every value in I can occur in π. But how many labeled nulls can be
newly created in π? For every choice of a1 ⊆ dom(G) such that G |= φ(a1, λ, b) and
G 2 ∃yψ(a1, λ, y) at most one labeled null can be added to π by α. Note that in
this case it holds that a1 ⊆ dom(I) due to (1). So, there are at most nar(R)·body(Σ)

such choices. Over all TGDs at most |Σ|·nar(R)·body(Σ) labeled nulls are created in π.

Case 2: i→ i+ 1. We claim that

Qi+1(n) :=
∑i

j=0Qi(n) + |Σ| · (
∑i

j=0Qi(n))ar(R)·body(Σ)

is such a polynomial. Consider the �xed TGD α. Let π ∈ Ni+1. Values in π may
be either copied from a position in N0∪...∪Ni or may be a new labeled null. There-
fore w.l.o.g. we assume that some existentially quanti�ed variable occurs in π in ψ.
In case a TGD, say α, is violated in G′ there must exist a1, a2 ⊆ domG′(N0, ..., Ni)
and b ⊆ dom(G′) such that G′ |= φ(a1, a2, b), but G

′ 2 ∃yψ(a1, a2, y). If newly
introduced labeled null occur in a2, say in some position ρ, then ρ ∈

⋃i
j=0Nj. As

there are at most (
∑i

j=0Qi(n))ar(R)·body(Σ) many such choices for a1, a2, at most

(
∑i

j=0Qi(n))ar(R)·body(Σ) many labeled nulls can be newly created in π.

When we allow EGDs among our constraints, we have that the number of values
that can occur or be created in any position in Ni in G

′ can be bounded by the
same polynomial Qi. The di�erence to the situation of TGDs only is that Qi

bounds the number of di�erent values in a position over all instances in our chase
sequence, i.e. |{a ∈ ∆ ∪∆null|a appears in some position of Ni of some database
instance after some �nite number of chase steps}| ≤ Qi(n). The reason for this to
work is that equating labeled nulls does not increase the number of labeled nulls
and the use of the same partial order on the database positions like in the case of
TGDs only. �

6.4 Safely Restricted Constraints

In this section we generalize the method of c-strati�cation to a condition which we
call safe restriction. The c-chase graph from Section 6.1 will be a special case of
our new notion. We show that the chase always terminates in the sense of CT∀∀
for constraints obeying this new condition. We begin with a small example.

55 6.4 Safely Restricted Constraints

Example 45. Let the constraints

α := S(x2, x3), R(x1, x2, x3)→ ∃y R(x2, y, x1) and
β := R(x1, x2, x3)→ S(x1, x3)

from Example 42 be given again. We have seen that this constraint set is safe and
therefore {α, β} ∈ CT∀∀. Still, we will make an observation that will be useful
for the development of further chase termination conditions. Intuitively, the chase
will always terminate with these two constraints because a �ring of α may cause
a null value to appear in position R2, but a �ring of β will never introduce null
values in the head of α although β ≺c α holds. This is the key motivation for the
upcoming de�nitions.

First, we will re�ne the relation ≺c, which will help us to detect if during the
execution of the chase null values might be copied to the head of some constraint.

Let pos(Σ) denote the set of positions that occur in the body of some constraint in
Σ. In order to simplify the de�nition of ≺c's re�nement, we introduce the notion
of null-pos:

De�nition 46. Let Σ be a set of constraints, I be a �xed database instance
and N ⊆ ∆null. Then, we de�ne null-pos(N, I) as {π ∈ pos(Σ) | a ∈ N, a occurs
in position π in I}.

Informally spoken, null-pos(A, I) is the set of positions in I that also appear in
Σ and in which elements (i.e. labeled nulls) from A occur. We are now ready to
de�ne the re�nement of relation ≺c:

De�nition 47. Let Σ be a set of constraints and P ⊆ pos(Σ). For all α, β ∈ Σ,
we de�ne α ≺P β i� there are tuples a, b and a database instance I0 such that

1. I0
∗,α,a→ I1,

2. I1 6|= β(b),

3. I0 |= β(b), and

4. there is n ∈ b ∩∆null in the head of β(b) such that null-pos({n}, I0) ⊆ P .

The main di�erences to ≺c is that we check if a �possibly dangerous null value�
is copied via the last bullet. We next introduce a notion for a�ected positions
relative to a constraint and a set of positions.

56 6.4 Safely Restricted Constraints

α1

α2

Figure 6.5: Graph of the 2-restriction system for Example 51.

De�nition 48. For any set of positions P and a TGD α let a�-cl(α, P) be the
set of positions π from the head of α such that

• for every universally quanti�ed variable x in π: x occurs in the body of α
only in positions from P or

• π contains an existentially quanti�ed variable.

The latter de�nition and the re�nement of ≺c will help us to de�ne the notion of
a restriction system, which is a strict generalization of the c-chase graph.

De�nition 49. A 2-restriction system is a pair (G′(Σ), f), whereG′(Σ) := (Σ, E)
is a directed graph and f ⊆ pos(Σ) such that

1. for all TGDs α and for all (α, β) ∈ E: a�-cl(α, f) ∩ pos(Σ) ⊆ f ,

2. for all TGDs β and for all (α, β) ∈ E: a�-cl(β, f) ∩ pos(Σ) ⊆ f , and

3. for all α, β ∈ Σ: α ≺f β =⇒ (α, β) ∈ E.

A 2-restriction system is minimal if it is obtained from ((Σ, ∅),∅) by a repeated
application of the constraints from bullets one and two (until all constraints hold)
s.t., in case of the �rst bullet, f is extended only by those positions that are
required to satisfy the condition.

We illustrate this de�nition by two examples. The �rst one also shows that 2-
restriction systems always exist.

Example 50. Let Σ a set of constraints. Then, ((Σ,Σ × Σ), f), where f :=
pos(Σ) is a 2-restriction system for Σ.

57 6.4 Safely Restricted Constraints

Example 51. Let predicate E(x,y) store graph edges and predicate S(x) store
some nodes. The constraints Σ = {α1, α2} with

α1 :=S(x), E(x,y) → E(y,x) and
α2 :=S(x), E(x,y) → ∃z E(y,z), E(z,x)

assert that all nodes in S have a cycle of length 1 and 2. It holds that a�(Σ) =
{E1,E2} and it is easy to verify that Σ is neither safe nor c-strati�ed.
We will now illustrate that the minimal restriction system for Σ is
G'(Σ):=(Σ,{(α2,α1)},f) with f := {E1,E2}. The 2-restriction system's graph is
depicted in Figure 6.5.
Starting from ((Σ, ∅), ∅), we check whether α2 ≺∅ α1 holds according to De�nition
47. A possible start instance I0 can be chosen as {S(c),S(d),E(c, d)}, a := c, d
and b := d, n1, where n1 is a fresh null value and c, d ∈ ∆. We observe that

I0
α2,c,d−→ I1, where I1 = I0 ∪ {E(d, n1),E(n1, c)}. Thus, we have that I0

∗,α2,c,d−→ I1.
We see that I1 6|= α1(b) and I0 |= α1(b). We can conclude that α2 ≺∅ α1 holds.
According to bullet three in De�nition 49 we obtain as an intermediate result in
the computation of the minimal 2-restriction system ((Σ, {(α2, α1)}), ∅). Applying
bullets one and two, we result in ((Σ, {(α2, α1)}), f).
For convenience we will call a null value that occurs in position S harmless. Note
that S is unchanged by our constraints and therefore cannot contain any newly
introduced null values.
We now argue that α1 6≺f α1 holds. Assume that α1 ≺f α1 holds and choose
a starting instance I0 and a, b according to De�nition 47. Say a = c, d, where
c, d ∈ ∆ ∪∆null may not be distinct. The relation S contains only harmless null
values or elements from ∆. Thus, c is either in ∆ or harmless. In either case, we
see that b = d, c which implies that d is in ∆ or harmless, too.
With the same argumentation we see that α1 6≺f α2 holds. In order to prove that
α2 6≺f α2 holds, we observe that an oblivious chase step with α2 completes a cycle
through an outgoing edge of a node in S. Obviously, α2 cannot obliviously �re
again with the help of some tuples created in the step just before.
To see that α2 ≺f α1 holds we can use the same argumentation as we used to
prove that α2 ≺∅ α1 is valid. But this does not change our partial 2-restriction
system anymore.
We end up with the �nal minimal 2-restriction system ((Σ, {(α2, α1)}), f).

Based on the novel technical notion of 2-restriction systems we can easily de�ne
a new class of constraints.

58 6.4 Safely Restricted Constraints

De�nition 52. Σ is called safely restricted if and only if there is a restriction
system (G′(Σ), f) for Σ such that every strongly connected component in G′(Σ)
is safe.

Example 53. Recall the constraint set from Example 51. Its minimal 2-
restriction system does not contain any cycle. It follows from the previous de�ni-
tion that this constraint set is safely restricted.

The next theorem shows that safe restriction strictly extends the notion of c-
strati�cation and safety but is di�erent from super-weak acyclicity.

Theorem 54.

• If Σ is c-strati�ed or safe, then it is also safely restricted.

• There is some Σ that is safely restricted but neither safe nor c-strati�ed.

• There is some set of TGDs Σ that is safely restricted but not super-weakly
acyclic.

• There is some set of TGDs Σ that is super-weakly acyclic but not safely
restricted.

Proof.

• Bullets one and two follow from Theorem 59.

• For bullet three observe that the constraint set from Example 51 is not
super-weakly acyclic because In(α2, y) /Move(Σ,Out(α2, z)) and therefore
we have that ↪→Σ= {(α2, α2)}.

• For bullet four consider the two constraints A(x)→ ∃y B(x, y), B(y, x), C(y)
and B(x, x), C(y)→ A(x), C(y). We have already argued in Example 17 that
these two TGDs are super-weakly acyclic. It is easy to see that they are not
safely restricted because of the atom C(y) in the second constraint. �

De�nition 52 implies that safely restricted constraints can be recognized by a ΣP
2 -

algorithm. However, with the help of a canonical restriction system, we can show
that safe restriction can be decided, like c-strati�cation, in coNP.

59 6.4 Safely Restricted Constraints

Theorem 55. Given constraint set Σ it can be checked by a coNP-algorithm
whether Σ is safely restricted.

Before we prove Theorem 55, we introduce an additional tool. In general, a set of
constraints may have several 2-restriction systems, but as the next lemma shows,
we can always restrict ourselves to minimal 2-restriction systems.

Lemma 56. Let Σ be a set of constraints, (G′(Σ), f) a restriction system for Σ
and (G′min(Σ), fmin) a minimal one.

• Let P be a set of positions and α, β constraints. Then, the mapping
(P, α, β) 7→ α ≺P β? can be computed by an NP-algorithm.

• The minimal restriction system for Σ is unique. It can be computed from Σ
in non-deterministic polynomial time.

• It holds that Σ is safely restricted if and only if every strongly connected
component in G′min(Σ) is safe.

Proof. The proof of part one of the lemma proceeds like the proof of Theorem
3 in [Deutsch et al., 2008]. It is enough to consider candidate databases for A of
size at most |α|+ |β|, i.e. unions of homomorphic images of the premises of α and
β s.t. null values occur only in positions from P . This concludes part one.
Uniqueness holds by de�nition. It can be computed via successive application of
the constraints (note that f and E are changed in each step) in de�nition 49 by
a Turing machine that guesses answers to the question α ≺P β?. As the mapping
(P, α, β) 7→ α ≺P β? can be computed by an NP-algorithm and the �xedpoint
is reached after polynomially many applications of the constraints from de�nition
49, this implies the second claim.
Concerning the third claim, observe that every strongly connected component in
G′min(Σ) is contained in a single strongly connected component of any other re-
striction system. This implies the third claim. �

Proof of Theorem 55. By the previous lemma it su�ces to check the conditions
from De�nition 52 only for the minimal restriction system. To decide whether Σ
is not safely restricted, compute the minimal restriction system, guess a strongly
connected component and check if it is not safe. Clearly, this can be done in
non-deterministic polynomial time. �

The next theorem is the main contribution of this section. It states that the chase
will always terminate in the sense of CT∀∀ in polynomial time data complexity

60 6.4 Safely Restricted Constraints

for safely restricted constraints. We refer the interested reader to Theorem 75 for
a formal proof of this theorem.

Theorem 57. Let Σ be a �xed set of safely restricted constraints. Then, there
exists a polynomial Q ∈ N[X] such that for every database instance I, the length
of every chase sequence is bounded by Q(|dom(I)|). Thus, Σ ∈ CT∀∀.

Finally, we compare the c-chase graph to 2-restriction systems because the reader
might wonder what happens if we substitute weak acyclicity with safety in the
de�nition of c-strati�cation.

De�nition 58. We call Σ safely c-strati�ed i� the constraints in every cycle of
Gc(Σ) are safe.

We obtain the following result, showing that with the help of restriction systems,
we have strictly extended the method of the c-chase graph.

Theorem 59. Let Σ be a set of constraints.

• If Σ is weakly acyclic or safe, then it is safely c-strati�ed.

• If Σ is safely c-strati�ed, then it is safely restricted.

• There is some set of constraints that is safely restricted, but not safely c-
strati�ed.

Proof of Theorem 59.

• Let Σ be weakly acyclic. Every cycle in Gc(Σ) is safe, because Σ is safe and
weak acyclicity implies safety. Let Σ be safe. Every cycle in Gc(Σ) is safe,
because Σ is.

• Follows from Example 50 and the following proposition. Its proof follows
directly from the de�nition of ≺P and ≺c and is therefore omitted here.

Proposition 60. Let P ⊆ P ′ ⊆ pos(Σ). If α ≺P β, then α ≺P ′ β. It holds
that if α ≺P β, then α ≺c β.

• Consider the following TGDs. Σ := {α, β, χ, δ}.

61 6.5 Inductively Restricted Constraints

α := R1(x1, x2)→ ∃y S(x1, x2, y),
β := R1(x1, x2)→ ∃y T(x1, x2, y),
χ := S(x1, x2, x3), T(x4, x5, x6)→ T(x5, x1, x4), and
δ := S(x1, x2, x3), T(x4, x5, x3)→ T(x1, x3, x3), R1(x3, x1), R2(x3, x1).

It can be seen that α ≺c χ, β ≺c χ, χ ≺c δ, δ ≺c α and δ ≺c β holds.
Thus , there is a cycle in the chase graph that involves all constraints. Un-
fortunately, the constraint set is not safe. Therefore, it is also not safely
c-strati�ed. The minimal restriction system is ((Σ, E), f), where E = ∅ and
f = ∅. Obviously, every cycle in (Σ, E) is safe. Hence, Σ is safely restricted.

�

Note that we used safety instead of safe c-strati�cation in the de�nition of safe
restriction although safely c-strati�ed constraints are the provably larger class.
This is due to the fact that safety is easily checkable and using c-strati�cation
would not change the class of constraints. The next proposition clari�es this
issue.

Proposition 61. Σ is safely restricted i� there is a restriction system (G′(Σ), f)
for Σ such that every strongly connected component in G′(Σ) is safely c-strati�ed.

Proof of Proposition 61. Let (G′(Σ), f) be a restriction system for Σ such that
every strongly connected component in G′(Σ) is safely c-strati�ed. Choose some
strongly connected component C and two constraints α, β ∈ C such that α ≺P β
for some set of positions P . By Proposition 60, α ≺c β holds. As C is safely
c-strati�ed, this means that C must also be safe. So, every cycle in G′(Σ) is also
safe. �

6.5 Inductively Restricted Constraints

In this section we generalize the method that lifts safety to safety restriction with
the help of a more sophisticated use of 2-restriction systems. We de�ne a new
su�cient termination condition called inductive restriction, whose main idea is
to decompose a given constraint set into smaller subsets (in a more re�ned way
than safe restriction). We then use the safety condition from before to check the
termination of every subset and, whenever all subsets are safe, the termination
for the full constraint set can be guaranteed. Ultimately, we show that inductive
restriction (like all the classes discussed before) guarantees chase termination in
the sense of CT∀∀ in polynomial-time data complexity. This section also lays
the foundations for the ∀∀-T-hierarchy (cf. Figure 1.2), which will be de�ned

62 6.5 Inductively Restricted Constraints

part(Σ: Set of TGDs and EGDs, k: not equal to 1) {
1: compute the strongly connected components (as

sets of constraints) C1, . . . , Cn of the minimal
k-restriction system of Σ;

2: D ← ∅
3: if (n == 1) then
4: if (C1 6= Σ) then
5: return part(C1,k);
6: endif
7: return {Σ};
8: endif
6: for i=1 to n do
9: D ← D ∪ part(Ci,k);
10: endfor
11: return D; }

Figure 6.6: Algorithm to compute subsets of Σ.

subsequently in Section 6.6. We motivate our study with a constraint set that is
neither safe nor safely restricted.

Example 62. We extend the constraint set from Example 51 to Σ′ := Σ∪{α3},
where

α3 := ∃x, y S(x), E(x, y).

Then G'(Σ′):=(Σ′,{(α1, α2),(α2,α1),(α3,α1),(α3,α2)},f) with f = {E1,E2,S1} is
the minimal 2-restriction system. It contains the strongly connected component
{α1,α2}. Note that Σ′ is neither safe, nor strati�ed, nor safely restricted. Hence,
using the su�cient termination conditions discussed so far no chase termination
guarantees can be made for Σ′.

Intuitively, in the example above the constraint α3 �infects� position S1 in the
2-restriction system. Still, null values cannot be repeatedly created in S1: α3 �res
at most once, so it does not a�ect chase termination. Our novel termination con-
dition resolves such situations by recursively computing the minimal 2-restriction
systems of the strongly connected components. We formalize this computation
in Algorithm 1, called part(Σ, k)2, and de�ne the class of inductively restricted
constraint sets by help of this algorithm.

2In this section we will always set k = 2. The case k 6= 2 will be treated later.

63 6.5 Inductively Restricted Constraints

De�nition 63. Let Σ be a set of constraints. We call Σ inductively restricted
i� every Σ′ ∈ part(Σ, 2) is safe.

Compared to safe restriction, inductive restriction does not increase the complexity
of the recognition problem:

Lemma 64. Let Σ be a set of constraints. The recognition problem for inductive
restriction is in coNP.

Proof Sketch. We start with an additional claim: let P be a set of positions and
α, β constraints. Then, the mapping (P, α, β) 7→ α ≺P β? can be computed by
an NP-algorithm. The proof of this claim proceeds like the proof of Theorem 3 in
[Deutsch et al., 2008]. It is enough to consider candidate databases for I0 of size
at most |α| + |β|, i.e. unions of homomorphic images of the premises of α and β
s.t. null values occur only in positions from P . Because of this claim, the minimal
2-restriction system of a set of constraints can be computed by an NP-algorithm
(only polynomially many steps must be performed to reach the �xedpoint). Com-
puting part(Σ, 2) can also be done in non-deterministic polynomial time. To prove
that Σ is not inductively restricted, guess some Σ′ ∈ part(Σ, 2) and verify that it
is not safe. �

We give an example for an inductively restricted constraint set, which � as argued
in Example 62 � is neither safe nor safely restricted.

Example 65. Referring back to Example 62, we have seen that the minimal 2-
restriction system of Σ′ contains the only strongly connected component {α1,α2},
which by Example 62 is not safe. Therefore we compute the minimal 2-restriction
system of {α1,α2} and see that it does not contain a cycle. This argumentation
proves that part(Σ′, 2) = ∅, so we conclude that constraint set Σ′ is inductively
restricted.

As depicted in Figure 1.2, the inductive restriction condition generalizes safe re-
striction. The following proposition formally states this result and shows that the
respective inclusion relationship is proper. Please note that, as we will show later,
inductive restriction ensures chase termination independently of the database and
the chase sequence, therefore it cannot extend strati�cation, see Example 86.

Proposition 66. The following claims hold.

• If Σ is safely restricted, then it is inductively restricted.

• There is some Σ that is strati�ed, but not inductively restricted.

64 6.6 The ∀∀-T-Hierarchy

• There is some Σ that is inductively restricted, but not safely restricted.

• There is some set of TGDs Σ that is inductively restricted but not super-
weakly acyclic.

• There is some set of TGDs Σ that is super-weakly acyclic but not inductively
restricted.

Proof Sketch. We start with bullet one. It follows from the fact that every
strongly connected component of Σ's minimal 2-restriction system is safe and so
every subset of it must be safe, too. Bullet two follows from Example 86. Bullet
three is proved by the constraint set from Examples 62 and 65. Finally, bullets
four and �ve can be proved like bullets three and four in Theorem 54. �

The next theorem gives the main result concerning inductive restriction, showing
that it guarantees chase termination in the sense of CT∀∀ in polynomial time data
complexity. We refer the interested reader to Theorem 75 for a formal proof of
this theorem.

Theorem 67. Let Σ be a �xed set of inductively restricted constraints. Then,
there exists a polynomial Q ∈ N[X] such that for any database instance I, the
length of every chase sequence is bounded by Q(|dom(I)|). Thus, Σ ∈ CT∀∀.

We conclude with the remark that our motivating constraint set from Figure 6.1 is
not inductively restricted: the constraint α can cause itself to �re, so its minimal 2-
restriction system contains an edge from α to α, which forms a strongly connected
component; further, α is not safe. To show that the chase with α terminates, we
need weaker termination conditions than inductive restriction.

6.6 The ∀∀-T-Hierarchy
This section introduces the ∀∀-T-hierarchy, which is our main result regarding
CT∀∀. Its lowest level, ∀∀-T[2], corresponds to inductive restriction. Every level
in the hierarchy is decidable and strictly contains all lower levels. As we shall see,
also the constraint from Figure 6.1 is a member of some level in this hierarchy.

We start by de�ning the k-ary relation ≺k,P which is a generalization of ≺P . The
de�nition naturally extends the ≺P relation to a �xed number k of constraints.

65 6.6 The ∀∀-T-Hierarchy

De�nition 68. Let k ≥ 2, Σ a set of constraints and P ⊆ pos(Σ). For
all α1, ..., αk ∈ Σ, we de�ne ≺k,P (α1, ..., αk) i� there are tuples a1, ..., ak and a
database instance I0 such that

• for all i ∈ [k − 1] it holds that Ii−1
∗,αi,ai→ Ii,

• Ik−1 6|= αk(ak),

• there is n ∈ ak ∩∆null in the head of αk(ak) such that null-pos({n}, I0) ⊆ P ,

• I0 |= αk(ak), and

• for every i ∈ [k − 1] it holds that Jk−1 is de�ned and Jk−1 |= αk(ak), where

J0 := I0, Jl−1
∗,αl,al→ Jl for k > l 6= i and Ji := Ji−1. �

Note that ≺2,P corresponds exactly to ≺P introduced in De�nition 47. It can be
shown that, for a �xed value of k, membership in this relation is decidable in NP:

Proposition 69. Let k ≥ 2 be �xed. Then, there exists a NP-algorithm
that decides for every set of positions P and every α1, ..., αk ∈ Σ whether ≺k,P
(α1, ..., αk) holds.

Proof: Let k ≥ 2 be �xed and α1, ..., αk be TGDs and EGDs. Assume ≺k,P
(α1, ..., αk). Choose a database instance I0 and sequences a1, ..., ak such that

the de�nition of ≺k,P (α1, ..., αk) holds. For all i ∈ [k − 1] set Ii−1
∗,αi,ai→ Ii

and Ik−1
∗,αk,ak→ Ik. There is a sequence of homomorphisms h1, ..., hk such that

hi : body(αi)→ Ii−1 for all i ∈ [k]. Let J0 ⊆ I0 be the minimal subinstance (with

respect to set cardinality) such that for all i ∈ [k] Ji−1
αi,ai→ Ji and Ji ⊆ Ii. Then

J0 and a1, ..., ak also satisfy the conditions from the de�nition of ≺k,P (α1, ..., αk).
Furthermore. it must hold that |J0| ≤

∑
i∈[k](|body(αi)|+|head(αi)|) ≤

∑
i∈[k] |αi|,

where |αi| denotes the length of the sequence of symbols of the formula αi. So
only �nitely many candidate databases have to be examined, which completes the
proof. �

We next use the relation ≺k,P to de�ne k-restriction systems, which naturally
generalize the 2-restriction systems de�ned over relation ≺P (cf. De�nition 49).

De�nition 70. Let k ∈ N>1. A k-restriction system G′k(Σ) is a pair (G′, f),
where G′ = (Σ, E) is a graph and f ⊆ pos(Σ) such that

66 6.6 The ∀∀-T-Hierarchy

• for all TGDs α and for all (α, β) ∈ E: a�-cl(α, f) ∩ pos(Σ) ⊆ f ,

• for all TGDs β and for all (α, β) ∈ E: a�-cl(β, f) ∩ pos(Σ) ⊆ f , and

• for all α1, ..., αk ∈ Σ: ≺k,f (α1, ..., αk) then (α1, α2), ..., (αk−1, αk) ∈ E.

A k-restriction system is minimal if it is obtained from ((Σ, ∅), ∅) by a repeated
application of the constraints from bullets one and two (until all constraints hold)
such that, in case of the �rst or second bullet, f is extended only by those positions
that are required to satisfy the condition. In case the third bullet is applied, E is
extended.

Note that for k = 2 this de�nition corresponds exactly to the de�nition of 2-
restriction systems used to de�ne inductive restriction. Like 2-restriction sys-
tems, minimal k-restriction systems are unique and can be computed by a coNP-
algorithm:

Proposition 71. Let k ≥ 2 be �xed and Σ a set of constraints. The minimal
k-restriction system for Σ is unique and can be computed by an NP-algorithm.

Proof. Uniqueness follows directly from the de�nition: the computation is mono-
tone and bounded. The computation takes polynomially many steps and each
step requires at most one guess to check whether ≺k,f (α1, ..., αk) holds. Clearly,
this algorithm runs in non-deterministic polynomial time. �

We are now in the position to de�ne the ∀∀-T-hierarchy:

De�nition 72. Let k ≥ 2 and Σ be a set of constraints. Then Σ ∈ ∀∀-T[k] i�
there is k′ ∈ [k]\{1} such that for every Σ′ ∈ part(Σ, k′) it holds that Σ′ is safe.

We call ∀∀-T[k] the k-th level of the ∀∀-T-hierarchy. As a corollary from Proposi-
tion 71 we obtain that we can decide whether a set of constraints is in ∀∀-T[k] by
a coNP-algorithm. We next give an example for constraints in the ∀∀-T-hierarchy.

Example 73.
We set Σk+1 := {αk+1}, where

αk+1 := S(xk+1), Rk(x1, ..., xk+1)→ ∃y Rk(y, x1, ..., xk).

In order to prove that ≺k+1,∅ (α, ..., α) holds, observe that on the starting instance
I0 = { S(a1), ...,S(ak+1,Rk(a1, ..., ak+1)} we can apply k + 1 (oblivious) chase steps

67 6.6 The ∀∀-T-Hierarchy

resulting in the instances Ii = Ii−1 ∪ {Rk(ni, a1, ..., ak+1−i)} for i ∈ [k] and Ik+1 =
Ik ∪ {Rk(nk+1, ..., n1)}.
We also see that ≺k+2,∅ (α, ..., α) cannot hold because there cannot exist k + 2
oblivious chase steps such that bullet �ve in De�nition 68 is satis�ed.
So the minimal (k + 2)-restriction system does not contain any cycle, but the
minimal k + 1-restriction system does. Therefore Σk+1 ∈ ∀∀-T[k + 2]. On the
other hand, we observe that the constraint is not safe, so it is not contained in
∀∀-T[k + 1]. Also note that the constraint in Figure 6.1 exactly corresponds to
Σ2, so it is contained in level ∀∀-T[3].

The following proposition relates the levels of the ∀∀-T-hierarchy to each other
and to inductive restriction.

Proposition 74. Let k ≥ 2.

• Σ is inductively restricted i� Σ ∈ ∀∀-T[2]

• ∀∀-T[k] ⊆ ∀∀-T[k + 1].

• There is some Σ such that Σ ∈ ∀∀-T[k + 1]\∀∀-T[k].

• There is some set of TGDs Σ that is in T [k] but not super-weakly acyclic.

Proof Sketch.

• To prove bullet one, note that both de�nitions coincide exactly.

• Bullet two follows by de�nition.

• For bullet three we refer back to Example 73.

• It is easy to see that the constraint set in Example 73 is not super-weakly
acyclic. �

It is unclear to us if super-weak acyclicity is di�erent from the T -hierarchy, but as
we have already mentioned several times before, we can easily de�ne a decidable
fragment of CT∀∀ that is a superset of super-weak acyclicity by allowing in the def-
inition of our classes that every strongly connected component of the k-restriction
system may be either safe or super-weakly acyclic. As super-weak acyclicity is not
our main object of interest in this thesis, we will not explicitly do this.

The next result is our main contribution concerning data- and sequence-independent
chase termination. It states that, for a �xed value of k, membership in ∀∀-T[k]
guarantees polynomial time data complexity for the chase.

68 6.6 The ∀∀-T-Hierarchy

Theorem 75. Let k ≥ 2 and Σ ∈ ∀∀-T[k] be a �xed set of constraints. Then,
there exists a polynomial Q ∈ N[X] such that for any database instance I, the
length of every chase sequence is bounded by Q(|dom(I)|). Thus, ∀∀-T[k] ⊆ CT∀∀.

In order to prepare the proof of this theorem, we need two lemmas. For an in�nite

chase sequence S = I1
α1,a1−→ I2

α2,a2−→ . . . and k ≥ 2 we de�ne δS,k to be the minimal
natural number such that for every l ≥ δS,k there are αi1 , ..., αik = αl such that
(Iij+1\Iij) ∩ body(αij+1

)(aij+1
) 6= ∅.

Lemma 76. Let an in�nite chase sequence S = I1
α1,a1−→ I2

α2,a2−→ . . ., P ⊆ pos(Σ)
and i ≥ δS,k be given. If there is n ∈ ∆null∩(Ii+1\Ii) and n ∈ dom(body(αj)(aj))∩
dom(head(αj)(aj)) for some j > i, then there is a directed path from αi to αj in
G′k(Σ).

Sketch of proof. Recall the de�nition of rank from the Proof of Lemma 34.
We adapt this notion for our needs here. Let (αh, ah) be the chase step in which
n was freshly created by the chase. We say that every atom t ∈ Ih has rank
zero, i.e. rank(t) = 0. For every atom t ∈ Ih+1\Ih in which n occurs we set
rank(t) = 1. For i′ ≥ h + 1 every atom in t ∈ Ii′+1\Ii′ we set rank(t) = 1 +
max{rank(t′) | t′ ∈ body(αi′)(ai′)} if there is some t′ ∈ body(αi′)(ai′) such that
rank(t′) > 0 and there is some m ∈ ∆null∩body(αi′)(ai′)∩head(αi′)(ai′) such that
null − pos{m}, Ih ⊆ P . Otherwise, we set rank(t) = 0. For a set of atoms A we
set rank(A) = max{rank(t) | t ∈ A}.
Consider J := body(αj)(aj). We prove our claim by induction on rank(J). If
rank(J) = 1 then the claim of this lemma follows immediately from the chase
sequence from the prerequisites. We set I := body(αi)(ai)∪body(αj)(aj)\(Ii+1\Ii),
ak−1 = ai, ak = aj in order ro satisfy the conditions of De�nition 68. As we have
chosen i ≥ δS,k, we can conclude that there must be β1, ..., βk−2 ∈ Σ such that
≺k,P (β1, ..., βk−2, αi, αj), from which follows the claim.

If rank(J) > 1. Choose t ∈ J such that rank(t) is maximal and t was added
to Ij by the chase step (αl, al) with l < j and l maximal with this property.

Then, we have that J ′
∗,αl,al−→ J , where J ′ := body(αl)(al) ∪ J\(Il+1\Il). We can

conclude that there must be β1, ..., βk−2 ∈ Σ such that ≺k,P (β1, ..., βk−2, αl, αj)
becauise we have j > l > i ≥ δS,k. By induction hypothesis we can also conclude
that there is a directed path from αi to αl in G

′
k(Σ), which completes this proof. �

The previous lemma is used to obtain a second lemma.

69 6.6 The ∀∀-T-Hierarchy

Lemma 77. If every strongly connected component of the minimal k-restriction
system of Σ is in CT∀∀, so is Σ.

Proof Sketch. Assume that we have a database instance I0 such that the
chase does not terminate. We will construct an in�nite chase sequence that uses
only constraints from some strongly connected component Ci of Σ's minimal k-
restriction system G′ = ((Σ, E ′), f ′).

We have an in�nite chase sequence S = I1
α1,a1−→ I2

α2,a2−→ Without loss of
generality, we can assume that

1. every constraint from Σ �res in�nitely often, and

2. that for every j ∈ N there is some i > j such that I ′i |= αi(ai), where I
′
1 := I1,

Jl
αl,al→ Jl+1 for l 6= j and Jj+1 := Jj.

This in�nite chase sequence will serve as a witness for the fact that some strongly
connected component of the minimal k-restriction system has already an in�nite
chase sequence. We construct a partial k-restriction system G = ((Σ, E), f),
i.e. E ⊆ E ′ and f ⊆ f ′, in which we only add edges according to the proof of
Lemma 76 are satis�ed. Clearly, G has a non-empty strongly connected compo-
nent. If it has exactly one such strongly connected component, then we are done.
Otherwise, we choose some strongly connected component C of G that has only
predecessors in C itself. It holds that there is some strongly connected component
C ′ in G′ such that C ⊆ C ′ due to monotonicity of G′'s computation. Let j ∈ N
such that αj ∈ C is a TGD with existential quanti�ers (which must exist because
otherwise αj would have a predecessor not in C). We can conclude that the chase
with Ij and C has an in�nite chase sequence or otherwise some element in C would
have a predecessor not in C. �

We can now turn our attention to the theorem's proof, which concludes this sec-
tion.

Proof Sketch of Theorem 75. The proof of Theorem 75 now is by induction
on the depth d of recursive calls of part(Σ, k). If d = 0, then Σ is safe and the
claim follows from Theorem 44. If d > 1, then we consider the strongly connected
components C1, ..., Cn of the minimal restriction system of Σ and apply Lemma
77. We obtain Σ ∈ CT∀∀.
By induction hypothesis, chasing with Ci terminates in time Qi(|dom(I)|) for some
polynomial Qi that depends only on Ci. If Ci 6= Cj and there is a path from Ci
to Cj, then there can be only polynomially many chase steps with constraints
from Ci. These can trigger polynomially many chase steps with constraints in

70 6.7 An Algorithmic Approach

check(Σ: Set of TGDs and EGDs, k: not equal to 1) {
1: if (Σ is safe) then
2: return true;
3: endif
4: compute the strongly connected components (as

sets of constraints) C1, . . . , Cn of the minimal
k-restriction system of Σ;

5: if (n == 0) then
6: return true;
7: endif
8: if (n == 1) then
9: if (C1 6= Σ) then
10: return check(C1,k);
11: endif
12: return false;
13: endif
14: for i=1 to n do
15: if (not check(Ci,k)) then
16: return false;
17: endif
18: endfor
19: return true; }

Figure 6.7: Algorithm to decide membership in ∀∀-T[·].

Cj but not the other way round. If Ci 6= Cj and there is no path from Ci to
Cj, then every atom that is created by some α ∈ Ci can never be used to copy
null values by some β ∈ Cj. Thus, a cascading of labeled nulls can happen only
polynomially many times because it can happen only polynomially many times in
every strongly connected component. Thus, the overall computation takes only
polynomially many chase steps. �

6.7 An Algorithmic Approach

This section aims to develop an e�cient algorithm to test membership in ∀∀-T[k].
We have seen before that the computation of k-restriction systems is costly because
we need NP time to compute the relation ≺k,P . For this reason, we present an
algorithm that avoids the computation of k-restriction systems if possible. It relies
on the idea that the stronger condition safety can be checked in polynomial time

71 6.7 An Algorithmic Approach

α3

α2 α1

α4 α5

Figure 6.8: 2-restriction system for Example 79.

(cf. Section 6.3). Before computing the k-restriction system, we always check for
safety and, whenever safety holds, we conclude that the chase for the respective
constraint set terminates and omit the computation of the k-restriction system.
We illustrate this idea by a simple example.

Example 78. Consider the constraint from Σ := {β} Examples 37 and 40,
where

β := R(x1, x2, x3), S(x2)→ ∃y R(x2, y, x1).

Assume that we want to test if this constraint falls into some (�xed) level k of
the ∀∀-T-hierarchy. Computing a k-restriction system is super�uous because we
already know that this constraint is safe and its membership in ∀∀-T[k] trivially
follows from the satisfaction of the safety condition.

In general, the situation is, of course, not that simple.

Example 79. Consider for instance the constraint set Σ′ = {α1, α2, α3}, where

α1 := S(x), E(x,y) → E(y,x),
α2 := S(x), E(x,y) → ∃z E(y,z) and
α3 := ∃x, y S(x), E(x, y)

from Example 62 extended by {α4, α5}, where

α4 := E(x1, x2)→ T(x1, x2),
α5 := T(x1, x2), T(x2, x3)→ T(x1, x3),

and call the resulting constraint set Σ′′.

72 6.7 An Algorithmic Approach

Assume we want to show that Σ′′ is inductively restricted (i.e. membership in
∀∀-T[2]). It follows from Example 62 that Σ′′ is not safe because Σ′ is not.
In direct correspondence to Example 62 it follows that the minimal 2-restriction
system for Σ′′ is G'(Σ′′):=(G′,f), where G′ is depicted in Figure 6.8 and f := {E1,
E2, S1, T1, T2}.
This 2-restriction system contains the strongly connected components {α1,α2} and
{α5}. For {α1,α2} we must compute its minimal 2-restriction system because it is
not safe, but for {α5} we can avoid this additional complexity because we know
that α5 is safe as it is a full TGD and therefore the chase terminates.

We implement the scheme described above in algorithm check, provided in Fig-
ure 6.7.

Proposition 80. Algorithm check terminates and correctly decides membership
in the ∀∀-T-hierarchy, i.e. there exists k′ ∈ [k] such that check(Σ, k′) returns true
if and only if Σ ∈ ∀∀-T[k].

Proof Sketch. The algorithm terminates because all recursive calls are made on
constraint sets with size smaller than the input constraint set. What the algorithm
does is trying to avoid the computation of k-restriction systems by testing for
safeness. The correctness follows from the proof of Theorem 75 because the only
property we need to show is that for all Σ′ ∈ part(Σ, k) the chase terminates in
the sense of CT∀∀, which is ensured by the additional safety checks. �

Chapter 7

Exploring CT∀∃
Sergio: �What would Alan say?�

Alice: �Oh, he'd say that he likes Theorem 87.�

Riccardo: �I'm getting another schnitzel.�

CT∀∃ ensures the existence of at least one terminating chase sequence for every
database instance. The literature on the chase lacks a systematic study of CT∀∃
and concentrates solely on CT∀∀. We �ll this gap by identifying decidable frag-
ments of it. To the best of our knowledge, this is the �rst study of su�cient
termination conditions for the chase that do not ensure the termination of all
chase sequences but of at least one.
But how can we safely apply the chase and be sure that the chase sequence we
follow terminates? How can such a sequence be found? A general solution seems
to be quite simple. We apply the chase in a breadth-�rst manner1. Using this
technique, we can always guarantee termination. However, this method is quite
ine�cient because it needs a lot of runtime to follow all chase sequences and it
also uses a lot of memory.
The results of our study on sequence-dependent chase termination have an im-
portant additional property. We cannot only ensure that there is a terminating
chase sequence, but we can statically determine it, while checking our termination
conditions. This has an important implication. We do not have to apply the chase
in the breadth-�rst, but in the usual depth-�rst manner, thus saving much time
and space.
As a starting point for our work, we make the observation that the strati�cation
condition introduced in [Deutsch et al., 2008] does not belong to CT∀∀, as stated
by the authors of [Deutsch et al., 2008], but to CT∀∃. It is the cornerstone for all
further sequence-dependent termination conditions for the chase. We start with
an introduction to strati�ed constraint sets.

1Applying the chase breadth-�rst means that for all n = 1, 2, 3, ... we generate all possible
chase sequences of length bounded by n and we abort this process when we have found a
terminating sequence.

73

74 7.1 Strati�cation

7.1 Strati�cation

In [Fagin et al., 2005] a syntactic restriction was introduced, called weak acyclicity,
which guarantees chase termination in the sense of CT∀∀. It can be checked in
polynomial time whether a set of constraints is weakly acyclic. At the time weak
acyclicity was found by the authors of [Fagin et al., 2005] it comprised every other
known termination condition for the chase. In [Deutsch et al., 2008], strati�cation
was introduced which meant to improve the former weak acyclicity condition. The
main idea behind strati�cation is to decompose the constraint set into independent
subsets that are then separately tested for weak acyclicity. More precisely, the
decomposition splits the input constraint set into subsets of constraints that may
cyclically cause to �re each other. The idea is that the termination guarantee for
the full constraint set should follow if weak acyclicity holds for each subset in the
decomposition.
The basis for such a decomposition is the binary relation ≺ on the constraint set.

De�nition 81. (see [Deutsch et al., 2008]) Given two TGDs or EGDs α, β ∈ Σ
we de�ne α ≺ β i� there exists a relational database instance I and a, b such that

1. I 6|= α(a),

2. I |= β(b),

3. I
α,a→ J , and

4. J 6|= β(b).

Intuitively, α ≺ β means that if α �res, it can cause β to �re (in the case that β
could not �re before). In contrast to c-strati�cation, we do not use an oblivious
but a standard chase step in the de�nition. We give an example to illustrate this
de�nition.

Example 82. Consider the following constraints, where c, d ∈ ∆:

α := E(x1, x2)→ ∃y R(x2, y, c) and
β := R(x1, x2, d)→ E(x1, x2).

It holds that α 6≺ β because α can only create atoms which have the constant
c in their third position, whereas β requires the constant d in its �rst position.
We have that β ≺ α because we can take the instance {R(a, b, d)} and the tuples
a = b = a, b. Besides, α 6≺ α and β 6≺ β hold.

75 7.1 Strati�cation

E1 R1

E2 R2 R3∗

Figure 7.1: Dependency graph for Example 84.

The actual de�nition of strati�cation then relies, as outlined before, on the notion
of weak acyclicity.

De�nition 83. (see [Deutsch et al., 2008]) The chase graph G(Σ) = (Σ, E) of
a set of constraints Σ contains a directed edge (α, β) between two constraints i�
α ≺ β. We call Σ strati�ed i� the constraints in every cycle of G(Σ) are weakly
acyclic.

Strati�cation strictly generalizes weak acyclicity (see [Deutsch et al., 2008]) in the
sense that

1. if Σ is weakly acyclic, then it is also strati�ed and

2. there are constraint sets that are strati�ed but not weakly acyclic (cf. Ex-
ample 84).

Example 84. Consider the constraint {α, β} from Example 82. It holds that
≺= {(β, α)}, so {α, β} is strati�ed. The dependency graph of {α, β} is depicted
in Figure 7.1 and contains a cycle through a special edge, so {α, β} is not weakly
acyclic.

As shown in [Deutsch et al., 2008] it can be decided in coNP whether a set of
constraints is strati�ed. The authors of [Deutsch et al., 2008] claim the following
result:

Statement 85. (cf. [Deutsch et al., 2008]) Let Σ be a �xed set of strati�ed con-
straints. Then, there exists a polynomial Q ∈ N[X] such that for every database
instance I, the length of every chase sequence is bounded by Q(|dom(I)|). Thus,
Σ ∈ CT∀∀.

76 7.1 Strati�cation

Unfortunately, as we show in the following example, this statement is not true.
Please note that we introduced the example (cf. Example 31) already earlier in
Chapter 6. For convenience, we repeat it here again.

Example 86. We consider the constraint set from Example 31 again. We repeat
it here for convenience as it stems from the beginning of Chapter 6. Given the set
of TGDs Σ = {α1, ..., α4}, where

α1 := R(x1)→ S(x1, x1),
α2 := S(x1, x2)→ ∃z T(x2, z),
α3 := S(x1, x2)→ T(x1, x2), T(x2, x1) and
α4 := T(x1, x2), T(x1, x3), T(x3, x1)→ R(x2).

We will give now an instance for which the chase does not necessarily terminate.
Consider the database {R(a)} and the chase sequence which applies the constraints
in the order α1, ..., α4, α1, ..., α4, ... and so on. The �rst steps of the resulting chase
sequence look as follows:

{R(a)}
α1,a−→ {R(a), S(a, a)}
α2,a,a−→ {R(a), S(a, a), T(a, n1)}
α3,a,a−→ {R(a), S(a, a), T(a, n1), T(a, a)}
α4,a,n1,a−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1)}
α1,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1)}
α2,n1,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1), T(n1, n2)}
α3,n1,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1), T(n1, n2), T(n1, n1)}
α4,n1,n2,n1−→ {R(a), S(a, a), T(a, n1), T(a, a), R(n1), S(n1, n1), T(n1, n2), T(n1, n1),

R(n2)},
α1,n2−→ . . .

where n1, n2 are fresh null values. It can be easily seen that this sequence is
in�nite. The chase graph for Σ is depicted in Figure 7.2. The only cycle in it is
constituted by full TGDs only and therefore, it is weakly acyclic. Hence, it follows
that Σ is strati�ed.
In order to show that α2 6≺ α4 holds assume for a moment α2 ≺ α4. Choose a
database instance I and a, b according to De�nition 81. Say, a = c, d, where c
and d may not be distinct. α2 creates a fresh labelled null n1 in our instance.
Therefore, b = d, n1, e, where d, e may not be distinct. We see that T (d, e) ∈ I,
which implies I |= α2(a). This contradicts our assumption.

77 7.1 Strati�cation

α1

α2

α3

α4

Figure 7.2: Chase graph for Example 86.

As a consequence, unlike weak acyclicity, strati�cation does not ensure termination
in the sense of CT∀∀.
However, we can prove another, equally useful result with the de�nition of strati-
�cation as in [Deutsch et al., 2008]. If a set of constraints is strati�ed, we cannot
ensure termination in the sense of CT∀∀ but CT∀∃ as stated in the following the-
orem. We want to emphasize that this result was not stated by the authors of
[Deutsch et al., 2008] but is our own �nding.

Theorem 87. Let Σ be a �xed set of strati�ed constraints. Then, there exists a
polynomial Q ∈ N[X] such that for any database instance I there is a terminating
chase sequence whose length is bounded by Q(|dom(I)|). Thus, Σ ∈ CT∀∃.

As we are going to generalize this statement on the following pages we will omit
its formal proof here and refer the reader to the more general Theorem 89. The
polynomial data complexity follows immediately from the polynomial data com-
plexity of weakly acyclic constraint sets.

But how can we use this result in practice? The �rst idea is to apply the chase
in a breadth-�rst manner, i.e. generating a tree whose root is the start instance,
its children are obtained by applying one chase step on the start instance and
the tree is expanded in a breadth-�rst manner. This ensures that if there is a
terminating chase sequence, then we will �nd it. Unfortunately, this is rather
ine�ective because in some intermediate instance there may be many constraints
violated and therefore, the degree and the depth of the tree may be high.
As it turns out, we are in a much better situation here. We can use the chase
graph to statically construct the order in which the constraints can be applied to
ensure a terminating chase sequence. We give an example to illustrate this.

Example 88. Consider the constraint set Σ from Example 86 again and the
instance {R(a), T(b, b)}. We give a chase sequence that terminates.

{R(a), T(b, b)}

78 7.1 Strati�cation

α1,a−→ {R(a), T(b, b), S(a, a)}
α3,a,a−→ {R(a), T(b, b), S(a, a), T(a, a)}
α4,b,b,b−→ {R(a), T(b, b), S(a, a), T(a, a), R(b)}
α1,b−→ {R(a), T(b, b), S(a, a), T(a, a), R(b), S(b, b)}

It holds that {R(a), T(b, b), S(a, a), T(a, a), R(b), S(b, b)} |= Σ. We obtained a
terminating chase sequence by �rst chasing with the constraints in the cycle and
after the chase with these constraints is �nished, we (possibly) chase with α2,
which was not necessary here. It can be shown that this strategy always leads to
�nite chase sequences, regardless of the underlying instance.

The observations made in this example can be generalized to the next theorem.

Theorem 89. Let Σ be a �xed set of constraints. If for every strongly-connected
component Σ′ of G(Σ) it holds that Σ′ ∈ CT∀∃ and a terminating chase sequence
can be statically constructed, then Σ ∈ CT∀∃ and a terminating chase sequence
can be statically constructed.

Proof. Let the chase graph G(Σ) = (Σ, E) be given. We write α ∼ β if and only
if α and β are contained in a common cycle in G(Σ) or α = β. Note that ∼ is an
equivalence relation.
Let Σ/ ∼= {W1, ...,Wn} and E ′ := { (Wi,Wj) | i, j ∈ [n], i 6= j, there is some αi ∈
Wi, βj ∈ Wj such that αi ≺ βj }. Let W ′

1, ...,W
′
n be a topological sorting of

(Σ/ ∼, E ′). Note that W ′
1, ...,W

′
n are the strongly connected components of the

chase graph and constraint sets that are not involved in any cycle in the chase
graph, therefore the chase terminates independently of the database instance and
independently of the chase order for these constraint sets. Let I0 be an arbitrary
database instance. Let Ii be obtained from Ii−1 by chasing with W ′

i according to
the chase strategy from the prerequisites for every i ∈ [n]. It holds that I2 |= W ′

1.
Otherwise, there is some α ∈ W ′

1, β ∈ W ′
2 and a database instance I such that

I |= α, but I
β,b−→ J 6|= α. But this implies β ≺ α which means W ′

2 must come
before W ′

1 in the topological sorting of (Σ/ ∼, E ′). Using induction on n it can be
seen that In |= Σ. Observe that W ′

1, ...,W
′
n is a partition of Σ. �

This allows us to safely apply the chase procedure in situations when the termi-
nation cannot be guaranteed for every chase sequence. We avoid the overhead
of branching in the breadth-�rst chase and therefore reduce the complexity of
generating a chase result.

79 7.2 The ∀∃-T-Hierarchy

7.2 The ∀∃-T-Hierarchy
We continue our study of CT∀∃ by combining our ideas related to the ∀∀-T-
hierarchy in Section 6.6 with strati�cation in Section 7.1, thus creating much
larger decidable fragments of CT∀∃ than strati�cation. We also propose an e�-
cient algorithm that decides membership for a given level in this hierarchy.

We take a simple idea to do that in changing the weak acyclicity condition in the
de�nition of strati�cation to some larger fragment of CT∀∀ like safety or some level
of the ∀∀-T-hierarchy. This creates indeed a fragment of CT∀∃ because the proof
of Theorem 87 does not depend on the notion of weak acyclicity but solely on the
observation that weak acyclicity is a fragment of CT∀∀. A possible de�nition of
such a class is as follows.

De�nition 90. Let k ≥ 2. A set of constraints Σ is in ∀∃-T[k] i� every strongly
connected component of G(Σ) is in ∀∀-T[k].

As a �rst property we want to mention that this hierarchy is strict.

Example 91. (cf. to Example 73) We have seen in Example 73 that the
constraint set Σk := {αk}, where

αk := S(xk), Rk(x1, ..., xk)→ ∃y Rk(y, x1, ..., xk−1)

is in ∀∀-T[k + 1]\∀∀-T[k]. As we also have that αk+1 ≺ αk+1, we can conclude
that Σ ∈ ∀∃-T[k + 1]\∀∃-T[k].

As already explained, the following corollary is easily obtained.

Corollary 92. (to Theorem 89) Let k ≥ 2 and Σ ∈ ∀∃-T[k] be a �xed set
of constraints. Then, there exists a polynomial Q ∈ N[X] such that for every
database instance I the length of every chase sequence is bounded by Q(|dom(I)|).
Thus, Σ ∈ CT∀∃.

The de�nition's use can be illustrated by the example now to be mentioned.

Example 93. We consider the constraint set from Example 31 again and
combine it with the constraint set from Example 51 and an additional full TGD.
We repeat the whole constraint here for convenience. Let Σ be the following set
of TGDs:

80 7.2 The ∀∃-T-Hierarchy

α1 := R(x1)→ S(x1, x1),
α2 := S(x1, x2)→ ∃z T(x2, z),
α3 := S(x1, x2)→ T(x1, x2), T(x2, x1),
α4 := T(x1, x2), T(x1, x3), T(x3, x1)→ R(x2),
α5 := T(x1, x2)→ E(x1, x2),
α6 := U(x1), E(x1, x2)→ E(x2, x1) and
α7 := U(x1), E(x1, x2)→ ∃y E(x2, y), E(y, x1).

It is clear that Σ ∈ CT∀∃ because we can �rst apply a terminating chase sequence
to satisfy the constraints {α1, ..., α4} and then apply the rest of the constraints
afterwards arbitrarily. After �nitely many steps this chase sequence will terminate.

The important point to see is that no termination condition for the chase intro-
duced so far recognizes that there is always a terminating chase sequence for Σ. On
the one hand, Σ is not in any level of the ∀∀-T-hierarchy because for {α1, ..., α4}
there may be non-terminating chase sequences (cf. Example 31). On the other
hand, Σ can also not be strati�ed because the constraint set {α6, α7} is not weakly
acyclic (cf. Example 51).
We will now show that Σ ∈ ∀∃-T[2]. The chase graph is depicted in Figure 7.3.
We see that there are two strongly connected components, namely {α1, α3, α4}
and {α6, α7}. As both are in ∀∀-T[2], we can conclude that Σ ∈ ∀∃-T[2].

Like in the case of strati�cation, we are not only able to prove that there must
be a terminating chase sequence but can also determine such a sequence statically
from the shape of the chase graph. We chase sequentially with

1. {α1, α3, α4} until these constraints are satis�ed,

2. then take α2 and apply it until it is satis�ed,

3. afterwards, we do every possible chase step with α5 and

4. �nally, we chase with the second strongly connected component {α6, α7}.

At the end, all constraints are satis�ed and therefore the chase sequence is �nite.

This example shows us that a further decomposition of the strongly connected
components of the chase graph via the ∀∀-T-hierarchy leads to improved termina-
tion conditions.

We present an observation made during the example. As a corollary of Theorem
89 we can state that for every database instance a terminating chase sequence can

81 7.2 The ∀∃-T-Hierarchy

α1

α2

α3

α4 α5 α6

α7

Figure 7.3: Chase graph for Example 93.

α1 α2

Figure 7.4: Chase graph for Example 95.

always be statically constructed from the underlying chase graph.

Corollary 94. (to Theorem 89) Let k ≥ 2 and Σ be a �xed set of constraints in
∀∃-T[k] constraints. For every database instance I a terminating chase sequence
for I and Σ can be statically constructed.

As a closing remark we want to mention that the ∀∃-T-hierarchy is a proper subset
of CT∀∃. We leave weaker decidable fragments of CT∀∃ as an open problem for
future research.

Example 95. Consider the set of constraints Σ := {α1, α2}, where

α1 := R(x1, x2, x3), S(x2)→ ∃y R(x2, y, x1), S(y) and
α2 := R(x1, x2, x3), S(x2)→ R(x2, x3, x1), S(x3).

Given an arbitrary �nite database instance, we always apply the constraint α2

during the chase. This obviously leads only to �nite chase sequences because α2

is a full TGD. At the end, α1 will also be satis�ed. Observe that {α2} |= α1.
The chase graph for Σ is depicted in Figure 7.4. It shows the strongly connected
component {α1, α2}, which cannot be in any level of the T -hierarchy because the
constraint α1 has a non-terminating chase sequence for the instance {R(a, b, c),
S(b)}. Thus, Σ cannot be in any level of the ∀∃-T-hierarchy.

82 7.3 A More E�cient Membership Test

∀∃-check(Σ: Set of TGDs and EGDs, k: not equal to 1) {
1: if (Σ is safe) then
2: return true;
3: endif
4: compute the strongly connected components (as

sets of constraints) C1, . . . , Cn of the chase
graph of Σ;

5: for i=1 to n do
6: if (not check(Ci,k)) then
7: return false;
8: endif
9: endfor
10: return true; }

Figure 7.5: Algorithm ∀∃-check to decide membership in ∀∃-T[·].

7.3 A More E�cient Membership Test

This section aims to develop an e�cient algorithm to test membership in ∀∃-T[k].
The idea on which we base such an improvement in e�ciency is the same as in
Section 6.7. We have seen before that the computation of chase graphs and k-
restriction systems is costly because we need Np time to compute the relations
≺ and ≺k,P . For this reason, we try to avoid the computation of chase graphs
and k-restriction systems if possible. Like in Section 6.7 we rely on the idea that
the stronger condition safety can be checked in polynomial time (cf. Section 6.3).
Before computing the chase graph or k-restriction system, we always check for
safety and, whenever safety holds, we conclude that the chase for the respective
constraint set terminates and omit the computation of the chase graph or k-
restriction system. We illustrate this idea by a simple example.

Example 96. Consider the constraint from Σ := {β} Examples 37 and 40,
where

β := R(x1, x2, x3), S(x2)→ ∃y R(x2, y, x1).

We assume that we want to test if this constraint falls into some (�xed) level k of
the ∀∃-T-hierarchy. Computing a chase graph is super�uous because we already
know that this constraint is safe and its membership in ∀∃-T[k] trivially follows
from the satisfaction of the safety condition.

In general, of course, the situation is not that simple as the next example shows.

83 7.3 A More E�cient Membership Test

Example 97. Consider for instance the constraint set Σ′ = {α1, ..., α4} from
Examples 82 and 86 again, where

α1 := R(x1)→ S(x1, x1),
α2 := S(x1, x2)→ ∃z T(x2, z),
α3 := S(x1, x2)→ T(x1, x2), T(x2, x1) and
α4 := T(x1, x2), T(x1, x3), T(x3, x1)→ R(x2).

Say that we want to test whether Σ ∈ ∀∃-T[k]. Its dependency graph is depicted
in Figure 7.2. It shows that the only strongly connected component in the chase
graph is C := {α1, α3, α4}. The de�nition of the ∀∃-T-hierarchy implies that C
must be further decomposed via k-restriction systems but this is not necessary
here because C consists only of full TGDs and is therefore safe. Thus, we can
avoid computing a k-restriction system for C.

We implement the scheme described above in algorithm ∀∃-check, provided in
Figure 6.7.

Proposition 98. Algorithm ∀∃-check terminates and correctly decides mem-
bership in the ∀∃-T-hierarchy, i.e. there exists k′ ∈ [k] such that ∀∃-check(Σ, k′)
returns true if and only if Σ ∈ ∀∃-T[k].

Proof Sketch. The algorithm terminates because all recursive calls are made
on constraint sets with a size smaller than the input constraint set. What the
algorithm does is trying to avoid the computation of chase graphs and k-restriction
systems by testing for safety. The correctness follows from Lemma 77 and Theorem
89 because the only property we need to show is that for all strongly connected
components of the chase graph the chase terminates in the sense of CT∀∃, which
is ensured by the additional safety checks. �

Chapter 8

Data-dependent Chase

Termination

Riccardo: �Is there no alternative to all this theory?�

Alice: �Of course. Run the algorithm and monitor what happens.�

Sergio: �If nothing bad happens, then everything is �ne.�

8.1 Motivation

So far, we have discussed conditions that guarantee chase termination for every
database instance. In this section we study the problem of data-dependent ter-
mination, i.e. given the constraint set Σ and a �xed instance I, does the chase
with Σ terminate on I? By the best of our knowledge, this problem has not
been studied before, so we start our discussion with a motivating scenario. Let
us consider the travel agency database in Figure 8.1, where predicate hasAirport
contains cities that have an airport and fly (rail) stores �ight (rail) connections
between cities, including their distance dist. In addition to the schema, constraints
{α1, α2, α3} have been speci�ed, e.g. α3 might have been added to assert that for
each city reachable via plane, the schedule is integrated in the local database. Now
consider the conjunctive query q1 below.

q1: rf(x2)← rail(c1, x1, y1), fly(x1, x2, y2)

The query selects all cities that can be reached from c1 through rail-and-�y. As-
sume that in the style of semantic query optimization we want to optimize q1

under constraints Σ using the chase. We then interpret the body of q1 as database
instance I := {rail(c1, x1, y1), fly(x1, x2, y2)}, where c1 is a constant and the xi,
yi labeled nulls. We observe that α3 does not hold on I, since there is a �ight to
city x2 but no outgoing �ight from x2. Hence, the chase adds a new tuple t1 :=
fly(x2, x3, y3) to I, where x3, y3 are fresh labeled null values. In the resulting
instance I ′ := I ∪ {t1}, α3 is again violated (this time for x3) and in subsequent

85

86 8.1 Motivation

Sample Schema: hasAirport(c_id)
fly(c_id1, c_id2, dist)
rail(c_id1, c_id2, dist)

Constraint Set: Σ = {α1, α2, α3}, where

α1 : If there is a �ight connection between two cities,
both of them have an airport:
fly(c1, c2, d)→ hasAirport(c1), hasAirport(c2)

α2 : Rail-connections are symmetrical:
rail(c1, c2, d)→ rail(c2, c1, d)

α3 : Each city that is reachable via plane has at
least one outgoing �ight scheduled:
fly(c1, c2, d)→ ∃c3, d

′ fly(c2, c3, d
′)

Figure 8.1: Sample database schema and constraints.

steps the chase adds fly(x3, x4, y4), fly(x4, x5, y5), fly(x5, x6, y6), Obviously,
it will never terminate in this setting.
Reasonable applications should not risk non-termination, so for the constraint set
in Figure 8.1 termination is in question for all queries, although there might be
queries for which the chase terminates.1 Tackling this problem, we propose to
investigate data-dependent chase termination, i.e. to study su�cient termination
guarantees for a �xed instance when no general termination guarantees apply. We
illustrate the bene�ts of having such guarantees for query q2 below, which selects
all cities x2 that can be reached from c1 via rail-and-�y and the same transport
route leads back from x2 to c1 (c1 is a constant, xi, yi are variables).

q2: rffr(x2)← rail(c1, x1, y1), fly(x1, x2, y2), fly(x2, x1, y2),
rail(x1, c1, y1)

Query q2 violates only α1. It is easy to verify that the chase terminates for this
query and transforms q2 into q

′
2:

q′2: rffr(x2)← rail(c1, x1, y1), fly(x1, x2, y2), fly(x2, x1, y2),
rail(x1, c1, y1), hasAirport(x1), hasAirport(x2)

1Note that query optimization can be done with a bounded portion of a chase result but in
general we do not �nd minimal rewritings of the input query in the style of [Deutsch et al.,
2006]. Therefore, it is desirable to guarantee chase termination.

87 8.1 Motivation

hasAirport1 fly1

fly2

fly3

rail1

rail2

rail3

∗

∗

Figure 8.2: Dependency graph for Σ from Figure 8.1.

The resulting query q′2 satis�es all constraints and is a so-called universal plan
[Deutsch et al., 2006]: intuitively, it incorporates all possible ways to answer the
query. As discussed in [Deutsch et al., 2006], the universal plan forms the basis for
�nding smaller equivalent queries (under the respective constraints) by choosing
any subquery of q′2 and testing if it can be chased to a homomorphical copy of
q′2. Using this technique, we can easily show that the following two queries are
equivalent to q2.

q′′2 : rffr(x2)← rail(c1, x1, y1), fly(x1, x2, y2), fly(x2, x1, y2)
q′′′2 : rffr(x2)← hasAirport(x1), rail(c1, x1, y1), fly(x1, x2, y2),

fly(x2, x1, y2)

Thus, instead of q2 we could evaluate q′′2 or q′′′2 , which might well be more perfor-
mant: in both q′′2 and q′′′2 the join with rail(x1, c1, y1) has been eliminated; more-
over, if hasAirport is duplicate-free, the additional join of rail with hasAirport

in q′′′2 may serve as a �lter that decreases the size of intermediate results and speeds
up query evaluation. This strategy is called join introduction in SQO (cf. [King,
1986]). Ultimately, the chase for q2 makes it possible to detect q′′2 and q′′′2 , so it
would be desirable to have data-dependent termination guarantees that allow us
to chase q2 (and q

′′
2 , q

′′′
2). We will present such conditions in the remainder of this

chapter.

88 8.2 On CTI,∀ and CTI,∃

8.2 On CTI,∀ and CTI,∃

We want to point out that decidable fragments of CTI,∀ and CTI,∃ cannot always
guarantee that the chase can be safely applied in query optimization. To be more
precise, even if the chase terminates on an instance, there may be subinstances
for which there is no terminating chase sequence. For example, this is important
for the Chase & Backchase algorithm (cf. Section 4.2) as the subsequent example
demonstrates.

Example 99. Consider the set of constraints

Σ := {E(x, y)→ ∃z E(x, z), E(z, y)}

and the two queries

q1()← E(x, y), E(y, x), E(x, x), E(y, y) and
q2()← E(x, y), E(y, x).

Observe that body(q1) |= Σ and that q2 is a subquery of q1. We assume that the
Chase & Backchase produced the universal plan q1 and that the subquery q2 is
selected in the backchase phase to be tested for equivalence to q1. So, the �rst
step is to chase body(q2) with Σ. Unfortunately, no chase sequence with body(q2)
and Σ terminates.

This implies that even if a decidable fragment of CTI,∀ or CTI,∃ can guarantee the
termination of the chase for a query, there may be cases where there is a subquery
for which no chase sequence terminates at all, so the data-dependent approach
must necessarily fail. Thus, in general, only data-independent techniques can
always ensure the applicability of Chase & Backchase but in some cases techniques
can be used if the data-independent techniques fail as shown at the beginning of
this chapter.

Although, the Chase & Backchase cannot always be applied as a blackbox in
the data-dependent scenario we can slightly modify it such that an optimization
is possible. It is important to note that we cannot guarantee optimality of the
results, i.e. minimality of the output queries. The idea is to chase the query as
usual in the Chase & Backchase, but to apply the backchase phase only to those
subqueries for which data-dependent chase termination guarantees can be made.
In this way, we can surely optimize the query, however, the result may not be
minimal.

89 8.3 Results for CTI,∀

8.3 Results for CTI,∀

Our �rst approach to data-dependent chase termination is a static one. It relies
on the observation that the chase will always terminate on instance I if the subset
of constraints that might �re when chasing I with Σ is contained in some level of
the ∀∀-T-hierarchy.

De�nition 100. We call a constraint α ∈ Σ (I,Σ)-irrelevant if and only if there
is no chase sequence such that α can eventually �re, i.e. no chase sequence of the

form I
α1,a1−→ · · · α,a−→

We formalize our observation in Lemma 101.

Lemma 101. Let k ≥ 2 and Σ′ ⊆ Σ s.t. Σ \ Σ′ is a set of (I,Σ)-irrelevant
constraints. If Σ′ ∈ T [k], then the chase with Σ terminates for instance I.

Proof Sketch. It holds that Σ′ contains all constraints that may �re during the
execution of the chase starting with I and Σ. IΣ′ is �nite and IΣ′ = IΣ. �

Hence, the crucial point is to e�ectively compute the set of (I,Σ)-irrelevant con-
straints. Unfortunately, it turns out that checking (I,Σ)-irrelevance is an unde-
cidable problem in general:

Theorem 102. Let Σ be a set of constraints, α ∈ Σ a constraint, and I an
instance. It is undecidable if α is (I,Σ)-irrelevant.

Proof Sketch. It is well-known that the following problem is undecidable: given
a Turing machine M and and a state transition t from the description of M , does
M reach t (given the empty string as input)? From (M, t), we will compute a set
of TGDs and EGDs ΣM and a TGD αt ∈ ΣM such that the following equivalence
holds: M reaches t (given the empty string as input) ⇔ there is a chase sequence
in the computation of the chase with ΣM applied to the empty instance such that
αt will eventually �re.
Our reduction uses the construction in the proof of Theorem 1 in [Deutsch et al.,
2008]. To be self-contained, we review it here again. We use the signature con-
sisting of the relation symbols:

• T(x, a, y) tape �horizontal� edge from x to y with symbol a,

• H(x, s, y) head �horizontal� edge from x to y with state s,

• L(x, y) left �vertical� edge,

90 8.3 Results for CTI,∀

• R(x, y) right �vertical� edge,

• Aδ(x), Bδ(x) for every state transition δ,

• one constant for every tape symbol,

• one constant for every head state,

• the special constant B marking the beginning of the tape, and

• � to denote an empty tape cell.

The set of constraints ΣM is as follows.

1. The initial con�guration:

∃w, x, y, z T(w,B, x), T(x,�, y), H(x, s0, y), T(y, E, z),

where � is the blank symbol and s0 is the initial state (both are constants).

2. For every state transition δ which moves the head to the right, replacing
symbol a with a′ and going from state s to state s′:

T(x, a, y), H(x, s, y), T(y, b, z)→ ∃x′, y′, z′ L(x, x′), R(y, y′), R(z, z′),
T(x′, a′, y′), T(y′, b, z′), H(y′, s′, z′), Aδ(w

′).

Here a, s, a′, b, and s′ are constants.

3. For every state transition δ which moves the head to the right past the end
of the tape replacing symbol a with a' and going from state s to state s':

T(x, a, y), H(x, s, y), T(y, E, z)→ ∃w′, x′, y′, z′ L(x, x′), R(y, y′), R(z, z′),
T(x′, a′, y′), T(y′,�, z′), H(y′, s′, z′),
T(y′, E, w′), Aδ(w

′).

Here a, s, a′, b, and s′ are constants.

4. Similarly for state transitions which move the head to the left.

5. Similarly for state transitions which do not move the head.

6. For every state transition δ:

91 8.3 Results for CTI,∀

Aδ(x)→ Bδ(x)

7. Left copy:

T(x, a, y), L(y, y′)→ ∃x′ L(x, x′), T(x′, a, y′).

Here a is a constant.

8. Right copy:

T(x, a, y), R(x, x′)→ ∃y′ T(x′, a, y′), R(y, y′).

Here a is a constant.

The state transition t is transformed to αt in the same way like in bullet three
above. It is crucial to the proof that every state transition δ in M is represented
as a single TGD Aδ(x) → Bδ(x). The constraint for the initial con�guration �res
exactly once. The computation of the chase with this set of constraint can be un-
derstood as a grid and each row in the grid represents a con�guration of the Turing
machine. It can be shown that (M, t) is a yes-instance if and only if (ΣM , αt) is a
yes-instance. This concludes the proof. �

This result prevents us from computing the minimal set of constraints that may
�re when chasing I. Still, we can give su�cient conditions that guarantee (I,Σ)-
irrelevance for a constraint. For this purpose, we use the chase graph.
We �x some notation. Let I be a �xed �nite database instance,

αI := ∃x
∧
R(x′)∈I R(x′)

and Σ a set of constraints which contains no constraints with an empty body.
We compute the c-chase graph Gc(Σ∪ {αI}) and denote by WCCΣ(αI) the set of
constraints that are reachable from αI in the c-chase graph.

Proposition 103. If α /∈WCCΣ(αI), then α is (I,Σ)-irrelevant.

Proof Sketch. Assume that α is not (I,Σ)-irrelevant. Then, there is a chase

sequence I
α1,a1−→ I1

α2,a2−→ · · · αr,ar−→ Ir
β,a−→ If αI ≺c β, we are �nished. Otherwise,

there must be some nr ∈ [r] such that αnr ≺c β (otherwise β could not �re). If
αI ≺c αnr , we are �nished. Otherwise, there must be some nr−1 ∈ [nr − 1] such
that αnr−1 ≺c αnr (otherwise αnr could not �re). After some �nite amount of
iterations of this process we have that αI ≺c αn1 ≺c ... ≺c αnr ≺c β. Therefore,

92 8.4 Results for CTI,∃

the c-chase graph contains a directed path from αI to β. �

Please note that the prerequisite that every constraint must have a non-empty
body is not a restriction. If this is not the case, let every constraint with an
empty body �re. Eliminate these constraint from the constraint set and apply the
proposition with the obtained instance. Proposition 103 together with Lemma 101
gives us a su�cient data-dependent condition for chase termination, as illustrated
in the following example.

Example 104. Consider constraint set Σ from Figure 8.1 and q2 from the be-
ginning of this section. Please note that Σ is neither in CT∀∀ nor in CT∀∃ because
of α3. Therefore, data-independent techniques do not apply in this scenario. We
set

αI := ∃c1, x1, x2, y1, y2 rail(c1, x1, y1), fly(x1, x2, y2),
fly(x2, x1, y2), rail(x1, c1, y1)

and compute the c-chase graph

G(Σ ∪ {αI}) := (Σ ∪ {αI}, {(αI , α1), (α3, α3)}).

By Proposition 103, α2 and α3 are (I,Σ)-irrelevant. It holds that Σ \ {α2, α3} =
{α1} is inductively restricted, so we know from Lemma 101 that the chase of
q2 with Σ terminates. A similar argumentation holds for q′′2 and q′′′2 from the
beginning of Section 8.

8.4 Results for CTI,∃

We continue our journey through chase termination with su�cient termination
conditions for a given database instance and at least one terminating chase se-
quence.
We use the same notation as in Proposition 103.

Corollary 105. Let k ≥ 2. If WCCΣ(αI) ∈ ∀∃-T[k], then there is a terminating
chase sequence for Σ and I.

Proof Sketch. Assume that all chase sequences for Σ and I do not terminate.
As Σ\WCCΣ(αI) contains no (Σ, I)-irrelevant constraints, we know that the chase
with (Σ, I) has a terminating chase sequence i� the chase with (WCCΣ(αI), I) has
a terminating chase sequence. As we have WCCΣ(αI) ∈ ∀∃-T[k], we can conclude

93 8.4 Results for CTI,∃

α1

α2

α3

α4

α5αI

Figure 8.3: C-chase graph for Example 106.

that there is a terminating chase sequence for (WCCΣ(αI), I). �

We close this section with an example for a scenario in which neither data-
independent techniques nor techniques related to CTI,∀ apply.

Example 106. Let the database instance {R(a)} be given. We consider the
constraint set from Example 31 again. We repeat it here as it is from the beginning
of Chapter 6 and add a new constraint α5 to it. Thus, we have the set of TGDs
Σ = {α1, ..., α4}, where

α1 := R(x1)→ S(x1, x1),
α2 := S(x1, x2)→ ∃z T(x2, z),
α3 := S(x1, x2)→ T(x1, x2), T(x2, x1),
α4 := T(x1, x2), T(x1, x3), T(x3, x1)→ R(x2), and
α5 := E(x1, x2)→ ∃z E(x2, z).

Please note that Σ is not in

• CT∀∀ because {α1, ..., α4} is not,

• CT∀∃ because α5 is not, and

• CTI,∀ because we have a non-terminating chase sequence (see Example 86).

Therefore, all data-independent or data-dependent techniques developed before
this section do not apply in this scenario.
We set αI := R(a) and compute the c-chase graph G(Σ∪{αI}) which is depicted in
Figure 8.3. We see that WCCΣ(αI) = {α1, ..., α4} which is strati�ed by Example
86 and therefore in ∀∃-T[2]. Hence, by Corollary 105 there is a terminating chase
sequence.

94 8.5 Stop the Chase: Monitoring

8.5 Stop the Chase: Monitoring

If the previous data-dependent termination conditions do not apply, we propose
to monitor the chase run and abort if tuples that may potentially lead to non-
termination are created. We introduce a data structure called monitor graph that
allows us to track the chase run.

De�nition 107. A monitor graph is a tuple (V,E), where V ⊆ ∆null × 2pos(Σ)

and E ⊆ V × Σ× 2pos(Σ) × V .

A node in a monitor graph is a tuple (n,Π), where n is a database value and
Π the positions in which n was �rst created (e.g. as null value with the help of
some TGD). An edge (n1,Π1, ϕi,Π, n2,Π2) between (n1,Π1), (n2,Π2) is labeled
with the constraint ϕi that created n2 and the set of positions Π from the body of
ϕi in which n1 occurred when n2 was created. The monitor graph is successively
constructed while running the chase according to the following de�nition.

De�nition 108. The monitor graph GS with respect to S = I0
ϕ0,a0−→ . . .

ϕr−1,ar−1−→
Ir is a monitor graph that is inductively de�ned as follows.

• G0 = (∅, ∅) is the empty chase segment graph.

• If i < r and ϕi is an EGD then Gi+1 := Gi.

• If i < r and ϕi is a TGD then Gi+1 is obtained from Gi = (Vi, Ei) as follows.

If the chase step Ii
ϕi,ai−→ Ii+1 does not introduce any new null values, then

Gi+1 := Gi.

Otherwise, Vi+1 is set as the union of Vi and all pairs (n, π), where n is a
newly introduced null value and π the set of positions in which n occurs.
Ei+1 := Ei ∪ {(n1,Π1, ϕi,Π, n2,Π2) | (n1,Π1) ∈ Vi, (n2,Π2) ∈ Vi+1\Vi and
Π is the set of positions in body(ϕi)(ai) where n1 occurs}.

Our next task is to de�ne a necessary criterion for non-termination on top of the
monitor graph. To this end, we introduce the notion of k-cyclicity.

De�nition 109. Let G = (V,E) be a monitor graph and k ∈ N. G is called
k-cyclic if and only if there are pairwise distinct e1, ..., ek ∈ E such that

• there is a path in G that contains e1, ..., ek and ei occurs before ei+1 in that
path and

95 8.5 Stop the Chase: Monitoring

• for all i ∈ [k − 1]: p2,3,4,6(ei) = p2,3,4,6(ei+1).

We call a chase sequence k-cyclic if its monitor graph is k-cyclic. A chase sequence
may potentially be in�nite if some �nite pre�x is k-cyclic, for any k ≥ 1:

Lemma 110. For all k ∈ N and every in�nite chase sequence S when chasing
I0 with Σ, there is some �nite pre�x of S that is k-cyclic.

Proof. Assume that

• we have an in�nite chase sequence S = (Ii)i∈N and

• there is some k ∈ N such that every �nite pre�x of S is not k-cyclic.

Let (Si)i∈N be the sequence of �nite pre�xes of S (such that Si is a chase sequence
of length i) and let (GSi)i∈N the respective sequence of monitor graphs. A path
in a monitor graph is a �nite sequence of edges e1, ..., el (and not of nodes) such
that p5,6(ei) = p1,2(ei+1) for i ∈ [l − 1].
We de�ne the notion of depth of a node in a monitor graph. Let v be a node
in GSi and pred(v) the set of predecessors of v. In case v has no predecessors,
the depth of v, depthGSi (v), is de�ned as zero. In case v has predecessors, then
depthGSi (v) := 1 +max{ depthGSi (w) | w ∈ pred(v) }.

The following claim follows immediately from the de�nition of the monitor graph.

Proposition 111. Let v be a node in GSi and j > i.

• GSi is an acyclic labeled tree.

• Every null value that appears in Ii appears in some �rst position of a node
in GSi .

• There is a homomorphism hij from GSi to GSj such that depthGSi (v) ≤
depthGSj (hij(v)).

• If Ii
ϕi,ai→ Ii+1, b ∈ ai is a null value and c a null value that was newly created

in this step, then the depth of any node in GSi+1
in which b appears is strictly

smaller than the depth of any node in GSi+1
in which c appears. (Proof by

induction on i) �

96 8.5 Stop the Chase: Monitoring

The next proposition is the most important step in the proof of this lemma and
follows directly from bullet four in Proposition 111.

Proposition 112. Let i ∈ N. For every d ∈ N ∪ {0} there is a number kd ∈ N
such that for every i ∈ N it holds that |{ v | depthGSi (v) ≤ d }| ≤ kd. Note that
kd is independent from i. (Proof by induction on d)

We observe another fact.

Proposition 113. There is some pk ∈ N such that if some GSi has a path of
length pk, then Si is k-cyclic.

This is because we have only a bounded number of relational symbols and con-
straints available. The remaining step in the proof is to show that if we choose i
large enough, then GSi contains a path of length pk. Assume that this claim does
not hold. By Proposition 112, the number of nodes of a certain depth is bounded
(independent of i). So, if for any i there would be no path of length pk in GSi , then
the number of nodes in GSi would be bounded (independent of i). This implies
that the chase has introduced only a bounded number of fresh null values, which
contradicts the assumption of an in�nite chase sequence. �

To avoid non-termination, an application can �x a cycle-depth k and stop the
chase when this limit is exceeded. For every terminating chase sequence there
is a k s.t. the sequence is not k-cyclic, so if k is chosen large enough, the chase
will succeed. We argue that k-cyclicity is a natural condition that considers only
situations which may cause non-termination, so our approach is preferable to
blindly chasing the instance and stopping after a �xed amount of time or number
of chase steps. As justi�ed by the following proposition, the choice of k follows a
pay-as-you-go principle: for larger k-values the chase will succeed in more cases
as the next proposition demonstrates.

Proposition 114. For each k ∈ N there is some Σk and Ik such that

• both Σk and the subset of constraints in Σk that are not (Ik,Σk)-irrelevant
are not inductively restricted, and

• every chase sequence for Ik with Σk is (k − 1)-, but not k-cyclic.

Proof. We set

97 8.5 Stop the Chase: Monitoring

Ik := {S(c1), ...,S(ck), Rk(c1, ..., ck)} and
Σk := {ϕ},

where ϕ := S(xk), Rk(x1, ..., xk)→ ∃y Rk(y, x1, ..., xk−1).

First observe that Σk contains no (I,Σk)-irrelevant constraints, so the subset of
the constraints in Σk that is not (I,Σ)-irrelevant equals to Σk. It is easy to verify
that Σk is not inductively restricted, although the chase with Σk always terminates,
independently of the underlying data instance, so the condition in bullet one holds.
We now chase of Ik with Σk. There is only one possible chase sequence (Ji)0≤i≤k,
de�ned as

J0 := Ik, and
for i ≤ k: Ji := Ji−1 ∪ {R(ni, ..., n1, c1, ..., ck−i)},

where n1, ..., nk are fresh null values. It holds that Jk |= Σk.
The monitor graph with respect to (Ji)0≤i≤k is (V,E), where

V := {(ni,R1
k)|i ∈ [k]}, and

E := {(ni,R1
k, ϕ,{R

j−i
k }, nj,R1

k)|1 ≤ i < j ≤ k}.

We observe that the sequence is (k − 1)-cyclic because

(n1,R
1
k, ϕ,{R

1
k}, n2,R

1
k), ..., (nk−1,R

1
k, ϕ,{R

1
k}, nk,R1

k)

constitute a path in the chase graph that satis�es the conditions of the de�nition
of (k − 1)-cyclicity. The chase sequence is not k-cyclic because there is no path
of length at least k in the monitor graph. This proves the second bullet of the
proposition. �

Chapter 9

Applications

Riccardo: �What about negation and disjunction?�

Sergio: �Then, we need theory again.�

Alice: �Let's have a look at some extensions.�

As we have seen in Chapter 4 the chase has various applications. The goal of
this chapter is to demonstrate that the chase has even more applications than
previously known in the literature. In Section 9.1 we develop a uni�ed approach
to typed-based and semantic query optimization techniques showing that both
optimization tasks can be addressed using a single, logic-based framework, which
seamlessly incorporates typing knowledge into the semantic optimization process.
Section 9.2 is devoted to minimization of RDF graphs in the presence of rules
allowing a smaller representation of data. Both sections have in common that they
use the chase as an important tool in the respective optimization/minimization
process and therefore depend on its termination properties. This puts all results
on termination in this thesis directly to use in these scenarios. The presentation of
both sections is taken from the respective papers [Meier et al., 2010] and [Meier,
2008].

9.1 Semantic Query Optimization in the

Presence of Types

Typing is a central component of many practical database systems, including (but
not limited to) relational databases, object-oriented database models [Kifer et al.,
1995; Papakonstantinou et al., 1995], typed datalog [Zook et al., 2009], and semi-
structured data [Milo and Suciu, 1999]. In response, to date a rich theory of
type-based optimization has been developed [Frühwirth et al., 1991; Litwin and
Risch, 1992; Levy and Suciu, 1997; Gallagher and Puebla, 2002; Henriksson and
Maluszynski, 2004; Bruynooghe et al., 2005]. These optimization approaches often
use type inference algorithms and have a background in the world of programming

99

100 9.1 Semantic Query Optimization in the Presence of Types

languages (cf. [de Moor et al., 2008; Schäfer and de Moor, 2010]).

From a logical point of view, types restrict the state space of the database and
therefore can be understood as constraints that each valid database instance
must satisfy. In this regard, type-based query optimization is quite similar to
semantic query optimization (SQO), where general constraints that are known
to hold on the database instance (also called data dependencies) are used to
�nd equivalent query rewritings, with the goal to obtain more e�cient evalua-
tion plans [Johnson and Klug, 1982; Chakravarthy et al., 1990; Popa and Tannen,
1999; Deutsch et al., 2006]. Beyond query optimization, constraint-based rewrit-
ing has been successfully applied in many other database areas, such as query
rewriting using views [Halevy, 2001], data exchange [Fagin et al., 2005], peer data
exchange [Fuxman et al., 2005], data integration [Lenzerini, 2002], and probabilis-
tic databases [Olteanu et al., 2009].

Due to their close connection, it is natural to integrate both typing knowledge and
integrity constraints, such as tuple generating dependencies (Tgds) and equality
generating dependencies (Egds) [Fagin, 1982; Beeri and Vardi, 1984], into a sin-
gle logical framework [Buneman et al., 2003; Fan and Libkin, 2002]. In such a
framework, one can fall back on established techniques, such as the classical chase
algorithm [Maier et al., 1979; Johnson and Klug, 1982; Beeri and Vardi, 1984], to
deploy a uniform optimization process. To this aim, several authors have studied
encoding the typing knowledge, mainly with the following two formalisms: Dat-
alog (and extensions) [Chan, 1992; Dong and Su, 1996] and Description Logics
(DL) [Calvanese et al., 2007, 2008]. However, the lack of value creation (which
can be captured by Tgds) in Datalog prevents it from being a suitable candidate
for modeling integrity constraints. Although some DLs can capture Tgds, they
are unable to express Egds. There have also been attempts to integrate Egds in
DLs [Toman and Weddell, 2005] but very strong syntactic restrictions are required
to obtain decidability of reasoning. Recently, Calì et al. [Calì et al., 2009] have
proposed Datalog±, to extend plain Datalog with guarded Tgds and strati�ed
negation. Yet, Datalog± can not express disjunctive rules. In order to express
typing knowledge, integrity constraints containing negation and disjunction are re-
quired. To the best of our knowledge, a framework targeted at query optimization
has not been investigated before.
As a motivating example, let us consider query optimization in the context of
an employee database, where the following typed relations are given (types are
pre�xed with @):

Person(id : @employee, gender : @gender)
UpperFloor(id : @ceo, room : @int)

101 9.1 Semantic Query Optimization in the Presence of Types

@employee

@executive @associate

@ceo @manager

Figure 9.1: Example type hierarchy.

MiddleFloor(id : @manager, room : @int)
LowerFloor(id : @associate, room : @int)

Further assume that, in the style of an object-oriented database, the type hierarchy
from Figure 9.1 is given. For short, @executive and @associate are subtypes of
@employee, and @executive splits up into @ceo and @manager. Further assume
that

• @associate, @executive partition @employee, and

• @ceo, @manager partition @executive.

We represent types as unary relations over the domain of the database, identi�ed
by a leading �@� symbol, e.g. write @employee(x) to denote that x is of type
@employee. Suppose that, in coexistence with the restrictions imposed by the
type system itself, the two constraints

α1 := Person(x, y),@ceo(x)→ ∃z UpperFloor(x, z),
α2 := Person(x, y),@manager(x)→ ∃z MiddleFloor(x, z)

are given, enforcing that all CEOs are sitting in the upper �oor and all managers
are sitting in the middle �oor. Having described the setting, we now turn towards
query optimization. Consider the following two conjunctive queries

q1 : ans(x) ← Person(x, y), UpperFloor(x, z),
q2 : ans(x) ← Person(x, y), MiddleFloor(x, z)

and assume that we are interested in computing the union Q1∨2 := q1 ∨ q2, i.e. all
persons sitting in the middle and upper �oor. It is easy to see that, when given only
the data dependencies α1, α2 or only the type information as input, Q1∨2 is minimal
with respect to the number of atoms and unions in the query. Yet, when combining
both typing and constraint knowledge, we can derive that Q1∨2 is equivalent (on
each database instance satisfying the constraints and type restrictions) to the
simpler query

102 9.1 Semantic Query Optimization in the Presence of Types

q′1∨2 : ans(x) ← Person(x, y),@executive(x).

To see why, consider q1 and �rst observe that @ceo(x) must hold, due to the type
restriction in the �rst position of relation UpperFloor; hence, we can add the
literal @ceo(x) to the body of q1. But then α1 implies that there is an entry in
relation UpperFloor that contains x in its �rst position, so q1 is equivalent to

q′1 : ans(x)← Person(x, y),@ceo(x).

With similar argumentation, we obtain that q2 is equivalent to

q′2 : ans(x)← Person(x, y),@manager(x).

Given these two rewritings and the type constraint that @executive is exactly the
union of @ceo and @manager, we conclude that Q1∨2 is equivalent to q′1∨2 above.
Another possible rewriting for Q1∨2 is the conjunctive query with (safe) negation

q′′1∨2 : ans(x)← Person(x, y),¬@associate(x),

because @executive and @associate partition @employee.
The previous example does not only show that queries may exhibit non-trivial
rewritings in the presence of constraints and types, but also demonstrates that a
framework that exploits data dependencies and type information at the same time
may give us better optimization results than a sequential, isolated application of
these information.

We implement our combined optimization approach in a logic-based framework,
where we encode both the data dependencies and the type restrictions in �rst-order
logic. To give an example, for our type hierarchy from before we use constraints
like

β1 := @executive(x)→ @employee(x)

to �x the subtype relations, and may use the constraint

β2 := @executive(x) ∧@associate(x)→ ¬@associate(x)

to enforce that @associate and @executive are disjoint. Following the de-facto
standard approach, we then use the classical chase algorithm for the optimization
process. In particular, we use a variation of the Chase & Backchase algorithm
(C&B) [Popa, 2000; Deutsch et al., 2006], an extension of the chase developed to
enumerate minimal queries in the presence of constraints.

103 9.1 Semantic Query Optimization in the Presence of Types

While straightforward by idea, our approach brings along many new technical chal-
lenges, mainly due to the fact that the encoding of non-trivial type systems involves
constraints containing disjunction and negation (cf. constraint β2 above). Previ-
ous work on semantic query optimization, though, has mainly focused on tuple-
generating and equality-generating dependencies, which contain neither negation
nor disjunction. Here, we consider Tgds with disjunction and negation (denoted
as Tgd∨,¬) and Egds containing disjunction (Egd∨). While the chase algorithm
can easily be extended to these constraint classes (cf. [Deutsch et al., 2007]), to
date only few is known about its properties in that setting. Such properties are
the central topic in this section.

Structure. The remainder of this section is structured as follows. We start with
the preliminaries in the following subsection. In Subsection 9.1.2 we introduce our
�rst-order logic based framework to semantic query optimization in the presence of
types, before presenting central results in Subsection 9.1.3. Next, we investigate
the complexity of related decision problems in Subsection 9.1.4. We then turn
towards an investigation of chase termination in the presence of disjunction and
negation in Subsection 9.1.5.

9.1.1 Additional Preliminaries

An this section we are going to generalize many de�nitions that we introduced ear-
lier in Chapters 2 and 3 such that they can be used in our new scenario. Among
these generalized notions are homomorphisms, conjunctive queries, constraints
and the chase itself.

Databases. Additionally to our usual database schema R, we have a set T of
unary relational symbols that represent types for our schema. Database instances
may include type symbols. In the rest of the paper, we assume the database
schema, the type symbols and the set of constants and labeled nulls to be �xed.

Homomorphisms. As usual, a homomorphism from a set of literals A1 to a set
of literals A2 is a mapping µ : ∆∪V → ∆∪∆null such that the following conditions
hold:

• if c ∈ ∆, then µ(c) = c,

• if R(c1, ..., cn) ∈ A1, then R(µ(c1), ..., µ(cn)) ∈ A2, and

• if ¬R(c1, ..., cn) ∈ A1, then ¬R(µ(c1), ..., µ(cn)) ∈ A2.

104 9.1 Semantic Query Optimization in the Presence of Types

We write A1 → A2 to express that there is a homomorphism from A1 to A2.

Conjunctive queries (with union and negation). A conjunctive query with
negation (Cq¬) is an expression of the form

ans(x)← ϕ(x, z),

where ϕ is a conjunction of relational R-literals, x, z are sequences of variables
and constants, and it holds that every variable in x also occurs in ϕ. We restrict
our discussion to safe queries, i.e. every Cq¬ has the property that every variable
that occurs in the query also occurs in some positive R-atom. This is an easy
syntactic restriction that ensures domain-independence. Whenever we speak of a
query in this paper, we tacitly assume that it ful�lls this safety condition. If a
Cq¬ contains no negation we call it a conjunctive query Cq. If q ∈ Cq¬, then
db(q) is the database that consists of one tuple for each positive atom in q, where
each variable x has been replaced by constant cx.

A union of conjunctive queries with negation (Ucq¬) is an expression of the form∨
i∈[n] qi,

where all qi are conjunctive queries with safe negation and all head predicates have
the same arity. If a Ucq¬ contains no negation we call it a union of conjunctive
queries Ucq. For Q ∈ Ucq¬, we set db(Q) := {db(q) | q ∈ Q}.
The semantics of evaluating a conjunctive query with negation q on a database
instance I is de�ned as

q(I) := {a ∈ ∆|x||I |= ∃zϕ(a, z)}.

Extending the previous de�nition, the semantics of a union of conjunctive queries
with negation Q :=

∨
i∈[n] qi is de�ned as

Q(I) :=
⋃
i∈[n] qi(I).

If Q,Q′ ∈ Ucq¬ we say that Q is contained in Q′ (Q v Q′) i� for all databases I
it holds that Q(I) ⊆ Q′(I).
Q and Q′ are equivalent, Q ≡ Q′, i� Q v Q′ and Q′ v Q.
Given a set of �rst-order sentences Σ, we say that Q is contained in Q′ under Σ
i� for all databases I s.t. I |= Σ it holds that Q(I) ⊆ Q′(I).
We write Q ≡Σ Q

′ i� Q vΣ Q
′ and Q′ vΣ Q.

By convention, we denote Cq¬ by lowercase and Ucq¬ by uppercase letters. We
write q ∈ Q i� q is a disjunct of Q. Abusing notation, we write q1 → q2 i� there
is a homomorphism from the set of atoms in q1 (including the head atom) to the

105 9.1 Semantic Query Optimization in the Presence of Types

set of atoms in q2 (also including the head atom). By Q|τ we denote the query Q
from which all non-τ -literals were dropped.

Constraints. Let x, y be sequences of variables. We consider two types of
database constraints: tuple-generating dependencies with union and negation
(Tgd∨,¬) and equality-generating dependencies with union (Egd∨).

A Tgd∨,¬ ϕ is a �rst-order sentence

∀x(φ(x)→
∨
i∈[n] ∃yiψi(x, yi))

such that

• φ, ψ1, ..., ψn are conjunctions of literals, possibly with constants,

• ψ1, .., ψn are not empty,

• φ is possibly empty,

• φ, ψ1, ..., ψn do not contain equality atoms, and

• for all i ∈ [n] all variables from x that occur in ψi must also occur in φ.

By ϕi we denote the Tgd ∀x(φ(x)→ ∃yiψi(x, yi)) and set ϕ̂ := {ϕ1, ..., ϕn}.
We obtain the classes Tgd¬, Tgd∨, and Tgd by disallowing ∨, ¬, and both ∨
and ¬.

An Egd∨ ϕ is a �rst-order logic sentence of the form

∀x(φ(x)→
∨
i∈[n] xi,1 = xi,2),

where all xi,1, xi,2 either occur in φ or are constants and φ is a non-empty conjunc-
tion of equality-free R-atoms, possibly with constants. We obtain the subclass
Egd from Egd∨ by disallowing ∨ in the conclusion.
By ϕi we denote the Egd ∀x(φ(x)→ xi,1 = xi,2) and set ϕ̂ := {ϕ1, ..., ϕn}.
When using the word �constraints� in the following, we always mean the union
of the classes Tgd∨,¬ and Egd∨ if not explicitly stated otherwise. As a nota-
tional convenience, we will often omit the ∀-quanti�er and the respective list of
universally quanti�ed variables.
We use the term body(α) for a constraint α as the set of atoms in its premise; anal-
ogously head(α) is the set of sets of all atoms in some disjunct of the constraint's
conclusion. By Σ|τ we denote the set Σ from which all non-τ -literals in the con-
straint bodies were dropped. If α is a constraint and a is a sequence of labeled
nulls and constants, then α(a) is the constraint α without universal quanti�ers

106 9.1 Semantic Query Optimization in the Presence of Types

but with parameters a. We shall abuse this notation and say that a labeled null
occurs in α(a), meaning that a labeled null is the parameter for some universally
quanti�ed variable in α.

Chase steps. Let q ∈Cq¬and α ∈Tgd∨,¬ of the form φ1(x)→
∨
i∈[n] ∃yiψi(x, yi).

We say that α is applicable to q if there is a homomorphism µ from body(α) to q
and for every A ∈ head(α) it holds that µ cannot be extended to a homomorphism
µ′ ⊇ µ from A to q. In such a case the chase step

q
α,µ(x)−→ qu

is de�ned as follows. For every i ∈ [n] we de�ne a homomorphism νi as follows:

• νi agrees with µ on all universally quanti�ed variables in α,

• for every existentially quanti�ed variable y in ψi we choose a �fresh� labeled
null ny,i ∈ ∆null\dom(db(q)) and de�ne ν(y) := ny,i.

We set qu to be the union of safe conjunctive queries with negation∨
i∈[n] db(q) ∧ νi(ψi)

from which all unsatis�able disjuncts are removed. In case that this results in the
empty query the result of the chase step is False.
A chase step with an Egd is just a standard chase step in case the query is
satis�able, otherwise the result of the chase step is the empty query False.
Finally, we lift chase steps to apply to unions of conjunctive queries. For a union
of safe conjunctive queries with negation q :=

∨
i∈[l] qi we write

q
α,µ(x)−→ q′

i� there is i ∈ [l] such that qi
α,µ(x)−→ qu is de�ned and q′ := qu ∨

∨
j∈[l]\{i} qj.

Chase sequences. A chase sequence is de�ned analogously to standard chase
sequences using the chase steps de�ned before, i.e. it is an exhaustive application
of chase steps until no more chase step is applicable. Note that di�erent orders of
application of applicable constraints may lead to a di�erent chase result. However,
as proved in [Deutsch et al., 2007], two di�erent chase orders lead to homomorphi-
cally equivalent results, if these exist. Therefore, we write QΣ for the result of the
chase on Q ∈ Ucq¬ under constraints Σ. In case that the constraint set involves
disjunction, a chase sequence can be represented as a chase tree, as in [Fagin et al.,
2005]. The initial tree contains an arti�cial root node which has every disjunct in
the query to be chased as a child node. When a chase step with some leaf l of

107 9.1 Semantic Query Optimization in the Presence of Types

the tree involves a branching due to disjunctions in the constraint that is applied
to l, then we add every new disjunct as a child of l. If a chase step yields the
empty query, then we add False as the only child of l. If the chase terminates,
this tree is �nite. The disjunction of the tree's leaves represents the resulting query.

Chase termination. As termination is a big issue in the theory of the chase, we
face even greater challenges in the presence of negation and disjunction. We extend
the de�nitions of CT∀∀ and CT∀∃ to our broader notion of chase termination.
So far there have been only few works that consider Tgd∨,¬ and Egd∨ . In
[Deutsch et al., 2007] the authors provided an adaption of weak acyclicity to this
new setting, which we will describe next.

De�nition 115. (see [Deutsch et al., 2007]) Let Σ be as set of Tgd∨,¬ and
EGDs. The chase �ow graph G = (V,E) is a a directed graph whose edge labels
may be empty or ∗. It is constructed as follows. For every relation R mentioned
in Σ, V contains the nodes R1, ...,Rar(R). For every Tgd∨,¬ σ ∈ Σ and every pair
of relations R, S if R(x) appears in body(σ) and S(y) appears in head(σ), then

• if xi = yj, then add an edge from Ri to Sj, and

• if yj is existentially quanti�ed, then add an ∗-labeled edge from Ri to Sj.

We say that Σ has strati�ed witness i� its chase �ow graph contains no cycle
through a ∗-labeled edge.

This de�nition is a straightforward adaption of weak acyclicity by simply ignoring
negation and disjunction. It was shown in [Deutsch et al., 2007] that strati�ed
witness guarantees the termination for every union of safe conjunctive queries in
the sense of CT∀∀. To the best of our knowledge, this is the only condition for
chase termination with respect to Tgd∨,¬ in the literature.

In [Fagin et al., 2005] the authors considered a mix of TGDs and Egd∨ . They
have shown that whenever we have have a set of TGDs and Egd∨ and the set of
TGDs is weakly acyclic, then the chase with this constraint set terminates in the
sense of CT∀∀.

Canonical databases and completeness. We de�ne ans(q) to be the tuple in
the head of q where again each variable x has been replaced by constant cx.
We say that q is satis�able if there is a database instance I such that q(I) 6= ∅.
Notice that q is satis�able i� it contains no atom that appears positively and
negatively in q.

108 9.1 Semantic Query Optimization in the Presence of Types

We say that q ∈ Cq¬ is complete [Deutsch et al., 2007] i� it is satis�able and for
all q′ ∈ Cq¬ it holds that ans(q) ∈ q′(db(q)) implies q′ → q.
We say that Q ∈ Ucq¬ is satis�able i� there is a database I such that Q(I) 6= ∅.
Q ∈ Ucq¬ is complete i� all disjuncts are complete.
It was shown in [Deutsch et al., 2007] that for every Q ∈ Ucq¬ we can compute
Q′ ∈ Ucq¬ that is complete and Q ≡ Q′. Therefore, we denote Q′ by comp(Q).
Let ADom /∈ R∪T . It was shown in [Deutsch et al., 2007] that comp(Q) = QΣ¬ |R∪T ,
where we de�ne Σ¬ as the set which contains for every R∈ R ∪ T with ar(R) = k
the constraints

ADom(x1),...,ADom(xk)→ R(x1, ..., xk) ∨ ¬ R(x1, ..., xk)
R(x1, ..., xk)→ ADom(x1), . . . , ADom(xk).

For q ∈ Cq¬, we use size(q) as an abbreviation for the number of literals in q.
We extend size(Q) to Q ∈ Ucq¬ by size(Q) := Σq∈Qsize(q).

9.1.2 Constraints and Types

Our approach to combined semantic and type-based optimization relies on a rig-
orous �rst-order logic formalization. Given our special vocabulary T consisting
of unary relation symbols, we de�ne for a ∈ ∆ its associated type interpretation
Type(a) which is a set of literals that exactly contains for every T ∈ T either
T (a) or ¬T (a).
Abusing notation we identify T with the set {a ∈ ∆ | T (a) ∈ Type(a)} and
analogously write ¬T instead of {a ∈ ∆ | ¬T (a) ∈ Type(a)}. A type hierarchy
H is a set of full constraints over the schema T . A type system over T is a tuple
(H,Type). We are interested in type systems in which the type hierarchy adheres
to the type interpretation according to the following de�nition:

De�nition 116. We say that a type hierarchy H re�ects Type if H is logically
equivalent to the set of constraints obtained as follows: for all 1 ≤ k, l ≤ |T | and
for all A1, ..., Ak, B1, ..., Bl ∈ {T,¬T | T ∈ T },

• if ∅ 6= A1 ∩ ... ∩ Ak ⊆ B1 ∪ ... ∪ Bl, we have a full constraint of the form
A1(x), ..., Ak(x)→ B1(x) ∨ ... ∨Bl(x),

• if ∅ 6= A1∩ ...∩Ak is �nite, we have an Egd∨ of the form A1(x), ..., Ak(x)→∨
a∈A1∩...∩Ak

x = a, and

• if ∅ = A1 ∩ ... ∩ Ak, we have a Tgd A1(x), ..., Ak(x)→ ¬A1(x).

Informally speaking, a type system re�ects a type interpretation if

109 9.1 Semantic Query Optimization in the Presence of Types

• all subsumption relationships between types can be derived from the type
hierarchy,

• whenever a type or the intersection of several types is �nite but non-empty,
there is a constraint that �xes the domain of the type, and

• whenever two types are disjoint, we can derive this information using the
constraints in the type hierarchy.

The following example illustrates the previous de�nition.

Example 117. We formalize the type system of our motivating ex-
ample from the Introduction. First, we de�ne the vocabulary T1 :=
{@employee,@manager,@ceo, . . . }, where we interpret the elements of T1 as unary
relation symbols. We then �x a type interpretation Type1 that re�ects the type
relationships that were informally discussed in the Introduction. Consider for in-
stance the constant a1 := `CEO1' standing for a CEO. Its interpretation is de�ned
as

Type1(a1) := {@ceo(a1),@executive(a1),@employee(a1),
¬@manager(a1),¬@associate(a1),
¬@gender(a1),¬@int(a1)},

stating that a1 is of type @ceo, @executive, and @employee, but not of type @man-
ager, @associate, and so on. The type hierarchy H1, which we construct according
to the type interpretation induced by Figure 9.1 and De�nition 116, is de�ned as

H1 := {β1 := @ceo(x)→ @executive(x),
β2 := @manager(x)→ @executive(x),
β3 := @executive(x)→ @employee(x),
β4 := @associate(x)→ @employee(x),
β5 := @gender(x)→ x = `male' ∨ x = `female',
β6 := @manager(x),@ceo(x)→ ¬@manager(x),
β7 := @executive(x),@associate(x)→ ¬@executive(x),
β8 := @employee(x),@gender(x)→ ¬@employee(x),
β9 := @employee(x),@int(x)→ ¬@employee(x), and
β10 := @gender(x),@int(x)→ ¬@gender(x)}

and satis�es De�nition 116: β1 � β4 model all type subsumption relationships
(cf. bullet one of the de�nition). Next, β5 �xes the domain of type @gender
(cf. bullet two), which we assume to be the only �nite type in our scenario. Finally,
constraints β6 � β10 express disjointness between incompatible types (cf. bullet

110 9.1 Semantic Query Optimization in the Presence of Types

three), which we mentioned in Section 9.1 when we presented our type hierar-
chy �rst. Observe that H1 contains other relationships, for instance the constraint
@ceo(x)→ @employee(x) can be derived from β1 and β3; this is in line with De�ni-
tion 116, which enforces only logical equivalence to a �complete� list of constraints.

Having established a framework to model type hierarchies in �rst-order logic, we
now extend our framework to general data dependencies used in semantic query
optimization.

De�nition 118. We call a tuple (Σ, H,Type) a typed relational schema i�

• Σ is a set of integrity constraints over R∪ T ,

• Σ contains no negative R-literals,

• for all α ∈ Σ it holds that every variable in α appears in some R-atom, and

• (H,Type) is a type system over T such that H re�ects Type.

Note that Σ is de�ned over R ∪ T , so it may contain both data dependencies in
the common sense and dependencies involving types. In particular, we can use Σ
to encode type information given by the schema:

Example 119. To capture our example scenario from the Introduction, we
de�ne Σ1 := {α1, α2, γ1, γ2, γ3, γ3}, where α1 and α2 are the constraints from the
Introduction asserting that CEOs are sitting in the upper �oor and managers are
sitting in the middle �oor and γ1 � γ4 are de�ned as

γ1 := Person(x, y)→ @employee(x),@gender(y),
γ2 := UpperFloor(x, y)→ @ceo(x),@int(y),
γ3 := MiddleFloor(x, y)→ @manager(x),@int(y),
γ4 := LowerFloor(x, y)→ @associate(x),@int(y).

Using Type1 and H1 introduced in Example 117, the tuple S1 := (Σ1, H1,Type1)
is a typed relational schema.

Given a typed relational schema S := (C1, C2, C3), we will use the conventions
that Σ(S) := C1, H(S) := C2, and Type(S) := C3. The following de�nition of
satisfying database instances is straightforward.

111 9.1 Semantic Query Optimization in the Presence of Types

De�nition 120. An R ∪ T -database instance I satis�es a typed relational
schema S, I |= S, i� I|R 6= ∅, for every constant a ∈ dom(I) ∩ ∆ we have that
I |= Type(S)(a) and I |= Σ(S) ∪H(S).

We are now in the position to de�ne the notions of query containment, equivalence,
and minimality in typed schemas.

De�nition 121. Let S be a typed relational schema. For Q,Q′ ∈ Ucq¬, we
write Q vS Q′ i� for all I |= S, we have that Q(I) ⊆ Q′(I). Q,Q′ are equivalent
under S, Q ≡S Q′, i� Q vS Q′ and Q′ vS Q.

We are not aware of a generally accepted notion of minimality of Ucq¬. Therefore,
we abstract from a concrete cost measure and use a generic cost function instead.

De�nition 122. Let L ∈ {Ucq¬,Ucq,Cq¬,Cq} be a query language.

• A cost function for L is a polynomial-time computable c : L → N such that
size(Q) ≤ c(Q) and for every subquery sub ⊆ Q we have that c(sub) ≤ c(Q).

Extending the previous de�nition, the semantics of a union of conjunctive
queries with negation Q :=

∨
i∈[n] qi is de�ned as Q(I) :=

⋃
i∈[n] qi(I).

• Given a typed relational schema S and a query Q ∈ L, we say that Q is
(L, c,S)-minimal i� there is no Q′ ∈ L such that Q ≡S Q′ and c(Q′) ≤ c(Q).

• We say that Q′ is an (L, c,S)-rewriting of Q i� Q′ ≡S Q and c(Q′) < c(Q).

• An (L′, c,S)-minimal rewriting of Q is a query Q′ ∈ L′ such that Q′ is
(L′, c,S)-minimal and Q ≡S Q′.

It is easily shown that the generic cost function imposes an upper bound on the
size of minimal rewritings:

Proposition 123. Let Q ∈ Ucq. The set of Q′ ∈ Ucq¬ with c(Q′) ≤ c(Q) is
�nite and its size can be bounded by

ar(R∪ T) · c(Q)3 · (3 · |R ∪ T |)c(Q) · ar(R∪ T) · (c(Q) · ar(R∪ T) + |dom(Q)|
+|dom(Σ(S) ∪H(S))|).

Thus, the set of (Ucq¬, c,S)-minimal rewritings of Q is also bounded by this
number.

112 9.1 Semantic Query Optimization in the Presence of Types

Proof. Let Q′ ∈ Ucq¬ such that c(Q′) < c(Q). It holds that size(Q′) < c(Q). We
see that Q′ has at most c(Q) many disjuncts and every disjunct has at most c(Q)
many literals in the body. There are at most (3 · |R∪T |)c(Q) possibilities to choose
for relational symbols or negated relational symbols. The number of distinct terms
in one position is bounded by (c(Q) ·ar(R∪T)+ |dom(Q)|+ |dom(Σ(S)∪H(S))|).
Therefore, the number of terms in one literal is bounded by ar(R ∪ T) · (c(Q) ·
ar(R∪ T) + |dom(Q)|+ |dom(Σ(S) ∪H(S))|). The arity of the head is bounded
by ar(R∪T)·c(Q) because every constant in it must be already either in Q or S. �

We conclude this section with an example that illustrates the cost function, rewrit-
ings, and minimality.

Example 124. Let Q := q1∨· · ·∨qn be a Ucq¬. Let pos(qi) denote the number
of positive literals and neg(qi) the number of negative literals in the body of qi.
We exemplarily consider the cost function

c1(Q) :=
∑

1≤i≤n(pos(qi) + 2 ∗ neg(qi)).

Given query Q1∨2 from the Introduction and the typed relational schema S1

from Example 119, we have that both q′1∨2 and q′′1∨2 from the Introduction are
(Ucq¬, c1,S1)-rewritings of Q1∨2: it is easily veri�ed that

Q1∨2 ≡S1 q
′
1∨2 ≡S1 q

′′
1∨2

and we have

c1(Q1∨2) = 4 > c1(q′′1∨2) = 3 > c1(q′1∨2) = 2.

By enumerating all candidate (Ucq¬, c1,S1)-rewritings of Q1∨2 it can be shown
that q′1∨2 is (Ucq¬, c1,S1)-minimal.

9.1.3 Semantic Query Optimization in Typed Relational

Schemas

Having presented our framework, the goal of this section is to develop rewriting
techniques and to identify fragments for which rewritings (and hence, by Propo-
sition 123, also minimal rewritings) can be computed. Note that, in the general
case, query containment for conjunctive queries under Tgds and Egds is already
undecidable1, so it follows immediately that query containment in our fragment
(where we consider extended classes of Tgds and Egds, as well as CQs with

1This follows e.g. from Corollary 9 and Theorem 15 in [Calì et al., 2008].

113 9.1 Semantic Query Optimization in the Presence of Types

union and negation) is generally undecidable. Therefore, the study of decidable
fragments is of high practical interest.

In our e�ort to provide a mechanism for containment testing, we start with a slight
variant of the standard chase algorithm which, after each chase step, adds type
information for constants that were introduced during the chase.

De�nition 125. Let Q ∈Ucq¬. The sequence (Qi)i∈N is inductively de�ned as
follows. Q1 := Q. For i ≥ 2 we set Qi :=

∨
q∈QΣ(S)∪H(S)

i−1
q′, where q′ is de�ned as q to

which Type(a) has been added to the body of the query for all a ∈ ∆∩dom(db(q)).
If there is some i ∈ N such that Qi = Qi+1, then Q

S := Qi.

Example 126. Consider S1 := (Σ1, H1,Type1) from Example 119, query q :
ans() ← Person(`CEO1', y), and assume that @ceo(`CEO1') ∈ Type1(`CEO1').
When chasing q according to De�nition 125, we obtain the query qS de�ned as

ans()← Person(`CEO1', y), UpperFloor(`CEO1', z),
@ceo(`CEO1'),¬@ceo(y),¬@ceo(z),
@manager(`CEO1'),¬@manager(y),¬@manager(z),@integer(z)
. . .

where the rest of the query contains some more type information. The interest-
ing thing here is that, by adding the type restriction @ceo(`CEO1') according to
our modi�ed version of the chase, we obtain precise type information for the con-
stant `CEO1' and therefore in subsequent chase steps are able to derive the literal
UpperFloor(`CEO1', z) (which is implied by the constraint α1 from the Introduc-
tion).

It can be shown that our modi�ed chase terminates whenever the standard chase
algorithm terminates:

Proposition 127. Let S be �xed. If Σ(S) ∪ H(S) ∈ CT∀∃ and the chase
with S terminates in polynomial-time data complexity, then QS is de�ned and the
mapping Q 7→ QS can be computed in polynomial time.

Proof. Let c be the number of constants in Σ(S) ∪H(S). Note that c is a con-
stant because S is �xed. Therefore, Qc+1 = Qc+2 and the overall computation
takes only polynomial time in the input query. �

114 9.1 Semantic Query Optimization in the Presence of Types

In the following, we show that our modi�ed chase with Σ(S) and H(S) indeed
gives universal models and therefore always queries that are equivalent under S.

De�nition 128. We call a �nite set of database instances {I1, ..., In} universal
for a typed relational schema S and a set of database instance J i�

• for all i ∈ [n]: Ii |= S, and

• for every database instance I it holds that if I |= S and there is some J ∈ J
such that J → I, then there is i ∈ [n] such that Ii → I.

Lemma 129. Let S be a typed relational schema, Q ∈ Ucq¬. If QS exists,
then db(QS) is universal for (S, db(Q)).

Proof. Let I be a database instance such that I |= S and there is some J ∈ db(Q)
such that J → I. We prove our claim by induction on the number of iterations
i needed to compute QS via De�nition 125. We know from [Deutschet al., 2008]
that db(QΣ(S)∪H(S)) is a universal model for db(Q) and Σ(S)∪H(S). Hence, there
is some I ′ ∈ db(QΣ(S)∪H(S) such that I ′ → I. We can extend this homomorphism
to (I ′ ∪

⋃
a∈∆∩dom(I′)Type(a))→ I because I |= S. �

Lemma 130. Let Q ∈ Ucq¬. It holds that Q ≡S QS .

Proof. It is standard to see that QS vS Q. For the opposite direction, we
take an instance I such that I |= S. Clearly, Q(I) ⊆ QΣ(S)∪H(S)(I) ⊆ Qc(I),
where Qc is the query QΣ(S)∪H(S) to which all Type(a) has been added for all
a ∈ ∆ ∩ dom(db(QΣ(S)∪H(S))). Using induction, we obtain that Q(I) ⊆ QS(I). �

The central idea of our approach now is to use the modi�ed chase from De�-
nition 125 to �nd minimal rewritings. More precisely, given a query Q, typed
relational schema S, and cost function c, we �rst compute QS , enumerate all can-
didate candidate rewritings Qi (whose number is bounded by Proposition 123),
and �nally check if Q ≡S Qi holds. Note that, compared to the C&B algorithm
from Section 4.2, we lose the property that every minimal rewriting Q′ of Q is a
subquery of QS , as witnessed by the following example.

Example 131. Consider the union of the two conjunctive queries

p1 : ans(x)← Person(x, `male'), militaryService(x) and
p2 : ans(x)← Person(x, `female'),

115 9.1 Semantic Query Optimization in the Presence of Types

extracting all men who have completed their compulsory military service and all
women. Let

δ := Person(x, `male')→ militaryService(x)

and consider S1, c1 from Example 124. Given that position Person2 is typed with
@gender and H(S1) contains the constraint

β5 := @gender(x)→ x = `male' ∨ x = `female',

it follows that

ans(x)← Person(x, y)

is a minimal rewriting of p1∨p2 with respect to (Ucq¬, c1, ({δ}, H(S1),Type(S1)).

The only reason that may prevent us from computing (minimal) rewritings in
typed schemas is the fact that the chase (for the original query or the rewritten
candidate queries) does not necessarily terminate. In the remainder of this section,
we therefore investigate decidable fragments.

Fragment I

We �rst carry over the results on containment testing for conjunctive queries in
the presence of negation from [Deutsch et al., 2007] into the context of typed
relational schemas. As a side contribution, we show that this approach works for
full Tgds only.
Let S ∪ Σ¬ denote the typed relational schema in which Σ¬ has been added to
Σ(S). The next lemma transfers Theorem 9 from [Deutsch et al., 2007] into the
context of typed relational schema:

Lemma 132. Let Q,Q′ ∈ Ucq¬. If QS∪Σ¬ exists, then it holds that Q vS Q′
i� for every P ∈ QS∪Σ¬ |R∪T there is P ′ ∈ Q′ such that P ′ → P .

Proof. Without loss of generality assume that there is some instance I such that
I |= S and Q(I) 6= ∅. Otherwise, the claim is trivial.
The statement of this corollary can be reduced to Theorem 9 in [Deutsch et al.,
2007]. It states that for W,W ′ ∈ Ucq¬ we have that W vΣ W

′ i� WΣ∪Σ¬ v W ′.
Our reduction is as follows. For every constant c in Q′ and in Σ(S) ∪H(S) and
for every R ∈ R ∪ T we add the constraint

R(c, x2, ..., xar(R))→
∧
l∈Type(c) l

116 9.1 Semantic Query Optimization in the Presence of Types

R(x1, c, x3, ..., xar(R))→
∧
l∈Type(c) l

. . .
R(x1, , ..., xar(R)−1, c)→

∧
l∈Type(c) l

to Σ(S) ∪H(S) and call the resulting constraint set Σnew. We conclude that

• for all database instances I it holds that I |= S ∪ Σ¬ ⇐⇒ I |= Σnew, and

• Q′S∪Σ¬ is homomorphically equivalent to Q′Σnew .

The �rst bullet is obvious. For the second bullet note that Q′S can be viewed as
Q′Σnew obtained via a certain chase order. Then, the statement can be obtained
from Theorem 9 in [Deutsch et al., 2007]. �

From this lemma we obtain the following theorem, which � in combination with
the chase � gives us a query minimization algorithm whenever the chase with
S ∪ Σ¬ terminates:

Theorem 133. There is an algorithm that, given Q ∈ Ucq¬ such that Q 7→
QS∪Σ¬ is computable, enumerates exactly all (Ucq¬, c,S)-minimal rewritings of
Q up to isomorphism.

Proof. Let Q ∈ Ucq¬ such that Q 7→ QS∪Σ¬ is computable. The algorithm is as
follows:

1. Initialize M := ∅.

2. Compute QS∪Σ¬ .

3. Enumerate all Q′ ∈ Ucq¬ with c(Q′) ≤ c(Q):

a) Compute Q′S∪Σ¬ .

b) Test whether Q′S∪Σ¬ ≡S QS∪Σ¬ holds with the help of Lemma 132 and
if so, add Q′ to M .

4. Output {Q′′ ∈M | for all Q′′′ ∈M it holds that c(Q′′) ≤ c(Q′′′)}.

By Proposition 123 this algorithm terminates. It follows from Lemma 132 that
it is sound and complete for �nding (Ucq¬, c,S)-minimal rewritings of the input
query. �

The problem with this result, though, is that the extension of the constraint set
by Σ¬ often leads to non-terminating chase sequences, even if the chase with S
terminates.

117 9.1 Semantic Query Optimization in the Presence of Types

Example 134. If Σ(S) := {ε1 := R(x1, x2) → ∃y E(x2, y)} and q() :=R(x1, x2),
then qS∪Σ¬ is not de�ned. To see why, observe that Σ¬ contains (amongst others)
the constraints

ε2 := E(x1, x2)→ ADom(x1), ADom(x2),
ε3 := ADom(x1), ADom(x2)→ R(x1, x2) ∨ ¬ R(x1, x2).

It is easily veri�ed that there is no terminating chase sequence for the chase of q
with {ε1, ε2, ε3}. The same still holds when chasing with the full set Σ(S) ∪ Σ¬.

In the light of the previous example, there is only little hope that the chase al-
gorithm terminates when Σ contains Tgds with existentially quanti�ed variables.
With this observation in mind, the next corollary identi�es the only situation
where Theorem 133 is of practical bene�t:

Corollary 135. Let Σ(S) consist of full constraints only. There is an algorithm
that, given S andQ ∈ Ucq¬ as input, enumerates exactly all (Ucq¬, c,S)-minimal
rewritings of Q up to isomorphism.

Our �nding that the above approach (and hence, also the approach proposed
in [Deutsch et al., 2007]) is essentially restricted to full constraints motivates the
search for fragments in which the minimization problem can be solved without
adding Σ¬. We will present such a fragment in the next subsection.

Fragment II

We now de�ne a fragment of Ucq¬. We call Q ∈ Ucq¬ semi-positive, denoted as
Ucq¬/2, i� all variables that occur in a negative R-literal occur also in the head
predicate. Semi-positive queries are interesting because containment testing using
the chase can be done without adding Σ¬:

Theorem 136. Let Q ∈ Ucq¬/2 without negative T -literals and Q′ ∈ Ucq¬.
W.l.o.g. every q ∈ Q′ contains all constants from Q, Q′ and Σ. If Q′Σ exists, then
it holds that

Q′ vΣ Q⇐⇒ for all P ′ ∈ comp(Q′)Σ there exists P ∈ Q such that P → P ′

⇐⇒ Q′Σ v Q.

Proof.

118 9.1 Semantic Query Optimization in the Presence of Types

• Proof of the �rst equivalence. For the forward direction assume thatQ′ vΣ Q
holds. Let comp(Q′)Σ =

∨
i∈[k] Pi and comp(Pi) =

∨
j∈[li]

Pi,j. Note that for

every Pi, every R ∈ R ∪ T and every tuple x of constants in comp(Q′)Σ

and variables in ans(Pi) we have that either R(x) or ¬R(x) is in the body
of Pi. We have that ans(Pi) ∈ Pi(Pi), which implies ans(Pi) ∈ Q′Σ(Pi).
As db(Pi) |= Σ, it follows that ans(Pi) ∈ Q′(Pi). Using the assumption,
we obtain ans(Pi) ∈ Q(Pi). Assume Q =

∨
j∈[l] Pj. For some j ∈ [l] we

have that ans(Pi) ∈ Qj(Pi). We will show that for all j′ ∈ [li] it holds that
ans(Pi) = ans(Pi,j′) ∈ Qj(Pi,j′). Suppose not. Then, there is j

′′ ∈ [li] such
that ans(Pi) = ans(Pi,j′′) /∈ Qj(Pi,j′′). Then, for every homomorphism h
that maps Q+

j to Pi,j′′ there is some atom A such that ¬A ∈ Q−j and h(A) ∈
Pi,j′′ . Let µ be a homomorphism that witnesses ans(Pi) ∈ Qj(Pi). Let A be
an atom such that ¬A ∈ Q−j . We can conclude that ¬µ(A) ∈ P−i because

Q ∈ Ucq¬/2. Therefore, µ witnesses ans(Pi) = ans(Pi,j′′) ∈ Qj(Pi,j′′),
which is a contradiction. We have shown that for all j′ ∈ [li] it holds that
Qj → Pi,j′ , which implies our claim.

For the backward direction assume that for all P ′ ∈ comp(Q′)Σ there exists
P ∈ Q such that it holds that P → P ′. Hence, comp(Q′)Σ v Q. Observe
that Q′ ≡ comp(Q′) ≡Σ comp(Q′)Σ v Q implies the claim.

• The second equivalence is a corollary from the �rst one. �

As a corollary from the previous theorem we obtain the following result for typed
relational schemas, clarifying that the constraints in H(S) do not harm this nice
property.

Corollary 137. Let Σ(S) ⊆ Tgd∨,¬ ∪ Egd∨ , Q ∈ Ucq¬/2 without negative
T -literals and Q′ ∈ Ucq¬. W.l.o.g. every q ∈ Q′ contains all constants from Q,
Q′ and Σ. If Q′S exists, then it holds that

Q′ vS Q ⇐⇒ for all P ′ ∈ comp(Q′)S there exists P ∈ Q such that P → P ′

⇐⇒ Q′S v Q.

Proof. The statement of this corollary can be reduced to Theorem 136 as follows.
For every constant c in Q′ and in Σ(S) ∪H(S) and for every R ∈ R ∪ T we add
the constraint

R(c, x2, ..., xar(R))→
∧
l∈Type(c) l

R(x1, c, x3, ..., xar(R))→
∧
l∈Type(c) l

119 9.1 Semantic Query Optimization in the Presence of Types

. . .
R(x1, , ..., xar(R)−1, c)→

∧
l∈Type(c) l

to Σ(S) ∪H(S) and call the resulting constraint set Σnew. We conclude that

• for all database instances I it holds that I |= S ⇐⇒ I |= Σnew, and

• Q′S is homomorphically equivalent to Q′Σnew .

The �rst bullet is obvious. For the second bullet note that Q′S can be viewed as
Q′Σnew obtained via a certain chase order. Then, the corollary can be obtained
from Theorem 136. �

In order to demonstrate why the condition that every q ∈ Q′ contains all constants
from Q, Q′ and Σ(S) is not a restriction we have a look at the next example.

Example 138. Let q′ : ans()← A(x, y) and q : ans()← A(x, a), where we want
to test for q′ vS q. The constant a occurs in q but not in q′, which contradicts
our condition. We rewrite q′ to Q′ : q1 ∨ q2, where q1 : ans() ← A(x, y), A(a, a)
and q2 : ans() ← A(x, y),¬A(a, a). Obviously, q′ ≡ Q′. We can now proceed by
testing for Q′ vS q.

Clearly, the above results are applicable in practice whenever Σ(S) ∪ H(S) is in
CT∀∀ or CT∀∃. The following lemma gives an even weaker precondition, showing
that constraints in H(S) do never a�ect chase termination:

Lemma 139. For Q ∈ Ucq¬: Q 7→ QS is computable if

• Σ(S)|R ∈ CT∀∀, or

• Σ(S) = Σ(S)|R ∈ CT∀∃.

Proof.

• We have that Σ(S)|R ⊆ CT∀∀ =⇒ Σ(S)|R ∪ H(S) ⊆ CT∀∀ =⇒ Σ(S) ∪
H(S) ⊆ CT∀∀ because every variable that occurs in some T -literal also
occurs in someR-atom. Therefore, we can conclude that for everyQ ∈ Ucq¬
the mapping Q 7→ QS is computable.

• Let Σ(S) = Σ(S)|R ⊆ CT∀∃. We can conclude that Σ(S) ∪ H(S) ∈ CT∀∃
because we can �rst chase with Σ(S) according to a strategy that guarantees
termination and afterward apply the constraints in H(S). Therefore, we can
conclude that for every Q ∈ Ucq¬ the mapping Q 7→ QS is computable. �

120 9.1 Semantic Query Optimization in the Presence of Types

As our central result, we obtain an algorithm for Ucq¬/2 minimization whenever
we can guarantee the termination of the underlying chase according to the previous
lemma:

Theorem 140. There is an algorithm that, given a query Q ∈ Ucq¬/2 such that
Q 7→ QS is computable, enumerates exactly all (Ucq¬/2, c,S)-minimal rewritings
of Q under Σ up to isomorphism.

Proof. Without loss of generality, we assume that H(S) contains for every T ∈ T
some T ∈ T such that T re�ects the complement of T , i.e. we have constraints

• ¬T (x)→ T (x),

• ¬T (x)→ T (x),

• T (x)→ ¬T (x),

• T (x)→ ¬T (x), and

• T (x), T (x)→ ¬T (x).

We de�ne a mapping E : Ucq¬ → Ucq¬ that substitutes all negative T -literals
¬T (...) by T (...). This operation preserves equivalence under S.
Let Q ∈ Ucq¬/2 such that Q 7→ QS is computable. The algorithm is as follows:

1. Initialize M := ∅.

2. Compute comp(Q)S .

3. Enumerate all Q′ ∈ Ucq¬/2 with c(Q′) ≤ c(Q):

a) Rewrite Q′ to Q′′ such that Q′ ≡ Q′′ and every q ∈ Q′′ contains all
constants from Q, Q′′ and Σ(S) ∪H(S)

b) Compute comp(Q′′)S .

c) Test whether E(Q′′) ≡S E(Q) holds with the help of Corollary 137 and
if so, add Q′ to M .

4. Output {Q′′ ∈M | for all Q′′′ ∈M it holds that c(Q′′) ≤ c(Q′′′)}.

By Proposition 123 this algorithm terminates. It follows from Corollary 137 that
it is sound and complete for �nding (Ucq¬/2, c,S)-minimal rewritings of the input
query. �

121 9.1 Semantic Query Optimization in the Presence of Types

9.1.4 Complexity

Satis�ability

As a �rst problem in our complexity study, we investigate the satis�ability of typed
relational schemas. We de�ne satis�ability and the associated decision problem as
follows.

De�nition 141. A typed relational schema S is satis�able i� there is a �nite
R∪ T -database instance I s.t. I |= S.

Satisfiability:
Input : A typed relational schema S.
Question: Is there a �nite instance I: I |= S?
Answer: Yes or no.

It turns out that, whenever there is a terminating chase sequence for the con-
straints induced by the data dependencies and the type hierarchy, we can use the
chase algorithm to test whether a satisfying model exists or not:

Theorem 142. Let Σ(S) ∪H(S) ∈ CT∀∃. There is an algorithm that, given a
typed relational schema S as input, decides whether S is satis�able.

Proof. Let Σ(S) ∪H(S) ∈ CT∀∃. We show that

S is satis�able i� (
∨

R∈R q()← R(x1, ..., xar(R)))
S 6= False.

The backward direction is standard. For the forward direction assume that S is
satis�able but (

∨
R∈R q()← R(x1, ..., xar(R)))

S = False. Let I be a �nite database
instance such that I |= S and I|R 6= ∅. It follows from the proof of Lemma 129
that for every intermediate (during the application of the chase) union of queries
Q there is q ∈ Q such that db(q) → I. We can conclude that (

∨
R∈R q() ←

R(x1, ..., xar(R)))
S 6= False, which is a contradiction. �

A reduction from Cnf-sat gives us an Np lower bound:

Theorem 143. Satisfiability isNp-hard. This still holds if the set of integrity
constraints Σ(S) contains no negation and no Egd∨.

Proof. We prove Np-hardness by reduction from Cnf-sat, the satis�ability prob-
lem for propositional formulas in conjunctive normal form.
Let

122 9.1 Semantic Query Optimization in the Presence of Types

α :=
∧
i∈[m] Bi

be given, where

Bi = xi,1 ∨ . . . ∨ xi,ki ∨ ¬yi,1 ∨ . . . ∨ ¬yi,li

and the set of propositional variables that occurs in α is {x1, . . . , xn}.
We encode α in a typed relational schema as follows. Note that we denote strings
by surrounding quotation marks.

∃x1, . . . , xn (
∧
i∈[m]((

∧
j∈[ki]

R(`i', `j', `+', `xi,j', xi,j)) ∧ (
∧
j∈[li]

R(`i', `j', `¬', `yi,j', yi,j)))),

(
∧
j∈[ki]

R(`i', `j', `+', `xi,j', xi,j)) ∧ (
∧
j∈[li]

R(`i', `j', `¬', `yi,j', yi,j))
→

∨
j∈[ki]

L1(xi,j) ∨
∨
j∈[li]

L0(yi,j), for all i ∈ [m],

R(x1, x2, x3, x4, x5)→ L0(x5) ∨ L1(x5),
L0(x)→ ¬L1(x), and

L1(x)→ ¬L0(x).

The last two constraints constitute the type hierarchy H(S) and all other con-
straints constitute Σ(S), which means that the constraints obey the syntactic
restrictions in order to form valid typed relational schema. It is standard to verify
that α is satis�able i� S is satis�able. �

The next theorem identi�es a large class of typed relational schemas for which we
obtain a ΣP

2 upper bound:

Theorem 144. Let Σ(S) ∪ H(S) ∈ CT∀∃ ensuring polynomial depth of the
chase tree. Then Satisfiability ∈ ΣP

2 .

Proof. We give a ΣP
2 -algorithm that tests satis�ability, i.e. an Np algorithm with

coNp oracle. Initially, guess some predicate R ∈ R and consider the query

q()← R(x1, . . . , xar(R)).

Then compute qS , using the following modi�cation of the algorithm from Def-
inition 125. In each chase step starting with query qi as input, guess some
α ∈ Σ(S)∪H(S) and constants a for the universally quanti�ed variables in α such
that db(qi) |= body(α(a)) (testing the latter condition can be done in polynomial
time). Then use the coNp oracle to verify that there are no constants b for the
existentially quanti�ed variables in the head of α such that db(qi) |= head(α(a, b)).
If α is a Tgd or Egd with disjunction in the head, i.e. is of the form

123 9.1 Semantic Query Optimization in the Presence of Types

α := φ→ ψ1 ∨ · · · ∨ ψn,

guess i ∈ [n] and perform a chase step with α′ := φ→ ψi instead of α. Otherwise,
if the head of constraint α is disjunction-free, simply perform a chase step with α.
By assumption, the above algorithm terminates in k steps, where k is polynomi-
ally bounded by the depth of the chase tree, so it is easy to see that the algorithm
is in ΣP

2 . It is standard to show that S is satis�able i� qk+1 6= False (in case
qi = False for some i < k + 1, we set qk+1 := False). �

We obtain even better bounds when restricting the size of the constraint's heads:

Corollary 145. Let Σ(S) ∪ H(S) ∈ CT∀∃ ensuring polynomial depth of the
chase tree and assume that the size of the head of every α ∈ Σ(S) ∪ H(S) is
bounded by some constant k. Then Satisfiability is in Np.

Proof. As an additional assumption compared to Theorem 144 we have that the
size of every constraint's head is bounded. The algorithm that tests satis�ability
works similar to the algorithm from the proof of Theorem 144; the only di�erence
is that model checking now can be done in polynomial time (i.e., does not require
a coNp oracle), because the size of the constraint's head is �xed. This gives us
an Np algorithm. �

Observe that the previous (and some of the following) results rely on the poly-
nomial depth of the chase tree. We will come back to this issue in Section 9.1.5,
where we indicate chase termination conditions that guarantee this property.

Query Optimization

We now come to the central complexity results of this paper, namely the com-
plexity of testing whether a query is a rewriting or a minimal rewriting of another
query. We de�ne these two decision problems as follows.

Minimal(L, c,S):
Input : Q ∈ L.
Question: Is Q (L, c,S)-minimal?
Answer: Yes or no.

Rewrite(L, c,S):
Input : (Q,Q′) ∈ L × L.
Question: Is Q′ a (L, c,S)-rewriting of Q?
Answer: Yes or no.

124 9.1 Semantic Query Optimization in the Presence of Types

By de�nition, Q′ is an (L, c,S)-minimal rewriting of Q i� Q′ ∈ Minimal(L, c,S)
and (Q,Q′) ∈ Rewrite(L, c,S). A reduction from the containment problem for
conjunctive queries with inequalities gives us a lower bound for the Rewrite
problem in the general case.

Theorem 146. Rewrite(Cq, c,S) is ΠP
2 -hard.

Proof. We prove ΠP
2 -hardness by a reduction from the containment problem

for conjunctive queries with inequalities. In [Kolaitis et al., 1998] it was shown
that this problem is ΠP

2 -complete even for boolean queries. Thus, we can restrict
ourselves to boolean queries which we represent as the set of atoms in the query's
body. Without loss of generality, we can assume that q1 and q2 have disjoint sets
of variables when we want to test whether q1 v q2 holds.

In the �rst step, we reduce the containment problem for such queries to the equiv-
alence problem via the reduction q1 v q2 ⇐⇒ q1 ≡ q1 ∪ q2.

In the second step we reduce the equivalence problem for conjunctive queries with
inequalities to Rewrite(Cq, c,S) for the �xed typed relational schema S with

Σ(S) = { I(x, x)→ T(x),
J(x, y)→ x = y,
I(x, y), J(x, y)→ T(x),
D(x1), D(x2)→ I(x1, x2)∨ J(x1, x2)}
∪{R(x1, ..., xar(R))→ D(x1), ...,D(xar(R))| R∈ R}

and

H(S) = {T(x)→ ¬ T(x)},

where I, J, D, and T are fresh relational symbols. Intuitively, J simulates the
equality predicate and I its complement with respect to the active domain. Given
two conjunctive queries with inequalities q1, q2 as input, we translate to q

′
1 and q

′
2

by substituting every inequality atom of the form xi 6= xk by I(xi, xk). We can
conclude that q1 ≡ q2 ⇐⇒ q′1 ≡S q′2 holds, which �nishes this proof. �

Whenever the chase tree is of polynomial depth, we can also guarantee membership
in ΠP

2 :

Theorem 147. Let Σ(S) ∪ H(S) ∈ CT∀∃ ensuring polynomial depth of the
chase tree. Then, Rewrite(Ucq¬/2, c,S) is ΠP

2 -complete.

125 9.1 Semantic Query Optimization in the Presence of Types

Proof. Given Theorem 146, it su�ces to prove membership in ΠP
2 . We give an

algorithm which is appropriate for our needs. Given (Q,Q′) as input our test essen-
tially consists of an application of Theorem 136 and Corollary 137. W.l.o.g. ev-
ery q ∈ Q′ contains all constants from Q, Q′ and Σ. We test whether for all
P ′ ∈ comp(Q′Σ) there is P ∈ Q such that for all P ′′ ∈ comp(P ′) it holds that
P → P ′′ and whether for all P ∈ comp(QΣ) there is P ′ ∈ Q′ such that for all
P ′′ ∈ comp(P) it holds that P ′ → P ′′. This is doable in ΠP

2 -time. �

Having discussed Rewrite, we conclude our complexity study with a similar
result for the minimization problem:

Theorem 148. Let Σ(S)∪H(S) ∈ CT∀∃ ensure polynomial depth of the chase
tree. Then, Minimal(Ucq¬/2, c,S) ∈ ΠP

3 .

Proof. We show that the complement of Minimal(Ucq, c,S) is in ΣP
3 . In or-

der to see this we can use the following algorithm. Given Q as input, we guess
Q′ such that c(Q′) < c(Q) and test whether (Q,Q′) ∈ Rewrite(Ucq, c,S) (see
Theorem 147) holds. Clearly, all this is doable in ΣP

3 -time. �

To put our results into context, we point out that containment testing under
negation- and disjunction-free Tgds and Egds is already Np-hard. Nevertheless,
the experiments in [Popa et al., 2000] con�rm that minimization works well in
practice, last but not least because the constraint sets are usually small. What
we have shown here is that semantic query optimization in the presence of types,
Tgd¬,∨, and Egd∨ falls into the lower levels of the polynomial hierarchy. There-
fore, we may expect our methods to work well in practice, too.

9.1.5 Chase Termination: Eliminating Negation and

Disjunction

We have seen in Section 9.1.3 that the applicability of our framework for semantic
query optimization in the presence of types heavily depends on the termination
of the underlying chase algorithm. However, little attention has been spent on
chase termination in the presence of negation and disjunction in the constraints.
Notable exceptions are [Fagin et al., 2005], which treats the case of Tgds and
Egd∨s, and [Deutsch et al., 2007], which uses an adaption of the weak acyclicity
condition from [Fagin et al., 2005] to allow for negation and disjunction.
We present a more general approach and eliminate negation and disjunction in the
constraints such that, if a termination guarantee for the rewritten constraint set
can be made, then a guarantee can be also made for the original constraint set.

126 9.1 Semantic Query Optimization in the Presence of Types

This allows us to reduce the problem of chase termination to a standard setting
involving only Tgds and Egds.
This elimination process is de�ned via the two mappings introduced in the follow-
ing de�nition.
Let T ′ = {T′1, ...,T′m} and R′ := {R′1, ...,R′n} be two additional sets of relational
symbols such that (R′ ∪ T ′) ∩ (R∪ T) = ∅ = R′ ∩ T ′.

De�nition 149. By L0 we denote the set of �rst order sentences over vocabulary
R∪ T .

• The mapping T¬ : 2L0 → 2L0 is de�ned as follows. For every Φ ⊆ L0 we set
T¬(Φ) := Φ̃, where Φ̃ equals Φ except that for every i ∈ [n] every occurrence
of ¬Ri (¬Ti) is substituted by R′i (T

′
i).

• The mapping T∨ : 2L0 → 2L0 is de�ned as follows. For every Φ ⊆ L0 we set
T∨(Φ) to be

⋃
ϕ∈Φ ϕ̂.

Note that both mappings are well-de�ned and computable in polynomial time.
We show by an example how we intend to use these mappings.

Example 150. Let Σ be a set of Tgd∨,¬ and Egd∨ . If Σ has strati�ed witness
as de�ned in [Deutsch et al., 2007], then it is easy to see that T∨(T¬(Σ)) is weakly
acyclic. The converse is not true. Consider e.g. the constraint set Σ consisting of

R(x1, x2)→ ∃y¬ S(x1, y), T(x1, y), and
S(x1, x2)→ ∃y¬ R(x1, y), T(x1, y).

The example shows that, if we can derive termination guarantees for T∨(T¬(Σ)),
then we are more general than strati�ed witness, the only termination condition
known so far that covers constraints containing negation and disjunction. The next
theorem �lls this gap and allows to derive such termination bounds from existing
termination conditions for (negation- and disjunction-free) Tgds and Egds.

Theorem 151. Let Σ be a set of Tgd∨,¬ and Egd∨.

• If T¬(Σ) ∈ CT∀∀, then Σ ∈ CT∀∀.

• If Σ = T∨(Σ) and T¬(Σ) ∈ CT∀∃, then Σ ∈ CT∀∃.

• If T∨(Σ) ∈ CT∀∀, then Σ ∈ CT∀∀.

• If T∨(T¬(Σ)) ∈ CT∀∀, then Σ ∈ CT∀∀.

127 9.1 Semantic Query Optimization in the Presence of Types

Proof.

• It is immediate from the de�nition of chase steps that the set of chase se-
quences with T¬(Σ) coincide with the chase steps of Σ up to renaming of
negative literals with T¬ and unsatis�ability.

• Let Σ contain no disjunctions. Observe again that the set of chase sequences
with T¬(Σ) coincide with the chase steps of Σ up to renaming of negative
literals with T¬ and unsatis�ability.

• Suppose not. Then, there is an in�nite chase sequence Q0
α1,a1−→ Q1

α2,a2−→
Q2 . . ., where {αi|i ∈ N} ⊆ Σ. It follows that there is q0 ∈ Q0 ∩Cq¬ and for

every i ∈ N there is qi ∈ Cq¬∩Qi and αi ∈ α̂i such that q0
α1,a1−→ q1

α2,a2−→ q2 . . .
is an in�nite chase sequence, which implies T∨(Σ) /∈ CT∀∀.

• Follows from bullet one and three. �

We emphasize that, with this powerful tool at hand, we subsume both the work
on chase termination in the presence of Egd∨ from [Fagin et al., 2005] and for
Tgd∨,¬ from [Deutsch et al., 2007].

We now turn towards the question of data complexity (i.e. in the size of the input
query) of chase termination.

Theorem 152. Let Σ be a set of Tgd∨,¬ and Egd∨. If there is a function
f : Ucq¬ → N such that for every Q ∈ Ucq the depth of every chase tree for
T∨(T¬(Σ)) and Q is bounded by f(Q), then for every Q′ ∈ Ucq¬ the depth of
every chase tree for Σ and Q′ is also bounded by f(Q).

Proof. Suppose for a moment that there is Q′ ∈ Ucq¬ and a chase tree for Σ
whose depth is d > f(Q′). Then, this already holds for some q′ ∈ Q′∩Cq¬, which
is why we assume q′ = Q′. There must be a path in this chase tree whose length
is d. Observe that we can build a chase sequence of length at least d for the query
T¬(q

′) ∈ Cq with constraints from T∨(T¬(Σ)) only, which is a contradiction. �

In particular, it follows from this theorem that if we can data-independently derive
polynomial data complexity for T∨(T¬(Σ)), which is the case for all termination
conditions for the chase that have been developed so far, then the depth of every
chase tree for Σ is also polynomial.

128 9.2 Minimization of RDF Graphs

9.2 Minimization of RDF Graphs

As a second application scenario we turn towards the Semantic Web [Berners-Lee
et al., 2001] and rule-based minimization of RDF graphs under constraints. This
section can be read independently from the previous chapter on semantic query
optimization in the presence of types.

The Semantic Web facilitates semantic interoperability and exchange of data be-
tween applications. The Resource Description Framework [World Wide Web Con-
sortium, 2003a] was proposed by the World Wide Web consortium as a standard
language for data in the Semantic Web. As RDF has only very simple language
constructs, RDF data often becomes large. There has been a line of research
[World Wide Web Consortium, 2003c; Gutierrez et al., 2004, 2003; Iannone et al.,
2005; Esposito et al., 2005] to minimize RDF graphs without losing any informa-
tion, i.e. retaining homomorphic equivalence. This allows applications to exchange
reduced data, thus minimizing storage cost, transfer and query evaluation time.
In [World Wide Web Consortium, 2003c; Gutierrez et al., 2004, 2003] the no-
tion of lean graphs was introduced as a minimal representation of an RDF graph.
Basically, a lean graph eliminates triples which contain blank nodes that specify
redundant information. In [Iannone et al., 2005; Esposito et al., 2005] di�erent
algorithms are introduced that approximately compute a lean version of a given
RDF graph. The notion of lean is orthogonal to derivability by application-speci�c
rules. If such rules exist, a lean graph may still contain triples which are redun-
dant in the sense that they need not be stored explicitly because they could be
derived by the rules as well.
We propose a user-speci�c redundancy elimination technique based on rules. Be-
fore describing it, we give an example for our scenario. Consider Figure 9.2. It
shows the original RDF graph that models some train connections between cities.
If the transitive edges are not relevant for an application, we may want to elimi-
nate them as shown in the second graph in the �gure2. Yet, if an application often
asks for connections from 'Fr' to any other city, then we want to keep all outgoing
edges from 'Fr' in order to avoid unnecessary recomputations. This is depicted in
the third graph. What we have done is the following. First, we eliminate triples
according to the rule

�delete all transitive edges�

and second we satis�ed the constraint

�keep all outgoing edges from 'Fr' �.

2An application of transitively reduced graphs was given for the context of transitive reduction
[Aho et al., 1972] in [Vincent and Cecile, 2005].

129 9.2 Minimization of RDF Graphs

Fr Ka Ma Fra Be Mu

The original graph.

Fr Ka Ma Fra Be Mu

A reduced graph.

Fr Ka Ma Fra Be Mu

A reduced graph that satis�es a constraint.

Figure 9.2: An RDF graph modeling some train connections.

130 9.2 Minimization of RDF Graphs

The constraint expresses that we are mainly interested in connections from 'Fr'
to the other cities. If we would be looking for connections from 'Ka' to 'Mu' we
would have to perform some additional computations on the reduced graph.

Usually, rules are interpreted generatively, i.e. if we have a rule of the form

P(X, Y)← R(Y,X)

and we �nd R(a, b) in our data, we add P(b, a) to it. In our work, we use rules in
the following sense: whenever P(b, a) and R(a, b) are in our data, we delete P(b, a).
If later needed, we can recompute the tuple P(b, a) again with the help of our rule,
i.e. we minimize a given RDF graph such that all deleted triples can be recon-
structed. We want to stress that our work is well-suited for scenarios in which it is
known in advance what structures in the RDF graph are redundant and therefore
building appropriate rules is possible. For example, this applies when the graph
to be minimized has a user-de�ned rule semantics in the sense of [ter Horst, 2005],
where it could be desirable to minimize a given graph along its user-de�ned rule
semantics.
Additionally, we take data consistency into account. In [Lausen et al., 2008] it
was proposed to extend RDF and RDFS [World Wide Web Consortium, 2003b]
by constraints. We adapt the notion of tuple-generating dependencies to the RDF
scenario and ensure that if such a kind of constraint is satis�ed before the mini-
mization step, then it is also satis�ed afterwards. We will exploit these constraints
for answering conjunctive queries on the reduced graph. For certain queries it is
possible to use only the reduced graph to compute the answer to a query posed
over the original graph. Of course, this is not always possible and for another case
we show that we can guarantee a non-empty answer for a query on the reduced
graph if the same query yields a non-empty answer on the original graph.

9.2.1 Additional Preliminaries

Throughout the paper, we will use several results from database theory that we
adapt to the case of RDF. We introduce them in this section.

General mathematical notation. For sets M and N , M ⊂ N denotes that M
is a proper subset of N . For a mapping f , we denote by f ↑M the restriction of f
to M , where M is a subset of f 's domain.

Syntax of RDF. The Semantic Web necessitates data in a machine-readable
format. RDF databases are sets of triples (s, p, o). Such a triple states a directed
relationship p between s and o. More formally, an RDF vocabulary is a triple

131 9.2 Minimization of RDF Graphs

(U,B, L), where U,B, L are in�nite sets. U is usually referred to as the set of URI
references, B is the set of blank nodes and L the set of literals. An RDF graph
G (with respect to (U,B, L)) is a �nite subset of (U ∪ B) × U × (U ∪ B ∪ L).
RDF graphs have a graphical representation. A triple (s, p, o) ∈ G can be seen

as two nodes connected by a labeled arc s
p−→ o. In a triple (s, p, o), s is called

the subject, p the predicate and o the object of the triple. The subset of U that
occurs in an RDF graph G is denoted by UG. BG and LG are de�ned similarly.
A map (with respect to (U,B, L)) is a function ν : (U ∪ B ∪ L) → (U ∪ B ∪ L)
such that for all x ∈ (U ∪ L) : ν(x) = x. For matters of convenience we introduce
the following notion. A maplet3 (with respect to (U,B, L) and G) is a function
µ : (U ∪ BG ∪ L) → (U ∪ B ∪ L) such that for all x ∈ (U ∪ L) : µ(x) = x. If the
image of such a µ is contained in a graph G′, we will denote this by µ : G → G′.
Two RDF graphs G1, G2 are called homomorphically equivalent if there are maps
µ1, µ2 such that µ1(G1) ⊆ G2 and µ2(G2) ⊆ G1.

Constraints in RDF. Logical constraints are a useful tool to help modeling an
application domain. They restrict the legal state space of a database and guarantee
that only meaningful data can be inserted into a database. In [Lausen et al., 2008]
it was proposed to add constraints to RDF in order to ensure data consistency.
We are going to introduce a large class of constraints for RDF graphs, namely we
will adapt the notion of tuple-generating dependencies.

Following previous approaches [Schmidt et al., 2010], we focus on TGDs. When
talking about constraints in the following we always mean TGDs. We refer the
interested reader to [Lausen et al., 2008] for motivating examples and a study of
constraints for RDF.

We represent each constraint α ∈ Σ by a �rst-order logic formula over a ternary
relation T(s, p, o) that stores all triples contained in RDF database G and use T

as the corresponding relation symbol. For instance, the constraint

∀x1, x2(T(x1, p1, x2)→ ∃y1 T(x1, p2, y1))

states that each RDF resource with property p1 also has property p2.

De�nition 153. Given b ∈ N, ϕ is called b-bounded if |body(ϕ)| ≤ b and
|head(ϕ)| ≤ b. A set Σ of TGDs is called b-bounded if every element of Σ is
b-bounded.

3The notion of maplet is introduced because in many situations we are not interested in the
image of blank nodes that do not occur in an RDF graph. It can always be extended to a
map.

132 9.2 Minimization of RDF Graphs

Note that we did not de�ne the semantics of a constraint in terms of interpretations
of RDF graphs like in [World Wide Web Consortium, 2003c], but only gave an
algebraic version of satisfaction. The following proposition states that checking
constraints is tractable. The proof follows from classical results, see [Flum and
Grohe, 2006; Johnson and Klug, 1982].

Proposition 154. Let b ∈ N �xed. For any RDF graph G and b-bounded set
of TGDs Σ, it can be tested in polynomial time whether G |= Σ holds.

Datalog. Rules allow to derive new knowledge from given knowledge and espe-
cially add recursion to a database query language. We de�ne syntax and semantics
of Datalog.

De�nition 155. A (Datalog) rule is of the form t ← G, where t is an RDF
triple and G is an RDF graph such that B{t} ⊆ BG. Given b ∈ N, t← G is called
b-bounded if |G| ≤ b. A set of rules R is called b-bounded if every element of R
is b-bounded. The set head(R) is de�ned as {p| T(s, p, o)← G ∈ R}.

De�nition 156. Let G be an RDF graph. The semantics of a set of rules
R = {t1 ← G1, ..., tn ← Gn} is de�ned via the help of the TR-operator, where
TR(G) := G ∪ { µ(ti) | i ∈ [n] and there is a maplet µ : BGi

with µ(Gi) ⊆ G }.
The semantics of R applied to G is R(G) :=

⋃∞
i=1 T

i
R(G).

The TR-operator is monotonic, therefore R(G) ⊇ G. This means that we can
generate new data from old one, but never lose original data. Note that R(G)
may not be an RDF graph again because it can happen that a literal occurs in
the subject position of a triple. The following proposition states that evaluating
rules takes polynomial data complexity and is well-known in database theory, see
[Abiteboul et al., 1995].

Proposition 157. Let b ∈ N �xed and R any b-bounded set of rules. Then, for
any RDF graph G there exists n ∈ N such that R(G) := T nR(G). Furthermore,
the mapping (G,R) 7→ R(G) can be computed in polynomial time.

Proof. Clearly, |R(G)| ≤ |R| · 27 · (|G| + |R|)3 and TR is monotonic. Therefore,
there exists n0 ≤ |R| · 27 · (|G| + |R|)3, such that T n0

R (G) = T n0+1
R (G). It follows

that R(G) =
⋃n0

i=1 T
i
R(G) = T n0

R (G). Let G̃ ⊆ R(G). It remains to show that for

any i ∈ [|R| · 27 · (|G| + |R|)3] it holds that (R, G̃) 7→ TR(G̃) can be computed

in polynomial time. Given r := t′ ← G′ ∈ R there are at most |G|2ḃ maplets
µ : G′ → G because any triple in G′ can contain at most two blank nodes. For

133 9.2 Minimization of RDF Graphs

every such µ check whether µ(G′) ⊆ G holds. For �xed r this can be done
in polynomial time. As there is only a polynomial number of rules, computing
TR(G̃) can be done in polynomial time. �

9.2.2 Formal Description and Examples

This section formally introduces the minimization problem. We consider two ver-
sions of it: the construction problem and the corresponding decision problem.
As already mentioned earlier, we do not use Datalog rules to generate new data.
Instead, we delete it from a given RDF graph. Intuitively, we de�ne the inverse
semantics of a rule of the form t ← G in such a way that, we delete t, if G is
still in the graph afterward. This means that we are interested in subsets G′ of a
given RDF graph G such that R(G′) ⊇ G (or equivalently R(G′) = R(G) because
Datalog rules are monotonic). Unfortunately, such a G′ is, in general, not unique.
This motivates the following de�nition.

De�nition 158. LetR be a set of Datalog rules. The inverse semantics ofG with
respect to R is given by R−(G) := { G′ ⊆ G | R(G′) ⊇ G and there is no G′′ ⊆
G′ with R(G′′) ⊇ G }. If G′ ∈ R−(G), we call G′ a reduction of G along R.

Example 159. Figure 9.3 shows an RDF graph G and three reductions along
R = {T(X, d, Z)←T(X, d, Y), T(Y, d, Z)}.

The construction problem Mini-rdf is de�ned as follows.

Mini-rdf

Input : An RDF graph G, a set of Datalog rules R,
a set of constraints Σ with G |= Σ.

Task : Find G′ ⊂ G such that
(i) G′ |= Σ,
(ii) R(G′) ⊇ G and
(iii) G′ is minimal (w.r.t. to its cardinality) with (i) and (ii).

Answer: G′, if such a G′ exists. No, otherwise.

Note that in the de�nition of Mini-rdf G′ must be a proper subset of G. If
G′ can only be chosen equal to G, then the answer to Mini-rdf will be NO.
To denote that G′ is a solution to Mini-rdf for the input G,R,Σ we write
G′ ∈ Mini-rdf(G,R,Σ). The corresponding decision problem Mini-rdfdec is
the following.

134 9.2 Minimization of RDF Graphs

a

b c
d

d

d

d

d

d

a

b c

dd

d

Original graph G (1)

a

b c
dd d

a

b c
d

d

d

d

(2) (3)

Figure 9.3: An RDF graph and three possible reductions along transitivity.

Mini-rdfdec
Input : (G,R,Σ) such that G |= Σ.
Question: Is there G′ ∈Mini-rdf(G,R,Σ)?
Answer: Yes or no.

A simple example for solutions to Mini-rdf is the following. It does not take any
constraints into account.

Example 160. Consider again Example 159. Let additionally be Σ = ∅. Then,
Mini-rdf(G,R,Σ) has the two solutions (1) and (2) depicted in Figure 9.3. This
example shows that solutions to Mini-rdf are in general not homomorphically
equivalent.

The next example makes use of a constraint. It demonstrates the interaction
between the rules' inverse semantics and constraints.

Example 161. Consider again Figure 9.2 from the introduction and as-
sume that all edges are implicitly labeled by reach. The transitivity rule
R = {T(X, reach, Z) ← T(X, reach, Y), T(Y, reach, Z)} and the constraint
Σ = {T(Fr, reach,X),T(X, reach, Y) → T(Fr, reach, Y)}. The �gure shows

135 9.2 Minimization of RDF Graphs

the original graph G, the only element of R−(G) and the only solution to
Mini-rdf(G,R,Σ).

The following theorem gives us a method which enables us to compute solutions
to Mini-rdf using the well-known technique of the chase.

Theorem 162. Let Σ ∈ CT∀∃. If G′ ∈ Mini-rdf(G,R,Σ), then there exists

G̃ ∈ R−(G) and π ∈ Hom(G̃Σ, G) such that |G′| = |π(G̃Σ)|.

Proof. Assume that for all G̃ ∈ R−(G) and for all π ∈ Hom(G̃Σ, G) it holds that

|G′| 6= |π(G̃Σ)|.

Case 1: Assume that there is G̃ ∈ R−(G) and π ∈ Hom(G̃Σ, G) such that

|G′| > |π(G̃Σ)|. Clearly, for every choice of G̃ and π we have that π(G̃Σ) |= Σ and

R(π(G̃Σ)) ⊇ G. Thus, G′ /∈Mini-rdf(G,R,Σ).

Case 2: Assume that for all G̃ ∈ R−(G) and for all π ∈ Hom(G̃Σ, G) it holds that

|G′| < |π(G̃Σ)|. De�ne A := { G′′ ⊆ G′ | G′′ ∈ R−(G) }. By de�nition A 6= ∅.
Choose G̃ ∈ A arbitrarily. As G̃ ⊆ G′ ι : G̃→ G′ is a maplet, where ι(x) = x for

all x in the domain of ι. G′ |= Σ. So, there exists a maplet π : G̃Σ → G′ with

π ⊇ ι (see [Johnson and Klug, 1982]), thus π ∈ Hom(G̃Σ, G) and |π(G̃Σ)| ≤ |G′|.
By assumption |G′| < |π(G̃Σ)|, which yields a contradiction. �

Given this theorem we can solve Mini-rdf in the following three steps if the set
of constraints is in CT∀∃. Of course these steps depend on each other and, in
general, cannot be solved separately:

1. Guess an adequate G̃ ∈ R−(G).

2. Compute G̃Σ.

3. Find π ∈ Hom(G̃Σ, G) such that π(G̃Σ) ∈Mini-rdf(G,R,Σ).

A natural question that arises is whether for step one it su�ces to take only
G̃ ∈ R−(G) of minimal cardinality into account. The next example shows that
this conjecture is wrong, in general.

Example 163. Consider the graphG from Figure 9.3 together with the transitiv-
ity ruleR = {T(X, reach, Z)← T(X, reach, Y), T(Y, reach, Z)} and the constraint
Σ = {T(X, d, Y) ← T(Y, d,X)}. For readability we omitted all arc labels, but we

136 9.2 Minimization of RDF Graphs

assume that any arc is implicitly labeled by the URI reach. Then, graph (3) in
the �gure is a solution to Mini-rdf(G,R,Σ) and graphs (1) and (2) cannot be
extended to a solution. Note that the graphs (1) and (2) are the only elements in
R−(G) of minimal cardinality.

9.2.3 Complexity Results

This section establishes complexity results forMini-rdfdec andMini-rdf. While
it follows from the de�nition that the problem is decidable in general, we give
an exact complexity bound for a restricted b-bounded version of Mini-rdfdec.
Namely, we show that it is Np-complete.

Proposition 164. Let b ∈ N �xed. Mini-rdfdec restricted to instances of b-
bounded sets of TGDs and b-bounded sets of rules is solvable by an Np-algorithm.

Proof. Let (G,R,Σ) be an input for Mini-rdfdec. Non-deterministically guess
G′ ⊂ G and check whether R(G′) ⊇ G and G′ |= Σ. Notice that by Propositions
154 and 157 these steps take polynomial time. �

Theorem 165. Mini-rdfdec restricted to instances of 2-bounded sets of full
dependencies and 1-bounded sets of rules is Np-hard. This still holds if neither
the rules, the constraints nor the input graph contain any blank nodes.

Proof. It is well-known that CNF − SAT , the satis�ability problem for boolean
formulas in conjunctive normal form, isNp-complete under polynomial-time many-
one reductions, see [Arora and Barak, 2009]. We show that CNF − SAT can be
reduced to Mini-rdfdec. An instance α of CNF − SAT is of the form

(x1,1 ∨ ... ∨ x1,k1) ∧ ... ∧ (xl,1 ∨ ... ∨ xl,kl),

where xi,j are literals. Without loss of generality, we assume that (x ∨ ¬x) is a
conjunct in α for every variable x that occurs in α. xi,j = xi,j, if xi,j is a positive
literal and xi,j = p, if xi,j = ¬p for a positive literal p. A possible reduction is
given by α 7→ (G,R,Σ), where

G = { T (xi,j, i, xi,j) | i ∈ [l], j ∈ [ki] } ∪ {T (d, d, d)}
R = { T (xi,j, i, xi,j)← T (xi,j′ , i, xi,j′) | i ∈ [l], j, j′ ∈ [ki], j 6= j′ }

∪ { T (d, d, d)← t | t ∈ G\{T (d, d, d)} }
Σ = { T (xi,j, i, xi,j)→ T (xi′,j′ , i

′, xi′,j′) | xi′,j′ = xi,j }
∪ { T (xi,j, i, xi,j), T (xi′,j′ , i

′, xi′,j′)→ t | xi′,j′ = xi,j, t ∈ G }.

137 9.2 Minimization of RDF Graphs

Note that α 7→ (G,R,Σ) is computable in polynomial time and that neither G,
R nor Σ contain any blank nodes. It remains to show that α is satis�able if and
only if Mini-rdf(G,R,Σ) admits a solution.

(a) Assume that b is a satisfying assignment for α. De�ne G′ := { T (xi,j, i, xi,j) |
i ∈ [l], j ∈ [ki], b(xi,j) = 1 }. We will show that

1. R(G′) ⊇ G, and

2. G′ |= Σ and G′ ⊂ G.

Obviously, ∅ 6= G′ ⊆ G holds. (1): Clearly, T (d, d, d) ∈ R(G′) because ∅ 6= G′ and
for any s ∈ G′\{T (d, d, d)} there is T (d, d, d) ← s ∈ R. Let t ∈ G\{T (d, d, d)}
arbitrarily. Then, there exist i ∈ [l], j ∈ [ki] such that t = T (xi,j, i, xi,j). As
b satis�es α, b also satis�es the i-th conjunct of α. So, there is j′ ∈ [ki] such
that b(xi,j′) = 1. But then T (xi,j, i, xi,j) ← T (xi,j′ , i, xi,j′) ∈ R which implies
t ∈ R(G′). (2): A constraint of the form T ((xi,j, i, xi,j) → T (xi′,j′ , i

′, xi′,j′))
where xi′,j′ = xi,j is satis�ed because b(xi′,j′) = b(xi,j). Constraints of the form
T ((xi,j, i, xi,j), (xi′,j′ , i

′, xi′,j′) → t) (xi′,j′ = xi,j, t ∈ G) are satis�ed too because
otherwise b(xi,j) = b(xi′,j′) = 1 although xi′,j′ = xi,j. So, overall we have found a
proper subset of G that satis�es (1) and (2). This impliesMini-rdf(G,R,Σ) 6= ∅.

(b) Assume conversely that G′ ∈ Mini-rdf(G,R,Σ). Note that T (d, d, d) /∈ G′.
We de�ne a satisfying assignment b for α. For i ∈ [l], j ∈ [ki], if T (xi,j, i, xi,j) ∈ G′,
then b(xi,j) := 1. Note that b is well-de�ned and that it cannot occur that
b(xi,j) = b(xi,j) = 1 because G′ |= Σ. For all literals x that occur in α but neither x
nor x was assigned a truth value by the previous step, set b(x) ∈ {0, 1} arbitrarily.
Assume b does not satisfy the i-th conjunct in α. By assumption R(G′) ⊇ G. So,
by construction, there must be j ∈ [ki] such that T (xi,j, i, xi,j) ∈ G′. This means
b(xi,j) = 1. Thus, b satis�es the i-th conjunct in α, which is a contradiction. �

This result demonstrates even in such a restricted case the interaction between
the rules' inverse semantics and the constraints is so complex that this leads to
Np-hardness.

Corollary 166. Let b ≥ 2 �xed. Mini-rdfdec restricted to instances
of b-bounded sets of TGDs and b-bounded sets of rules is Np-complete under
polynomial-time many-one reductions.

138 9.2 Minimization of RDF Graphs

9.2.4 A Tractable Fragment

The complexity results for Mini-rdfdec and therefore also for Mini-rdf from the
last section are negative. We will now look for tractable subsets. The proof of
Theorem 165 seems to imply that recursion in the Datalog rules along with cycles
in the input RDF graph are a source of high complexity. This is why we will
restrict ourselves to a case where recursion is limited and the constraints are a set
of full dependencies. We will give a syntactic restriction in terms of acyclicity of
a graph.

De�nition 167. Let R be a set of rules and G an RDF graph. The data
dependency graph with respect to (R, G) is de�ned as dep(R, G) = (R(G), ER),

where ER := {(v, w) | there are t ← G̃ ∈ R, µ : G̃ → R(G) such that µ(t) =

w, v ∈ µ(G̃)}. (R, G) is called acyclic if dep(R, G) is acyclic, i.e. for every node
in the graph, there is no directed path to itself.

The intuition why the acyclicity of dep(R, G) yields a tractable fragment ofMini-rdf
is the following. We want to solve Mini-rdf according to the steps in Theorem
162. The main problem in the reduction along the rules is that we do not know in
what order triples should be deleted. When dep(R, G) is acyclic, we can impose
an order on R(G) such that the deletion of an element that has a very high rank
in this order will not a�ect the deletion of an element with a low rank. Deleting
triples according to that order yields the unique reduction of G along R.

Proposition 168.

1. If (R, G) is acyclic, then |R−(G)| = 1.

2. If Σ is a set of full dependencies, then |Hom(G̃Σ, G)| = 1 for any G̃ ⊆ G.

Proof. 1.) De�ne G′ := { w ∈ G | for all v ∈ R(G) : (v, w) /∈ ER }. We will
show that R−(G) = {G′}.
Assume that G′ /∈ R−(G). Then, there is a ∈ G′ such that R(G′\{a}) ⊇ G. Thus,

there must be a rule t ← G̃ ∈ R and a maplet µ : G′\{a} → R(G) such that

a = µ(t) and µ(G̃) ⊆ G′\{a}. From the construction of G′ it follows that a /∈ G′,
which is a contradiction.
Conversely, assume there is some G′′ ∈ R−(G). We will show that G′′ = G′.
Assume for a short moment that G′′ 6= G′. Case 1: there is some a ∈ G′′\G′.
Without loss of generality, we can assume that a is minimal with respect to the
order of an arbitrary topological sorting of R(G) according to ER. In case that a
has no predecessors in ER, then a ∈ G′ by construction. Otherwise, a must have a

139 9.2 Minimization of RDF Graphs

predecessor. It follows that a /∈ R−(G′′\{a}). So, there must be b ∈ R(G)\R(G′′)
such that (b, a) ∈ ER. This is a contradiction to the minimality of a.
Case 2: there is some a ∈ G′\G′′. Then, it must hold that R(G′) 6= R(G′′). We
show that a /∈ R(G′′). Assume that a ∈ R(G′′). Then there must be a rule

t ← G̃ ∈ R and a maplet µ : G̃ → R(G) such that µ(t) = a. As G̃ 6= ∅, a must
have a predecessor in ER. But as a ∈ G′, then by construction of G′ a cannot
have any predecessors in ER, which is a contradiction.

2.) |Hom(G̃Σ, G)| = 1 for any G̃ ⊆ G holds because Σ is a set of full dependencies,
the chase does not introduce any variables and therefore the identity is the only
element in Hom(chaseΣ(G̃), G). �

As a consequence, we obtain the following corollary, which states that under the
conditions of the proposition computing solutions to Mini-rdf is tractable if we
consider data complexity4.

Corollary 169. Let R be a �xed set of rules and Σ be a �xed set of con-
straints. For every RDF graph G such that (R, G) is acyclic, a solution to
Mini-rdf(G,R,Σ) can be computed in polynomial time (with respect to |G|).

Proof. Assume that G is an RDF graph such that (R, G) is acyclic. We give an
algorithm that computes a solution to Mini-rdf(G,R,Σ). Let G′ be as in the
proof of Proposition 168 and note that the mapping G 7→ G′ can be computed
in polynomial time. Compute G′Σ. This can be in time polynomial in |G′|. If
chaseΣ(G′) ⊂ G, then return chaseΣ(G′), otherwise return NO. By Theorem 162
and Proposition 168 this algorithm works correctly. We already argued that it
takes time polynomial in |G|. �

As a possible example consider again R, G from Example 161. It can be easily
seen that (R, G) is acyclic there.
Next, we will show that a special case of (R, G) being acyclic is that R is acyclic,
i.e. non-recursive. We �rst repeat the de�nition of an acyclic set of rules.

De�nition 170. Let R be a set of rules.

1. The dependency graph dep(R) = (VR, ER) is de�ned as
VR := { v | v is a predicate symbol that occurs in R } and
ER := { (v, w) ∈ VR × VR | v occurs in the body of a rule with head w }.

2. R is called acyclic if and only if dep(R) is acyclic.

4We assume that the data, i.e. the RDF graph, is much larger than the rules and the constraints.

140 9.2 Minimization of RDF Graphs

The following remark shows that the tractable fragment given in Theorem 169
generalizes the case when the set of rules is acyclic.

Remark 171. If R is an acyclic set of rules, then for any RDF graph G it holds
that (R, G) is acyclic.

Thios remark can be proven by observing that a cycle in dep(R, G) would force a
cycle in dep(R).

9.2.5 Query Answering

So far, we were able to reduce the size of an RDF graph via rules. Now we want
to consider the problem of answering conjunctive queries posed on the original
graph using the reduced graph only. Consider a query q. As the reduced graph
G′ is always a subset of the input graph G, q(G′) ⊆ q(G). But there are some
cases where q(G) = q(G′) or at least q(G) 6= ∅ ⇔ q(G′) 6= ∅ holds. We will brie�y
introduce the basic de�nitions and then use the Chase and Backchase technique
[Deutsch et al., 2006] in order to answer queries.

From Theorem 21 we obtain as a �rst result the possibility to answer a query
on the full graph using the query and reduced graph only. We use the Chase &
Backchase in order to determine if it is possible to rewrite a given query such that
its body does not contain any predicates that could have been minimized by the
rules. Of course, this is not always possible and stronger results are left as future
work.

Corollary 172. Let R be a set of rules, Σ ∈ CT∀∀, G′ ∈ Mini-rdf(G,R,Σ)
and q : h← body(q) a conjunctive query. The query q0 is de�ned as ∅ ← body(q).
If there is a conjunctive query q′ such that no predicate in body(q′) appears in
head(R) and

1. q ≡Σ q
′, then q(G) = q(G′).

2. q0 ≡Σ q
′, then q(G) 6= ∅ ⇔ q(G′) 6= ∅.

Proof.

1. Similar to point two.

2. If q(G) 6= ∅, then {∅} = q0(G) = q′(G) because G |= Σ. Furthermore,
q′(G) = q′(G′) because body(q) contains no predicates that could have been
minimized. As G′ |= Σ, q′(G′) = q0(G′). Therefore, q(G′) 6= ∅. �

141 9.2 Minimization of RDF Graphs

This corollary gives us a case where exact query answering is possible and a second
case in which we can expect non-empty answers on the reduced graph for the case
that we had a non-empty answer in the original graph.

Chapter 10

Related Work

Riccardo: �Can you summarize again what has already been done?�

Alice: �No problem!�

We have sketched in Chapter 4 that the chase has many applications. It is not
surprising that there are wide research �elds related to the chase, e.g. those that
use the chase as a subprocedure, but also those that try to extend the chase in
various ways. Although we already mentioned related work throughout the thesis,
this chapter's aim is to summarize it concisely.

10.1 Constraints in Databases

Integrity constraints in database systems (also known as data dependencies) have
been considered from the early stages in database literature [Codd, 1970, 1971,
1974; Hammer and McLeod, 1975; Chen, 1976; Codd, 1979] up to current publica-
tions in the �eld [Abiteboul et al., 1995; Deutsch et al., 2007; Deutsch and Nash,
2008a; Deutsch et al., 2006; Aho et al., 1979; Beeri and Vardi, 1984; Calì et al.,
2008, 2009; Cheng et al., 1999; Cosmadakis and Kanellakis, 1986; Deutsch et al.,
2008; Fagin et al., 2005; Fuxman et al., 2005; Gottlob and Nash, 2008; Johnson
and Klug, 1982; Maier et al., 1979; Marnette, 2009]. Relational constraints allow
the database schema designer to restrict the contents of a database to �meaning-
ful� data only. They ensure that the contents of the database obey certain real-life
properties. They are important for two major reasons. First, they can be used in
database schema design to create schemas which lack certain insert, update and
deletion anomalies [Codd, 1971, 1974; Chen, 1976]. Second, they can be used in
query optimization [King, 1986; Beeri and Vardi, 1984; Chakravarthy et al., 1990]
to rewrite queries into a logically equivalent form which has lower execution costs.

Usually, integrity constraints are represented as logical expressions without free
variables. For a more thorough introduction to relational constraint types and
their �rst-order representation, we recommend you to read the article [Deutsch

143

144 10.3 Further Chase-Like Algorithms

and Nash, 2008a]. In this thesis, we have mostly considered a special fragment of
constraints, namely equality- and tuple-generating dependencies. These are able
to express virtually all database constraints from the literature [Abiteboul et al.,
1995; Deutsch and Nash, 2008a], e.g. functional dependencies, key dependencies,
join dependencies, multi-valued dependencies, inclusion dependencies and foreign
key dependencies. Furthermore, we have seen the class of embedded dependencies.
It is well-known that we can express every embedded dependency as a �nite set
of equality- and tuple-generating dependencies. This is why all of our results
for equality- and tuple-generating dependencies directly carry over to embedded
dependencies.

10.2 Previous Results on Chase Termination

We were rather surprised to �nd out that there has not been so much work on
chase termination although so many applications depend on it. The textbook
[Abiteboul et al., 1995] covers the notions of full constraints as well as acyclic con-
straints and shows that they guarantee chase termination in the sense of CT∀∀.
Both classes of constraints are subsumed by the famous weak acyclicity condition
in [Fagin et al., 2005] (cf. Section 3.6.2) which is a subset of CT∀∀, too. The
authors of [Deutsch et al., 2008] aimed to improve weak acyclicity to strati�cation
(cf. Section 3.6.3) but in this thesis we could show that it only guarantees termi-
nation only in the sense of CT∀∃ and not CT∀∀ (cf. Section 7.1). In [Marnette,
2009], weak acyclicity was generalized to super-weak acyclicity, which is a frag-
ment of CT∀∀ using skolemization and uni�cation techniques (cf. Section 3.6.4).
With the help of our modular techniques, we can easily de�ne decidable fragments
of CT∀∀ that are supersets of super-weak acyclicity by allowing in the de�nition
of our termination conditions that every strongly connected component of a chase
graph or k-restriction system may be either safe or super-weakly acyclic.

10.3 Further Chase-Like Algorithms

The chase is extended in [Deutsch et al., 2007] to work with a fragment of �rst-
order constraints1, which includes negation and disjunction. As a possible ap-
plication, [Deutsch et al., 2007] considers the problem of rewriting queries using
views with access patterns under integrity constraints which uni�es the works in
[Deutsch et al., 2006], [Halevy, 2001], [Deutsch et al., 2006] and other works on
query answering under limited access patterns like [Rajaraman et al., 1995] and
[Florescu et al., 1999]. They also show that classical results on query containment

1Basically, this fragment is logically equivalent to the class of ∀∃-sentences.

145 10.4 Classical Applications

from [Chandra and Merlin, 1977] (see Theorem 19) carry over with minor modi�-
cations only when the integrity constraints contain negation and disjunction.
In [Deutsch et al., 2008] the core chase is introduced, a variant of the chase that is
sound and complete for �nding universal models in the style of Theorem 3. If the
chase terminates, so does the core chase, but, in general, the converse is not true.
So far, there has been no work on su�cient termination conditions for the core
chase that do not also guarantee termination of the chase. The authors of [Deutsch
et al., 2008] extend the core chase to treat negation and disjunction and show how
classical results for the chase can be extended for the core chase. As the core chase
involves computing cores of database instances (and core computation is known
to be intractable [Chandra and Merlin, 1977]), it is unclear how to e�ciently
implement it.
We already introduced the oblivious chase in the preliminaries. It is known that
if the oblivious chase terminates and does not fail, then it also produces universal
models in the sense of Theorem 3. It seems reasonable to assume that an obliv-
ious chase step can be implemented more e�ciently than a standard chase step
because we do not need to check the satisfaction of the constraints' heads. At �rst
glance, the oblivious chase seems preferable to the standard chase. Whenever the
oblivious chase terminates data-independently, so does the standard chase. But
the oblivious chase does not always terminate when the standard chase does. An
example would be the single TGD

R(x, y)→ ∃z R(x, z), R(x, y)2,

ensuring termination of the standard chase but not termination of the oblivious
chase. As for many applications it is desirable or absolutely necessary to have
termination, it seems almost inevitable to use the standard chase instead of the
oblivious chase.
In [Marnette, 2009] a variation of the oblivious chase is considered which is called
oblivious skolem chase. The idea is that the constraint set is �rst skolemized and
then this new constraint set is evaluated as a logic program on the underlying
data. Like the (oblivious) chase algorithm, the oblivious skolem chase outputs
universal models.

10.4 Classical Applications

The chase procedure has been successfully applied in a variety of database applica-
tions [Maier et al., 1979; Johnson and Klug, 1982; Beeri and Vardi, 1984; Halevy,
2001; Deutsch et al., 2007; Lenzerini, 2002; Fagin et al., 2005; Fuxman et al., 2005;
Deutsch et al., 2006; Olteanu et al., 2009]. Originally, it was proposed to tackle
the implication problem [Zhang and Ozsoyoglu, 1993; Maher and Srivastava, 1996;

146 10.4 Classical Applications

Coulondre, 2003] for data dependencies [Maier et al., 1979; Beeri and Vardi, 1984]
and to optimize conjunctive queries under data dependencies [Aho et al., 1979;
Johnson and Klug, 1982]. In [Johnson and Klug, 1982] it was shown that the
chase can be used to reduce query containment under constraints to the classical
query containment problem without constraints (cf. Theorem 20). Therefore, the
search for more e�cient query plans is supported. The chase has also become
a central tool in semantic query optimization [Popa and Tannen, 1999; Deutsch
et al., 2006; Popa et al., 2000; Schmidt et al., 2008; Amer-yahia et al., 2002; Calì
and Martinenghi, 2008]. It was shown in [Popa et al., 2000] that the Chase &
Backchase procedure (cf. Section 4.2) using the standard chase can be e�ciently
implemented and can cause signi�cant time reductions in query answering. We
also want to mention that there are many subareas in query optimization which do
not use the chase. In [Afrati et al., 2003] containment of conjunctive queries with
arithmetic comparisons is discussed. Containment of CQ with safe negation and
disjunction is treated in [Lausen and Wei, 2003; Wei and Lausen, 2002b,a]. Query
containment was also considered for F-Logic [Kifer et al., 1995] queries [Calì and
Kifer, 2006]. E�cient algorithms for query containment is a topic in [Chekuri and
Rajaraman, 1997; Wei and Lausen, 2008]. The complexity of query answering is
investigated in [Vardi, 1982; Papadimitriou and Yannakakis, 1997]. E�cient query
evaluation techniques are discussed in [Yannakakis, 1981; Aho et al., 1979; Biskup
et al., 1995; Gottlob et al., 2001; Flum et al., 2002].

Beyond query optimization, the chase has been applied in data exchange [Fagin
et al., 2005] (cf. Section 4.3), which can be understood as the execution of the chase
with source-to-target plus target constraints on the underlying data instance. It
was shown that no matter what chase sequence is taken, answering conjunctive
queries on the result always delivers the same results. As a unique representative
of the set of solutions, in [Fagin et al., 2005] it was argued that cores are the most
natural ones because they are small and intuitive to understand. In [Gottlob and
Nash, 2008] it was shown that they can be computed in polynomial time data
complexity in case the constraint set is weakly acyclic.

Beyond data exchange, it has been applied in many other contexts such as peer
data exchange [Fuxman et al., 2005], data integration [Lenzerini, 2002; Calì, 2004],
query answering using views [Halevy, 2001; Deutsch et al., 2007], and probabilistic
databases [Olteanu et al., 2009].

147 10.6 Rule-Based Minimization

10.5 Semantic Query Optimization in the

Presence of Types

Typing is a central component of many practical database systems, including (but
not limited to) relational databases, object-oriented database models [Kifer et al.,
1995; Papakonstantinou et al., 1995], typed datalog [Zook et al., 2009], and semi-
structured data [Milo and Suciu, 1999]. In response, to date a rich theory of
type-based optimization has been developed [Frühwirth et al., 1991; Litwin and
Risch, 1992; Levy and Suciu, 1997; Gallagher and Puebla, 2002; Henriksson and
Maluszynski, 2004; Bruynooghe et al., 2005]. These optimization approaches often
use type inference algorithms and have a background in the world of programming
languages (cf. [de Moor et al., 2008; Schäfer and de Moor, 2010]).
To this aim, several authors have studied encoding the typing knowledge, mainly
with the following two formalisms: Datalog (and extensions) [Chan, 1992; Dong
and Su, 1996] and Description Logics (DL) [Calvanese et al., 2007, 2008]. However,
the lack of value creation (which can be captured by Tgds) in Datalog prevents
it from being a suitable candidate for modeling typing knowledge. On the other
hand, although DL (and its fragments) can capture Tgds, it is unable to express
functional dependencies like integrity constraints. Recently, Calì et al. [Calì et al.,
2009] have proposed Datalog±, to extend plain Datalog with guarded Tgds and
strati�ed negation. Yet, Datalog± can not express disjunctive rules.
Our results extend the work in [Schmidt et al., 2010] on semantic query opti-
mization for RDF and SPARQL. The type hierarchy that we encounter in the
de�nition of RDF can be easily expressed using our framework because we only
have to assign a type for the subject, predicate and objects positions and state
the disjointness of URIs U , blank nodes B, and literals L. More precisely, we can
model these relationships with the help of the constraints

T (x1, x2, x3)→ U(x1) ∨B(x1),
T (x1, x2, x3)→ U(x2),
T (x1, x2, x3)→ U(x3) ∨B(x3) ∨ L(x3),
U(x)→ ¬B(x) ∧ ¬L(x),
B(x)→ ¬U(x) ∧ ¬L(x), and
L(x)→ ¬B(x) ∧ ¬U(x).

10.6 Rule-Based Minimization

The RDF standard [World Wide Web Consortium, 2003a] is a fragment of F-Logic
[Kifer et al., 1995]. Our work on rule-based minimization extends the works on

148 10.6 Rule-Based Minimization

transitive reduction, see [Aho et al., 1972], in graph theory. Yet, in our framework
it is not only possible to eliminate transivities in graphs, but to de�ne general
rules for the reduction. Constraints on the reduced graph are also not considered
in [Aho et al., 1972].
The problem of optimizing the amount of data that must be exchanged if a graph
is updated and the update must be transferred to other hosts was already studied
in [Zeginis et al., 2007] using the notion of deltas. We are not aware of any work
on RDF that provides user-speci�c minimization techniques the way we do.
The work in [Iannone et al., 2005; Esposito et al., 2005] eliminates triples in the
sense of lean graphs and homomorphic equivalence. Although the results that
are produced are homomorphically equivalent to the original graph, they are not
necessarily lean. Our work does not subsume [Iannone et al., 2005; Esposito et al.,
2005] nor the other way round. We focus on di�erent aspects of redundancy elim-
ination. In our work, it must be explicitly speci�ed via rules what a redundancy
structurally looks like. For example, our method may also be suitable when the
graph to be minimized has a user-de�ned rule semantics in the sense of [ter Horst,
2005], where it could be desirable to minimize a given graph along its rule seman-
tics. The notion of lean is orthogonal to derivability by application-speci�c rules.
If such rules exist, a lean graph may still contain triples which are redundant in
the sense that they need not be explicitly stored because they could be derived
by the rules as well. Minimization in the sense of lean graphs is always possible
because this method is generic. For example in the RDF graph

{T(a1, a2, a3),T(X, a2, Y)}

the triple T(X, a2, Y) can be eliminated (X, Y are blank nodes) because both X
and Y are treated like existentially quanti�ed variables in the RDF semantics
[World Wide Web Consortium, 2003c] and the triple T(a1, a2, a3) is a witness for
the existence of such a resource T(X, a2, Y).
We also want to mention thatMini-rdf is not an abduction problem in the sense
of [Eiter et al., 1997]. An abduction problem is characterized as follows: if we
observe C and have a rule of the form C ← A, then we can conclude the premise A,
regardless whether A follows from our fact base or not. In our scenario, we would
only delete C from our fact base if afterward A still follows from it. Knowledge
assimilation in deductive databases [Decker, 1998] uses abduction techniques to
rewrite updates in such a way that they can be performed on the extensional data
only. Here it is already known in advance which data is extensional and which
data is intensional. In a certain sense, in our scenario we want to compute the
extensional part and delete all intensional data such that the constraints remain
satis�ed.

Chapter 11

Conclusions and Future Work

Riccardo: �Is that all?�

Alice: �Yes, except for some �nal remarks.�

We want to �nish this thesis with a short high-level summary of our main results
and some directions for future work.

11.1 Conclusions

Termination of the chase algorithm is a fundamental problem of interest to both
database theory and practice. When it terminates, the chase is an all-purpose tool
that can be used for semantic query optimization [Deutsch et al., 2006], certain
answer computation in data integration [Lenzerini, 2002], constraint implication,
query answering using views [Halevy, 2001], and probabilistic databases [Olteanu
et al., 2009]. Recently, interest in the chase has been rekindled by its applications
to the area of data exchange [Fagin et al., 2005; Gottlob and Nash, 2008]. The
results in this thesis are extensions of the state of the art regarding su�cient
termination conditions. They are therefore contributions to all above research
sub-areas. Although theoretical by nature our results are of immediate practical
interest.

As opposed to prior work, which used to put forward one new termination con-
dition per paper that improved on the best condition so far, this thesis identi�es
four di�erent �avors of termination and �nds a hierarchy of such conditions for
each �avor. Checking our conditions is not more expensive than the previous least
restrictive ones. While checking the conditions may take exponential time, as for
∀∀-T[k], a coNP upper bound is given, this is only in the size of the constraints,
and moreover, it is a test carried out o�ine, once and for all when the constraints
are declared.

Two �avors of chase termination are related to data-independent techniques. We
propose new techniques that allow us to guarantee chase termination on all in-

149

150 11.2 Perspectives

stances and for all chase sequences. Furthermore, we prove that strati�cation does
not guarantee chase termination on all instances and for all chase sequences but
on all instances and for at least one chase sequence, thus entering the new area of
sequence-dependent termination conditions.
We take one step further to the case of data-dependent techniques when termi-
nation on all instances and for all chase sequences or at least one chase sequence
cannot be guaranteed statically, looking into guarantees for a given instance and
for the termination of at least one chase sequence or all chase sequences. We also
look into cases where no static termination guarantee can be made, proposing
to nevertheless start the chase optimistically but monitor it at runtime to detect
con�gurations when the divergence danger is high, prompting the cut-o� of the
chase sequence. These are all tools for pragmatic work-arounds in response to the
undecidability of termination.
As a possible application scenario we have looked at semantic query optimization
in the presence of types. In previous investigations semantic query optimization
and optimizations based on complex type hierarchies have been studied separately
although both topics have striking commonalities. Unifying these two research ar-
eas, we have developed a logical framework that seamlessly integrates both tech-
niques and, in the general case, provides better optimization results than their
application in two isolated, subsequent stages. We also provided algorithms to
enumerate optimized queries as well as results on the complexity of related de-
cision and satis�ability problems. The applicability of our method depends on
chase termination, and in response we proposed novel termination conditions in
the presence of negation and disjunction.
As a further application scenario we have studied rule-based minimization under
constraints.

11.2 Perspectives

Topics related to the chase are a very active area of research and there are several
challenging open questions left for future work. We list some of them here that
are directly related to this thesis.

• Are CT∀∀ and CT∀∃ undecidable?

• Is
⋃
i≥2 ∀∀-T[i] decidable?

• Does it hold, for a �xed set of TGDs and EGDs, that membership in CT∀∀
or CT∀∃ always guarantees termination of the chase in polynomially many
steps in the input database?

• Are there speci�c termination conditions for the core chase?

151 11.2 Perspectives

• Can the core chase be e�ciently implemented?

• Is semantic query optimization in the presence of types possible for more
expressive query languages? For example if we allow aggregates and an
extended use of negation.

Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

Foto Afrati, Chen Li, and Prasenjit Mitra. On Containment of Conjunctive Queries
with Arithmetic Comparisons (Extended Version). In EDBT, pages 459�476,
2003.

Alfred V. Aho, Michael R. Garey, and Je�rey D. Ullman. The Transitive Reduction
of a Directed Graph. SIAM Journal on Computing, 1(2):131�137, 1972.

Alfred V. Aho, Yehoshua Sagiv, and Je�rey D. Ullman. E�cient Optimization of
a Class of Relational Expressions. ACM Trans. Database Syst., 4(4):435�454,
1979.

Sihem Amer-yahia, Sungran Cho, Laks V. S. Lakshmanan, and Divesh Srivastava.
Tree Pattern Query Minimization. VLDB Journal, 11(4):315�331, 2002.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 2009.

Catriel Beeri and Moshe Y. Vardi. A Proof Procedure for Data Dependencies. J.
ACM, 31(4):718�741, 1984.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scienti�c
American, pages 34�43, May 2001.

Joachim Biskup, Pratul Dublish, and Yehoshua Sagiv. Optimization of a Subclass
of Conjunctive Queries. Acta Inf., 32(1):1�26, 1995.

Maurice Bruynooghe, John P. Gallagher, and Wouter Van Humbeeck. Inference
of Well-Typings for Logic Programs with Application to Termination Analysis.
In SAS, pages 35�51, 2005.

Peter Buneman, Wenfei Fan, and Scott Weinstein. Interaction between path and
type constraints. ACM Trans. Comput. Logic, 4(4):530�577, 2003. ISSN 1529-
3785. doi: http://doi.acm.org/10.1145/937555.937560.

153

154 Bibliography

Andrea Calì. Query Answering by Rewriting in GLAV Data Integration Systems
Under Constraints. In SWDB, pages 167�184, 2004.

Andrea Calì and Michael Kifer. Containment of Conjunctive Object Meta Queries.
In VLDB, pages 942�952, 2006.

Andrea Calì and Davide Martinenghi. Conjunctive Query Containment under
Access Limitations. In ER, pages 326�340, 2008.

Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the In�nite Chase: Query
Answering under Expressive Relational Constraints. In KR, pages 70�80, 2008.

Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog+-: A Uni�ed
Approach to Ontologies and Integrity Constraints. In ICDT, pages 14�30, 2009.

Diego Calvanese, Giuseppe Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable Reasoning and E�cient Query Answering in De-
scription Logics: The DL-Lite Family. J. Autom. Reason., 39(3):385�429, 2007.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Conjunctive
Query Containment and Answering under Description Logic Constraints. ACM
Trans. Comput. Logic, 9(3):1�31, 2008.

Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based Approach
to Semantic Query Optimization. ACM Trans. Database Syst., 15(2):162�207,
1990.

Edward P. F. Chan. Containment and Minimization of Positive Conjunctive
Queries in OODB's. In PODS, pages 202�211, 1992.

Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive
Queries in Relational Databases. In STOC, pages 77�90, 1977.

Chandra Chekuri and Anand Rajaraman. Conjunctive Query Containment Re-
visited. In ICDT, pages 56�70, 1997.

Peter Pin-Shan Chen. The Entity-Relationship Model�Toward a Uni�ed View of
Data. ACM Trans. Database Syst., 1(1):9�36, 1976.

Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cli� Leung, Linqi Liu, Xiaoyan Qian, and
K. Bernhard Schiefer. Implementation of Two Semantic Query Optimization
Techniques in DB2 Universal Database. In VLDB, pages 687�698, 1999.

Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
mun. ACM, 13(6):377�387, 1970.

155 Bibliography

Edgar F. Codd. Further Normalization of the Data Base Relational Model. IBM
Research Report, San Jose, California, RJ909, 1971.

Edgar F. Codd. Recent Investigations in Relational Data Base Systems. In IFIP
Congress, pages 1017�1021, 1974.

Edgar F. Codd. Extending the Database Relational Model to Capture More Mean-
ing. ACM Trans. Database Syst., 4(4):397�434, 1979.

Stavros S. Cosmadakis and Paris C. Kanellakis. Functional and Inclusion Depen-
dencies. Advances in Computing Research, 3:163�184, 1986.

Stéphane Coulondre. A Top-down Proof Procedure for Generalized Data Depen-
dencies. Acta Inf., 39(1):1�29, 2003.

Oege de Moor, Damien Sereni, Pavel Avgustinov, and Mathieu Verbaere. Type
Inference for Datalog and its Application to Query Optimisation. In PODS,
pages 291�300, 2008.

Hendrik Decker. Some Notes on Knowledge Assimilation in Deductive Databases.
In ILPS, pages 249�286, 1998.

Alin Deutsch and Alan Nash. First Order Modeling of Integrity Constraints (DB
Encyclopedia Entry). Springer-Verlag, 2008a.

Alin Deutsch and Alan Nash. Chase (DB Encyclopedia Entry). Springer-Verlag,
2008b.

Alin Deutsch and Val Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. In VLDB, pages 201�212, 2003.

Alin Deutsch and Val Tannen. XML Queries and Constraints, Containment and
Reformulation. Theor. Comput. Sci., 336(1):57�87, 2005.

Alin Deutsch, Lucian Popa, and Val Tannen. Query Reformulation with Con-
straints. SIGMOD Rec., 35(1):65�73, 2006.

Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting Queries Using Views
with Access Patterns under Integrity Constraints. Theor. Comput. Sci., 371(3):
200�226, 2007.

Alin Deutsch, Alan Nash, and Je� Remmel. The Chase Revisited. In PODS, pages
149�158, 2008.

Guozhu Dong and Jianwen Su. Conjunctive Query Containment with respect to
Views and Constraints. Inf. Process. Lett., 57(2):95�102, 1996.

156 Bibliography

Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical Logic.
Springer, second edition edition, 1996.

Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction from Logic Programs:
Semantics and Complexity. Theor. Comput. Sci., 189(1-2):129�177, 1997.

Floriana Esposito, Luigi Iannone, Ignazio Palmisano, Domenico Redavid, and
Giovanni Semeraro. REDD: An Algorithm for Redundancy Detection in RDF
Models. pages 138�152. 2005.

Ronald Fagin. Horn Clauses and Database Dependencies. J. ACM, 29(4):952�985,
1982.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
Exchange: Semantics and Query Answering. Theor. Comput. Sci., 336(1):89�
124, 2005.

Wenfei Fan and Leonid Libkin. On XML Integrity Constraints in the Presence of
DTDs. J. ACM, 49(3):368�406, 2002.

Wenfei Fan and Jérôme Siméon. Integrity Constraints for XML. In PODS, pages
23�34, 2000.

Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query Optimiza-
tion in the Presence of Limited Access Patterns. In SIGMOD, pages 311�322,
1999.

Jörg Flum. Script to a lecture in model theory. http://home.mathematik.uni-
freiburg.de/�um/ss06mod/skript.ps. 2002.

Jörg Flum and Martin Grohe. Parameterized Complexity Theory (Texts in Theo-
retical Computer Science. An EATCS Series). Springer-Verlag New York, Inc.,
2006.

Jörg Flum, Markus Frick, and Martin Grohe. Query Evaluation via Tree-
decompositions. J. ACM, 49(6):716�752, 2002.

Thom W. Frühwirth, Ehud Y. Shapiro, Moshe Y. Vardi, and Eyal Yardeni. Logic
Programs as Types for Logic Programs. In LICS, pages 300�309, 1991.

Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller, and Wang-Chiew Tan. Peer
Data Exchange. In PODS, pages 160�171, 2005.

John P. Gallagher and German Puebla. Abstract Interpretation over Non-
deterministic Finite Tree Automata for Set-Based Analysis of Logic Programs.
In PADL, pages 243�261, 2002.

157 Bibliography

Georg Gottlob and Alan Nash. E�cient Core Computation in Data Exchange. J.
ACM, 55(2):1�49, 2008.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. The Complexity of Acyclic
Conjunctive Queries. J. ACM, 48(3):431�498, 2001.

Claudio Gutierrez, Carlos Hurtado, and Alberto Mendelzon. Formal Aspects of
Querying RDF Databases. In SWDB, pages 293�307, 2003.

Claudio Gutierrez, Carlos Hurtado, and Alberto O. Mendelzon. Foundations of
Semantic Web Databases. In PODS, pages 95�106, 2004.

Alon Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal, 10
(4):270�294, 2001.

Michael M. Hammer and Dennis J. McLeod. Semantic Integrity in a Relational
Data Base System. In VLDB, pages 25�47, 1975.

Jakob Henriksson and Jan Maluszynski. Static Type-Checking of Datalog with
Ontologies. In PPSWR, pages 76�89, 2004.

Luigi Iannone, Ignazio Palmisano, and Domenico Redavid. Optimizing RDF Stor-
age Removing Redundancies: An Algorithm. In IEA/AIE, pages 732�742, 2005.

David S. Johnson and Anthony Klug. Testing Containment of Conjunctive Queries
under Functional and Inclusion Dependencies. In PODS, pages 164�169, 1982.

Michael Kifer, Georg Lausen, and James Wu. Logical Foundations of Object-
oriented and Frame-based Languages. J. ACM, 42(4):741�843, 1995.

Jonathan J. King. QUIST: A System for Semantic Query Optimization in Re-
lational Databases. Distributed systems, Vol. II: distributed data base systems,
pages 287�294, 1986.

Phokion G. Kolaitis, David L. Martin, and Madhukar N. Thakur. On the Com-
plexity of the Containment Problem for Conjunctive Queries with Built-in Pred-
icates. In PODS, pages 197�204, 1998.

Georg Lausen and Fang Wei. On the Containment of Conjunctive Queries. Com-
puter Science in Perspective: Essays Dedicated to Thomas Ottmann, pages 231�
244, 2003.

Georg Lausen, Michael Meier, and Michael Schmidt. SPARQLing Constraints for
RDF. In EDBT, pages 499�509, 2008.

158 Bibliography

Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In PODS, pages
233�246, 2002.

Alon Y. Levy and Dan Suciu. Deciding Containment for Queries with Complex
Objects (Extended Abstract). In PODS, pages 20�31, 1997.

Witold Litwin and Tore Risch. Main Memory Orientated Optimization of OO
Queries Using Typed Datalog with Foreign Predicates. IEEE Trans. on Knowl.
and Data Eng., 4(6):517�528, 1992.

Michael J. Maher and Divesh Srivastava. Chasing Constrained Tuple-generating
Dependencies. In PODS, pages 128�138, 1996.

David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing Implications
of Data Dependencies. ACM Trans. Database Syst., 4(4):455�469, 1979.

Bruno Marnette. Generalized Schema-Mappings: From Termination to Tractabil-
ity. In PODS, pages 13�22, 2009.

Michael Meier. Towards Rule-Based Minimization of RDF Graphs under Con-
straints. In RR, pages 89�103, 2008.

Michael Meier, Michael Schmidt, and Georg Lausen. Stop the Chase, Technical
Report. CoRR, abs/0901.3984, 2009a.

Michael Meier, Michael Schmidt, and Georg Lausen. Stop the Chase, Extended
Abstract. AMW, 2009b.

Michael Meier, Michael Schmidt, and Georg Lausen. On Chase Termination Be-
yond Strati�cation. CoRR, abs/0906.4228, 2009c.

Michael Meier, Michael Schmidt, and Georg Lausen. On Chase Termination Be-
yond Strati�cation. PVLDB, 2(1):970�981, 2009d.

Michael Meier, Michael Schmidt, Fang Wei, and Georg Lausen. Semantic Query
Optimization in the Presence of Types. PODS, 2010. To appear.

Tova Milo and Dan Suciu. Type Inference for Queries on Semistructured Data.
In PODS, pages 215�226, 1999.

Dan Olteanu, Jiewen Huang, and Christoph Koch. SPROUT: Lazy vs. Eager
Query Plans for Tuple-Independent Probabilistic Databases. In ICDE, pages
640�651, 2009.

Christos H. Papadimitriou and Mihalis Yannakakis. On the Complexity of
Database Queries (Extended Abstract). In PODS, pages 12�19, 1997.

159 Bibliography

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object
Exchange Across Heterogeneous Information Sources. In ICDE, pages 251�260,
1995.

Lucian Popa. Object/Relational Query Optimization with Chase and Backchase.
PhD thesis, University of Pennsylvania, 2000.

Lucian Popa and Val Tannen. An Equational Chase for Path-Conjunctive Queries,
Constraints, and Views. In ICDT, pages 39�57, 1999.

Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A Chase Too
Far? In SIGMOD, pages 273�284, 2000.

Anand Rajaraman, Yehoshua Sagiv, and Je�rey D. Ullman. Answering Queries
Using Templates with Binding Patterns (Extended Abstract). In PODS, pages
105�112, 1995.

Max Schäfer and Oege de Moor. Type Inference for Datalog with Complex Type
Hierarchies. In POPL, 2010. To appear.

Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL
Query Optimization. CoRR, abs/0812.3788, 2008.

Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL
Query Optimization. In ICDT, 2010. To appear.

Larry J. Stockmeyer. The Polynomial-Time Hierarchy. Theor. Comput. Sci., 3:
1�22, 1976.

Herman J. ter Horst. Combining RDF and Part of OWL with Rules: Semantics,
Decidability, Complexity. In Yolanda Gil, Enrico Motta, V. Richard Benjamins,
and Mark A. Musen, editors, ISWC, pages 668�684, Heidelberg, 2005.

David Toman and Grant E. Weddell. On Path-functional Dependencies as First-
class Citizens in Description Logics. In Description Logics, 2005.

Moshe Y. Vardi. The Complexity of Relational Query Languages (Extended Ab-
stract). In STOC, pages 137�146, 1982.

Dubois Vincent and Bothorel Cecile. Transitive Reduction for Social Network
Analysis and Visualization. In WI, pages 128�131, 2005.

Fang Wei and Georg Lausen. Conjunctive Query Containment in the Presence of
Disjunctive Integrity Constraints. In Description Logics, 2002a.

160 Bibliography

Fang Wei and Georg Lausen. Containment of Conjunctive Queries with Safe
Negation. In ICDT, pages 346�360, 2002b.

Fang Wei and Georg Lausen. A Uni�ed Apriori-like Algorithm for Conjunctive
Query Containment. In IDEAS, pages 111�120, 2008.

World Wide Web Consortium. W3C XML Query (XQuery), 2000. http://www.
w3.org/XML/Query/. W3C Recommendation, November 10, 2009.

World Wide Web Consortium. Resource Description Framework (RDF): Concepts
and Abstract Syntax, 2003a. http://www.w3.org/TR/rdf-concepts/. W3C
Recommendation, February 10, 2004.

World Wide Web Consortium. RDF Vocabulary Description Language 1.0: RDF
Schema, 2003b. http://www.w3.org/TR/rdf-schema/. W3C Recommenda-
tion, February 10, 2004.

World Wide Web Consortium. RDF Semantics, 2003c. http://www.w3.org/TR/
rdf-mt/. W3C Recommendation, February 10, 2004.

World Wide Web Consortium. W3C Extensible Markup Language (XML), 2003d.
http://www.w3.org/XML/. W3C Recommendation, April 16, 2009.

Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB, pages
82�94, 1981.

Dimitris Zeginis, Yannis Tzitzikas, and Vassilis Christophides. On the Foundations
of Computing Deltas Between RDF Models. In ISWC/ASWC, pages 637�651,
2007.

Xubo Zhang and Z. Meral Ozsoyoglu. On E�cient Reasoning with Implication
Constraints. In DOOD, pages 236�252, 1993.

David Zook, Emir Pasalic, and Beata Sarna-Starosta. Typed Datalog. In PADL,
pages 168�182, 2009.

Index

(L′, c,S)-minimal rewriting, 111
(L, c,S)-rewriting, 111
2-restriction system, 56
R-formula, 14
R-interpretation, 15
R-structure, 15
Mini-rdf, 133
Mini-rdfdec, 133
b-bounded, 131
k-cyclic, 94
k-restriction system, 65

a�ected position, 49
assignment of variables, 15

C & B, 34
c-chase graph, 45
c-strati�cation, 45
cascading of labeled nulls, 26
Chase & Backchase, 34
chase graph, 75
chase result, 23
chase sequence, 23
chase step, 22
CNF-SAT, 136
complete, 108
complexity of query optimization, 123
complexity of satis�ability, 121
conjunctive queries with union and nega-

tion, 104
conjunctive query, 34
constant, 14
constraint, 18

containment, 35
containment under constraints, 35
cost function, 111
CQ, 1

data exchange, 36
data integration, 33
database instance, 17
database schema, 17
Datalog, 132
dependency, 18
dependency graph, 28

EGD, 19
equality-generating dependency, 19
equivalence relation, 14

homomorphism, 20, 103

i�, 13
implication problem, 33
inductively restricted, 63
irrelevant, 89

labeled null, 14
lean graph, 128

map, 131
maplet, 131
monitor graph, 94

oblivious chase, 25
oblivious chase step, 25
oracle, 16

161

162 Index

peer data exchange, 33
polynomial hierarchy, 16
polynomial-time many-one reduction,

16
position, 17
probabilistic databases, 33
propagation graph, 50

query answering using views, 37

redundancy elimination, 128
re�ect, 108
relational constraint, 18
rule, 128
rule-based minimization, 128

safe restriction, 58
safely c-strati�ed, 60
safety, 50
sentence, 15
SQO, 1
strati�cation, 75
strati�ed witness, 107
super-weakly acyclic, 29
symbols

(I,Σ)-irrelevant, 89
G′(Σ), 56
G′k(Σ), 65
G(Σ), 75
Gc(Σ), 45
H(S), 110

I
∗,α,a−→ J , 26

I
α,a−→ J , 22

L0, 15
Q′ ≡S Q, 111
Q′ vS Q, 111
QS , 113
T¬, 126
T∨, 126
V , 14
[n], 13

∆, 14
∆null, 14
ΠP
i , 16

Σ(S), 110
ΣP
i , 16

ΣP
2 , 58

Σ¬, 108
αI , 91
comp(Q), 108
CT∀∀, 40
CT∀∃, 40
∀∃-T, 79
∀∃-check(Σ, k), 83
∀∀-T, 66
N, 13
N[X], 13
R, 14
S, 110
WCCΣ(αI), 91
a�-cl(α, P), 56
a�(Σ), 49
ar(R), 14
dep(Σ), 28
null-pos(N, I), 55
prop(Σ), 50
|=, 16
a, 14
≺, 74
≺c, 44
≺P , 55
≺k,P (α1, ..., αk), 65
check(Σ, k), 72
CTJ,∃, 40
CTJ,∀, 40
CC2

1 , 16
free(ϕ), 14
Type(S), 110
ϕ̂, 105
dom(I), 17
pi1,...,im(t), 14

163 Index

size(Q), 108
part(Σ, k), 63
Cq, 104
Cq¬, 104
Egd∨ , 105
3Sat, 16
Np, 16
PH, 16
PSPACE, 16
PTime, 16
P, 16
Tgd¬ , 105
Tgd∨ , 105
Tgd∨,¬ , 105
Ucq, 104
Ucq¬, 104
pos(Σ), 55

TGD, 19
TM, 16
tuple-generating dependency, 19
Turing machine, 16
typed relational schema, 110

universal, 114

variables, 14

weakly acyclic, 28

