Skip to main content

Parallel Mean Shift for Interactive Volume Segmentation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6357))

Abstract

In this paper we present a parallel dynamic mean shift algorithm based on path transmission for medical volume data segmentation. The algorithm first translates the volume data into a joint position-color feature space subdivided uniformly by bandwidths, and then clusters points in feature space in parallel by iteratively finding its peak point. Over iterations it improves the convergent rate by dynamically updating data points via path transmission and reduces the amount of data points by collapsing overlapping points into one point. The GPU implementation of the algorithm can segment 256x256x256 volume in 6 seconds using an NVIDIA GeForce 8800 GTX card for interactive processing, which is hundreds times faster than its CPU implementation. We also introduce an interactive interface to segment volume data based on this GPU implementation. This interface not only provides the user with the capability to specify segmentation resolution, but also allows the user to operate on the segmented tissues and create desired visualization results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Correa, C.D., Kwan-Liu, M.: The Occlusion Spectrum for Volume Classification and Visualization. IEEE Transactions on Visualization and Computer Graphics 15(6), 1465–1472 (2009)

    Article  Google Scholar 

  2. Roettger, S., Bauer, M., Stamminger, M.: Spatialized Transfer Functions. In: Proceedings of IEEE/EUROGRAPHICS Symposium on Visualization 2005, pp. 271–278. ACM Press, New York (2005)

    Google Scholar 

  3. Tzeng, F.-Y., Lum Eric, B., Ma, K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11(3), 273–284 (2005)

    Article  Google Scholar 

  4. Tzeng, F.-Y., Ma, K.-L.: A cluster-space visual interface for arbitrary dimensional classification of volume data. In: Proceedings of the Joint Eurographics- IEEE TVCG Symposium on Visualization 2004, NW Washington, DC USA, pp. 17–24. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  5. Carr, H., Brian, D.: On histograms and isosurface statistics. IEEE Transactions on Visualization and Computer Graphics 12(5), 1259–1266 (2006)

    Article  Google Scholar 

  6. Huang, R.: RGVis: Region Growing Based Techniques for Volume Visualization. In: Proc. Pacific Graphics 2003 Conf., pp. 355–363 (2003)

    Google Scholar 

  7. Sereda, P., Vilanova, A., Gerritsen, F.A.: Automating Transfer Function Design for Volume Rendering Using Hierarchical Clustering of Material Boundaries. In: Proceedings of IEEE EuroVis, Lisboa, Portugal, pp. 243–250 (2006)

    Google Scholar 

  8. Comaniciu, D., Meer, P.: Mean shift: A robust approach towards feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  9. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)

    Article  Google Scholar 

  10. Peihua, L., Lijuan, X.: Mean Shift Parallel Tracking on GPU. In: Proceedings of the 4th Iberian Conference on Pattern Recognition and Image Analysis, pp. 120–127 (2009)

    Google Scholar 

  11. Fashing, M., Tomasi, C.: Mean shift is a bound optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 471–474 (2005)

    Article  Google Scholar 

  12. Yang, C., Duraiswami, R., DeMenthon, D., Davis, L.: Mean-shift analysis using quasi-Newton methods. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 447–450 (2003)

    Google Scholar 

  13. Zhang, K., Jamesk, T.K., Tang, M.: Accelerated Convergence Using Dynamic Mean Shift. In: Proceedings of the 9th European Conference on Computer Vision, pp. 257–268. Springer, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, F., Zhao, Y., Ma, KL. (2010). Parallel Mean Shift for Interactive Volume Segmentation. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds) Machine Learning in Medical Imaging. MLMI 2010. Lecture Notes in Computer Science, vol 6357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15948-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15948-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15947-3

  • Online ISBN: 978-3-642-15948-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics