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Abstract. Argumentation is a promising approach for handling incstesit knowl-
edge bases, based on the justification of plausible conclsdly arguments. Due
to inconsistency, arguments may be attacked by counteremgts. The problem

is thus to evaluate the arguments in order to select the roosptable ones.

The aim of this paper is to make a bridge between the argutiemiaased and
the coherence-based approaches for handling inconsystéecare particularly
interested by the case where priorities between the fosmeflan inconsistent
knowledge base are available. For that purpose, we will useith preference-
based argumentation framework (PAF) we have proposed iradierework. A
rich PAF has two main advantages: i) it overcomes the limfitsxisting PAFs,
and ii) it encodes two different roles of preferences betwarguments (handling
critical attacks and refining the evaluation of argumentgg. show that there
exist full correspondences between particular cases sEtRAF and two well
known coherence-based approaches, namely the preferetthesnries and the
democratic as well.

1 Introduction

An important problem in the management of knowledge-bagstéms is the handling
of inconsistency. Inconsistency may be present for mahtge reasons:

— The knowledge base includes default rules. Let us considénstance the general
rules ‘birds fly’, ‘penguins are birds’ and the specific rubehguins do not fly’. If
we add the fact ‘Tweety is a penguin’, we may conclude thatefweloes not fly
because it is a penguin, and also that Tweety flies becausa Hhird.

— In model-based diagnosis, a knowledge base contains aiptestiof the normal
behavior of a system, together with observations made arsftstem. Failure de-
tection occurs when observations conflict with the normatfioning mode of the
system and the hypothesis that the components of the systaroeking well; that
leads to diagnose which component fails;

— Several consistent knowledge bases pertaining to the sameid, but coming
from different sources of information, are available. Faostance, each source is
a reliable specialist in some aspect of the concerned dobaiis less reliable in
other aspects. A straightforward way of building a globadé¥ is to concatenate
the knowledge bases; provided by each source. Even if each basds consis-
tent, it is unlikely that their concatenation will be consi also.



Classical logic has many appealing features for knowledgeesentation and rea-
soning, but unfortunately when reasoning with inconsisteformation, i.e. drawing
conclusions from an inconsistent knowledge base, the sdass$ical consequences is
trivialized. To solve this problem, two kinds of approaclhese been proposed. The
first one, calledcoherence-basedpproach and initiated in [10], proposes to give up
some formulas of the knowledge base in order to get one oraesansistent subbases
of the original base. Then plausible conclusions may beiddeby applying classical
entailment on these subbases. The second approach actapisistency and copes
with it. Indeed, it retains all the available informationtlprohibits the logic from de-
riving trivial conclusions. Argumentation is one of theggeoaches. Its basic idea is
that each plausible conclusion inferred from the knowledagse is justified by some
reason(s), calledrguments), for believing in it. Due to inconsistency, those argutse
may be attacked by other arguments (called counterargsndtie problem is thus to
evaluate the arguments in order to select the most accepiabk.

In [7], it has been shown that the results of the coherensedapproach proposed
in [10] can be recovered within Dung’s argumentation framew9]. Indeed, there is
a full correspondence between the maximal consistent selsliz a given inconsistent
knowledge base and the stable extensions of the argumman&tstem built over the
same base. In [10], the formulas of the knowledge base anenasito be equally pre-
ferred. This assumption has been discarded in [6] and ifrj8ged, in the former work,
a knowledge base is equipped with a total preorder. Thugddf computing the max-
imal consistent subbasgweferred sub-theorieare computed. These sub-theories are
consistent subbases that privilege the most importantutasn In [8], the knowledge
base is rather equipped with a partial preorder. The idedaevdsfine a preference re-
lation, calleddemocratic relationbetween the consistent subbases. The best subbases,
calleddemocratic sub-theoriewrt this relation are used for inferring conclusions from
the knowledge base.

The aim of this paper is to investigate whether it is posdiblecover the results of
these two works within an argumentation framework. Singerjies are available, it
is clear that we need a preference-based argumentatiopvirark (PAF). Recently, we
have shown in [3] that existing PAFs (developed in [2, 4])raveappropriate since they
may return unintended results, especially when the attlekion is asymmetric. More-
over, their results are not optimal since they may be refirygttié available preferences
between arguments. Consequently, we have proposed inrtteesper (i.e. [3]) a new
family of PAFs, calledich PAF, that encodes two distinct roles of preferences between
arguments: handling critical attacks (that is an argumestrionger than its attacker)
and refining the result of the evaluation of arguments ustweptability semantics.
In this paper, we show that there is a full correspondenoséd®si the preferred sub-
theories proposed in [6] and the stable extensions of aannstof this rich PAF, and
also a full correspondence between the democratic sulbritiseeveloped in [8] and
another instance of the rich PAF. The two correspondeneeslaained by choosing
appropriately the main components of a rich PAF: the definitf an argument, the
attack relation, the preference relation between argusreamd the preference relation
between subsets of arguments.



The paper is organized as follows: Sections 2 and 3 recagleadiyely the rich
PAF in [3] and the two works of [6, 8]. Section 4 shows how instes of the rich PAF
compute preferred and democratic sub-theories of a kn@elbdse. The last section is
devoted to some concluding remarks.

2 Preference-based argumentation frameworks

In [9], Dung has developed the most abstract argumentatomndwork in the literature.
It consists of a set of arguments and an attack relation testiem.

Definition 1 (Argumentation framework [9]). Anargumentation frameworfAF) is
apair F = (A, R), whereA is a set of arguments ari is an attack relation R C
A x A). The notatioru’Rb means that the argumeatattacksthe argumend.

In the above definition, the arguments and attacks are absimtities since Dung’s
framework completely abstracts from the application. Hasvethe two components
can be defined as follows when handling inconsistency pnopositionalknowledge
basel..

Definition 2 (Argument - Undercut). Let X be a propositional knowledge base.

— Anarguments a paira = (H, h) s.t.
e HC XY
e H is consistent
e HHh
e #H' C H such thatd’ is consistent and?’ + h.
— An argument H, h) undercutsin argumentH’, »') iff 30" € H' s.t.h = —h".

Notations: Leta = (H, h) be an argument (in the sense of Definition 2). The functions
Supp andConc return respectively the suppdit and the conclusioh of the argument
a.ForS C X, Arg(S) = {(H,h) | (H,h) is an argument in the sense of Definition 2
andH C S}. Thus,Arg(X) denotes the set of all the arguments that can be built from
the whole knowledge basg.

Example 1.Let ¥ = {z, —y,x — y} be a propositional knowledge base. The follow-
ing arguments are built from this base:

ar : ({z},2) az : ({-y}, )
as: ({z = yhx =) as: {x,~y},z A—y)
as : ({~y,z =y}, ) as : ({2, 2 = y},y)

The figure below depicts the attacks wrt “undercut”.

a
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Different acceptability semantictor evaluating arguments have been proposed in
the same paper [9]. Each semantics amounts to define setseajtable arguments,
calledextensionsFor the purpose of our paper, we only need to recall stabf@astcs.

Definition 3 (Conflict-free, Stable semantics [9])Let F = (A, R) be an AFB C A.

— Bis conflict-freeiff # a, b € B such thatuRb.
— Bis astableextension iff it is conflict-free and attacks any elemendin 5.

Example 1 (Cont): The argumentation framework of Example 1 has three stable ex
tensionsfl = {al, a9, CL4}, Ey = {CLQ, as, CL5} andc‘,’g = {al, as, aﬁ}.

The attack relation is the backbone of any acceptabilityss#ios in [9]. An attack
from an argument towards an argumerat always wins unless is itself attacked by
another argument. However, this assumption is very strecglise some attacks cannot
always ‘survive’. Especially when the attacked argumestrigsnger than its attacker.

Throughoutthe paper, the relationC .4 x A is assumed to be a preorder (reflexive

and transitive). For two argumentsndb, writing a > b (or (a,b) € >) means that is

at least as strong &s The relation> is the strict version of. Indeedga > biff a > b
and not § > a). Examples of such relations are those based on the cgrtaual of
the formulas of a propositional knowledge baseThe baseY' is equipped with a total
preordet>. For two formulas: andy, writing x > y means that is at least as certain
asy. In this case, the bask is stratified intoX; U ... U X, such that formulas oF;
have the same certainty level and are more certain than fasnm.Y; wherej > q.
The stratification of’ enables to define a certainty level of each subseft Y. It is the
highest number of stratum met by this subset. Formally:

Level(S) = max{i | 3z € SN X;} (with Level()) = 0).

The above certainty level is used in [5] in order to define altpteorder on the set of
arguments that can be built from a stratified knowledge betse preorder is defined as
follows:

Definition 4 (Weakest link principle [5]). LetX = X, U...U X, be a propositional
knowledge base and?, k), (H',1’) € Arg(X). The argumentH, h) is preferred to
(H',h'), denoted by H, h) >wrp (H',h'), iff Level(H) < Level(H').

Example 1 (Cont): Assume thaty = X; U Xy with ¥ = {a} and Xy = {z —
y,y}. It holds thatLevel({z}) = 1 while Level({—y}) = Level({z — y}) =
Level({x,—y}) = Level({—wy,z — y}) = Level({z,x — y}) = 2. Thus,a; >wrp
as,as, a4, as, ag While the five other arguments are all equally preferred.

In [2,4], Dung’s argumentation framework has been exteriedreferences be-
tween arguments. The idea behind those works is to rerogtieal attacks and to

! An attack(b, a) € R is critical iff a > b (i.e.a > band not(b > a)).



apply Dung’s semantics on the remaining attacks. Unfotiipahis solution does not
work, in particular, when the attack relation is asymmetticeturns extensions which
are not necessarily conflict-free wrt the attack relatidnsTeads to undesirable results
as illustrated by the following example.

Example 1 (Cont): The classical approaches of PAFs remove the critical afrack

as 10 ay (Sincea; >wrp as) and get{ay, as, a3, as} as a stable extension. Note that
this extension, which intends to support@herent point of viewis conflicting since it
contains bothu; andas and support thus bothand—z.

The approach followed in [2, 4] suffers from another prohlé&sresults may need
to berefinedby preferences between arguments as shown by the followenggle.

Example 2.Let us consider the AF depicted in the figure below.
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Assume that: > b andc > d. The corresponding PAF has two stable extensi¢ms:}
and{b,d}. Note that any element db, d} is weaker than at least one element of the
set{a, c}. Thus, it is natural to considém, c} as better tharb, d}. Consequently, we
may conclude that the two argumentandc are “more acceptable” thdnandd.

What is worth noticing is that a refinement amountstanparesubsets of argu-
ments. In Example 2, the so-callddmocratiaelation,- 4, can be used for comparing
the two setq a, c} and{b, d}. This relation is defined as follows:

Definition 5 (Democratic relation). Let A be a set of objectsand C A x Abe a
partial preorder. ForX, X' C A, X =4 X' iff V&’ € X'\ X, 3z € X \ A’ such that
x > (.e.z > 2’ and nota’ > x)).

In [3], we have proposed a novel approach which palliatedinfits of the existing
ones. It follows two steps:

1. To repair the critical attacks by computing a new attatktien R
2. To refine the results of the framewdtK, R,.) by comparing its extensions using a
refinement relation.

The idea behind the first step is to modify the graph of attawlssich a way that,
for any critical attack, the preference between the argusrisriaken into account and
the conflict between the two arguments of the attack is reptes. For this purpose,
weinvertthe arrow of the critical attack. For instance, in Exampleh&,arrow fromas
to a; is replaced by another arrow emanating froeprtowardsas. The intuition behind
this is that an attack between two arguments representsrig sense two things: i) an
incoherence between the two arguments, and ii) a kind oépeate determined by the
direction of the attack. Thus, in our approach, the directibthe arrow represents a
“real” preference between arguments. Moreover, the canflikept between the two
arguments. Dung’s acceptability semantics are then apphehe modified graph.



Definition 6 (PAF [3]). A preference-based argumentation framew@&F) is a tuple
T = (A, R,>)wheredis asetofargument® C Ax.Aisan attack relation ang- is

a (partial or total) preorder onA. The extensions @f under a given semantics are the
extensions of the argumentation framew@k R..), calledrepaired frameworkunder
the same semantics witlR,. = {(a,b)|(a,b) € R and not(b > a)} U {(b,a)|(a,bd) €

R andb > a}.

This approach does not suffer from the drawback of the exjstine. Indeed, it
delivers conflict-free extensions of arguments.

Property 1. Let 7 = (A, R, >) be a PAF and, ..., &, its extensions under a given
semantics. Forall=1,...,n, & is conflict-free wrtR.

At the second step, the result of the above PAF is refined wsimginement rela-
tion. The two steps are captured in an abstract framewolllegadch preference-based
argumentation framework

Definition 7 (Rich PAFs [3]). Arich PAFis a tuple7 = (A, R,>,>) whereA is a
set of argumentsy C A x A is an attack relation> C A x A is a (partial or total)
preorder and- C P(A) x P(A)? is a refinement relation. The extensiongoinder a
given semantics are the element#tat (S, =) whereS is the set of extensions (under
the same semantics) of the PAR, R, >).

Example 3.Let us consider the argumentation framework depicted inefteside of
the following figure.
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Assume thats > b, ¢ > d andb > e. The repaired framework corresponding to
(A, R,>) is depicted in the right side of the above figure. This lates two stable
extensionga, ¢} and{b, d}. According to the demacratic relatiory, it is clear that the
first extension is better than the second one. Thus, thiuse} is the stable extension
of the rich PAF(A, R, >, =4).

In [3], we have studied deeply the properties of the rich PA&wever, for the
purpose of this paper we do not need to recall them.

3 Coherence-based approach for handling inconsistency

The coherence-based approach for handling inconsistaracpriopositional knowledge
baseX follows two steps: At the first step, some subbase&’dre chosen. In [10],

2 p(A) denotes the power set of the skt
$Max(S,=)={s€ S|P’ € Ss.t.s = sandnot(s = s')}.



these subbases are the maximal (for set inclusion) consisbes. At the second step,
an inference mechanism is chosen. This later defines theeindes to be made from.
An example of inference mechanism is the one that infersradta if it is a classical
conclusion of all the chosen subbases.

Several works have been done on choosing the subbasestitulaarwhen’ is
equipped with a (total or partial) preorder(™> C X' x X). Recall that wher is total,
X is stratified intoX; U ... U X, such thatvi, j with i # j, X; N X; = (). Moreover,
271 contains the most important formulas whilg, contains the least important ones.

In[6], the knowledge basE is equipped with a total preorder. The chosen subbases
privilege the most important formulas.

Definition 8 (Preferred sub-theory [6]). Let X' be stratified intoX; U ... U X,,. A
preferred sub-theorng a setS = S; U ... U S, suchthatvk € [1,n],S$; U...USy is
a maximal (for set inclusion) consistent subbasé/ofJ ... U Y.

Example 1 (Cont): The knowledge bas& = ¥, U X5 with X} = {z} and X, =
{z = y,—y} has two preferred sub-theories: = {z,z — y} andS, = {z, —y}.

It can be shown that the preferred sub-theories of a knowlbdge>’ are maximal
(wrt set inclusion) consistent subbasesbf

Property 2. Each preferred sub-theory of a knowledge basés a maximal (for set
inclusion) consistent subbase bf

In [8], the above definition has been extended to the caseenhiés equipped with
a partial preordeb-. The basic idea was to define a preference relation on therpowe
set of ¥. The best elements according to this relation are the pesf¢heories , called
alsodemocratic sub-theorie$he relation that generalizes preferred sub-theoriegis th
democratic relation (see Definition 5). In this contestis X and> is the relatiorn>.
In what follows,> denotes the strict version &f. Thus:

LetS, ' C Y. S =, Siff Va' € &'\ S,3z € S\ &' such thatr > 2.

Definition 9 (Democratic sub-theory [8]).Let X' be propositional knowledge base
and> C X' x X be a partial preorder. Ademocratic sub-theorig a setS C X' such
thatS is consistent andjS’ C ¥) s.t. S’ is consistent and’ =, S.

Example 4.Let ¥ = {x,—x,y,—y} be such thatx > y and—y > z. LetS; =
{z,y}, So = {x,~y}, Ss = {—z,y}, andSy = {—x,—y}. The three subbases,
S3 andS, are the democratic sub-theoriesXf However,S; is not a democratic sub-
theory sinceS, =4 Si.

Itis easy to show that the democratic sub-theories of a kedgé base.’ are max-
imal (for set inclusion) consistent.

Property 3. Each democratic sub-theory of a knowledge basis a maximal (for set
inclusion) consistent subbase bf



4 Computing sub-theories with argumentation

This section shows how two instances of the rich PAF pregdnt&ection 2 compute
the preferred and the democratic sub-theories of a prapoaltknowledge basé.
The two instances use all the arguments that can be built ffousing Definition 2
(i.e. the setirg(X)). Similarly, they both use the attack relation “Undercut/en also
in Definition 2. However, as we will see next, they are grouhde distinct preference
relations between arguments. The last component of a ri€hi$A preference relation
on the power set afrg(X'). Both instances will use the democratic relatiop Thus,
for recovering preferred and democratic sub-theories, lerge two instances of the
rich PAF (Arg(X), Undercut>, =).

It can be shown that when the preference relatiois a total preorder, then the stable
extensions of the PARArg(Y'), Undercut>) are all incomparable wrt the democratic
relation-.

Property 4. Let T = (Arg(X), Undercut>) be a PAF. For all stable extensiofisind
&' of T with £ # &', if > is a total preorder, then(& =4 £').

From the previous property, it follows that the stable estens of(Arg(X"), Undercut,
>) coincide with those of the rich PARrg(X'), Undercut>, ).

Property 5. If > is a total preorder, then the stable extension&eg(Y'), Undercut,
>, =4) are exactly the stable extensiong afg(X'), Undercut,>).

Notation: ForB C Arg(X), Base(B) = |JSupp(a) wherea € 5.

The following result summarizes some useful propertiefeftivo functionsirg
andBase.

Property 6.
— For any consistent subbaSeC X', S = Base(Arg(S)).
— The functionBase is surjective but not injective.
— Forany€ C Arg(X), £ C Arg(Base(£)).
— The functionArg is injective but not surjective.

Another property that is important for the rest of the pamdates the notion of
consistency of a set of formulas to that of conflict-freeredssset of arguments.

Property 7. A setS C X is consisteniff Arg(S) is conflict-free.

The following example shows that the previous property dussold for an arbi-
trary set of arguments.

Example 5.Let & = {({z},2), {z — vy}, = — v), {~y}, ~y)}. Itis obvious that
is conflict-free whileBase(£) is not consistent.

Assumption: In the rest of this paper, we assume that a knowledge hasentains
only consistent formulas.



4.1 Recovering the preferred sub-theories

In this section, we will show that there is a full correspomciebetween the preferred
sub-theories of a knowledge ba&and the stable extensions of the PAfrg(Y),
Undercut,>w 1, p). Recall that the relatio 1, p is based on the weakest link prin-
ciple and privileges the arguments whose less importantdtas are more important
than the less important formulas of the other arguments rEtétion is a total preorder
and is defined over a knowledge base that is itself equipptdantotal preorder. Ac-
cording to Property 5, the stable extensiongfg(X'), Undercut, >y 1 p) coincide
with those of(Arg(X), Undercut>w 1p, =a)-

The first result shows that from a preferred sub-theorygbissible to build a unique
stable extension of the PARRrg(X'), Undercut>w p).

Theorem 1. Let Y’ be a stratified knowledge base. For all preferred sub-thebof .,
it holds that:

— Arg(S) is a stable extension ¢hrg(X'), Undercut, >y 1,p)
— § = Base(Arg(S))

Similarly, we show that each stable extension(bfg(’), Undercut, >y 1 p) is
built from a unique preferred sub-theory bf

Theorem 2. Let X be a stratified knowledge base. For all stable exten§iof(Arg(X),
Undercut,>yw 1. p), it holds that:

— Base(€) is a preferred sub-theory dof
— & = Arg(Base(£))

The next theorem shows that there exists a one-to-one pomdsnce between pre-
ferred sub-theories of and stable extensions (frg(X'), Undercut>w .p).

Theorem 3. Let 7 = (Arg(X), Undercut,>y 1 p) be a PAF over a stratified knowl-
edge basel. The stable extensions @f are exactly theirg(S) whereS ranges over
the preferred sub-theories &f.

From the above result, it follows that the PAkrg(X'), Undercut>w 1, p) has at
least one stable extension unless the formulas afe all inconsistent.

Corollary 1 The PAF(Arg(X), Undercut, > 1, p) has at least one stable extension.

Example 1 (Cont): Figure 1 shows the two preferred sub-theoried’ads well as the
two stable extensions of the corresponding PAF.
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4.2 Recovering the democratic sub-theories

Recall that the democratic sub-theories of a knowledge bageneralize the preferred
sub-theories whe® is equipped with a partial preorder. Thus, in order to capture the
democratic sub-theories, we will use the generalized omrsf the preference relation
>wrp Which is defined in [1] as follows:

Definition 10 (Generalized weakest link principle [1]).Let >’ be a knowledge base
which is equipped with a partial preorder. For two argumentsH, h), (H', ') €
Arg(X), (H,h) >ewrp (H', 1) iff Vk € H,3k' € H' suchthatt > &’ (i.e.k > &’
and not ¢’ > k)).

It can be shown that from each democratic sub-theory of a lediye base”, a
stable extension dfArg(X’), Undercut>awr,p) can be built.

Theorem 4. Let X be a knowledge base which is equipped with a partial preoteler
For all democratic sub-theon$ of X, it holds thatArg(S) is a stable extension of
(Arg(X),Undercut >gwrp).

The following result shows that each stable extension oPie(Arg(X'), Undercut,
>awip) returns a maximal consistent subbaseof

Theorem 5. Let X be a knowledge base which is equipped with a partial preoteler
For all stable extensiod of (Arg(XY'), Undercut, >qw . p), it holds that:

— Base(€) is a maximal (for set inclusion) consistent subbas& of



— & = Arg(Base(£)).

The following example shows that the stable extensiongAeg ('), Undercut,
>awrp) do not necessarily return democratic sub-theories.

Example 4 (Cont): Recall thaty = {z, -z, y,~y}, -z > yand—y > z. LetS =
{z, y}. It can be checked that the geig(S) is a stable extension ¢irg(X’), Undercut,
>ewirp). HoweverS is not a democratic sub-theory sintez, —y} =4 S.

It can also be shown that the converse of the above theoreot isug. Indeed, a
knowledge base may have a maximal consistent subBaselArg(S) is not a stable
extension of Arg(Y), Undercut>aw . p). Let us consider the following example.

Example 6.Let ¥ = {z, -z} andz > —z. Itis clear that{—z} is a maximal con-
sistent subbase df while Arg({—z}) is not a stable extension @frg(X'), Undercut,
>GwLp)-

The following result establishes a link between the ‘bestximal consistent sub-
bases of wrt the democratic relatior ; and the ‘best’ sets of arguments wrt the same
relation>,.

Theorem 6. LetS, S’ C X be two maximal (for set inclusion) consistent subbases of
Y. ltholdsthatS =, S iff Arg(S) =4 Arg(S’).

We also show that from each democratic sub-theorifobne can build a stable
extension of the corresponding rich PAF, and each stabtnsidn of the rich PAF is
built from a democratic sub-theory.

Theorem 7. Let X be equipped with a partial preordér.

— For all democratic sub-theor§ of X7, Arg(S) is a stable extension of the rich PAF
(Arg(X), Undercut>cwrp, =d)-

— For each stable extensiofi of (Arg(X), Undercut,>gwrp, =4), Base(€) is a
democratic sub-theory of.

Finally, we show that there is a one-to-one correspondeeiveden the democratic
sub-theories of a base and the stable extensions of its corresponding rich PAF.

Theorem 8. The stable extensions @frg(X'), Undercut>cwrp, =4) are exactly the
Arg(S) whereS ranges over the democratic subtheoriegbf

Figure 2 synthetizes the different links between the deatarsub-theories of a
knowledge basé’ and the stable extensions of its corresponding PAF and Aéh P

5 Conclusion

The paper has proposed a new approach for preference-bagedemtation frame-
works. This approach allows to encode two roles of preferefetween arguments:
handling critical attacks and refining the result of the eatibn. It is clearly argued in



Fig. 2. Summary
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the paper that the two roles are completely independenttamadbe modeled in dif-
ferent ways and at different steps of the evaluation proddssn, we have shown that
the approach is well-founded since it allows to recover weglt known works on han-
dling inconsistency in knowledge bases, namely the onésdktore the consistency of
the knowledge base. Indeed, we have shown full correspaegdretween instances of
the new PAF and respectively the preferred sub-theorieretifiy Brewka in [6] and
the democratic sub-theories proposed by Cayrol, Royer anceSin [8].
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Appendix

Proof of Property 1 Every setf C A is conflict-free wrtR iff it is conflict-free wrt
R.. Since extensions are conflict-free ViRt then they are conflict-free wiR.

Proof of Property 3 Let S be a democratic sub-theory. From Definition®js con-
sistent. Assume now that is not a maximal (for set inclusion) consistent set. Thus,
dx € ¥\ Ss.t.SU{x} is consistent. Itis clear th&t U {z} >4 S. This contradicts
the fact thatS is a democratic sub-theory.

Proof of Property 4 Let&, £’ be two stable extensions @frg(X'), Undercut >), and
let€ =4 & with & # &', Itis clear that-(€ C £') and— (£’ C &). Leta’ € &'\ € be
such that/a” € £\ € itholds thata’ > a” (this is possible since is a total preorder).
From& =4 £, we have thalla € £\’ s.t.a > a'. Thismeansthatt' € £'\E,a > V'.
Sincef’ is a stable extension, théla” € £’ s.t.a”"Ra, i.e.(a”"Ra and—(a > a)) or
(aRa" anda” > a). Sets€ and&’ are both conflict-free, s@’ € £\ €. Contradiction,
sinceva” € &'\ € we haven > a”.

Proof of Property 6

— We show thatr € S iff © € Base(Arg(S)) whereS is a consistent subbase bt
(=) Letz € S. SinceS is consistent, then the sgt} is consistent as well. Thus,
({z}, ) € Arg(S). Consequently; € Base(Arg(S)).

(<) Assume that: € Base(Arg(S)). Thus,Ja € Arg(S) s.t.z € Supp(a). From
the definition of an argumergnpp(a) C S. Consequently; € S.

— Let us show that the functioBase is surjective. LetS C Y. From the first item
of this property, the equalitBase(Arg(S)) = S holds. It is clear thahrg(S) €
P(Arg(X)) (P(Arg(X)) being the power set dfrg(Y)).

The following counter-example shows that the functBaze is not injective: Let
2 ={z,z -y}, € = {({z},2), ({x = y},2 — y)} ande’ = {({z},2), ({z.z -
y},y)}. SinceBase(€) = Base(&') = X, with £ # £’ thenBase is not injective.

—If a € £ whereE C Arg(X), thenSupp(a) C Base(£). Consequentlyg €
Arg(Base(£)).

— Let us prove thatrg is injective. LetS, S’ C X with § # S'. Then, it must be
thatS\ &’ # B or S’ \ S # 0 (or both). Without loss of generality, l&\ S’ #
and letz € S\ &'. If {z} is consistent, ther{{z}, z) € Arg(S) \ Arg(S’). Thus,
Arg(S) # Arg(S).

We will now present an example that shows that this functonat surjective.
Let ¥ = {z,z — y} and& = {({z},z), {z — y},z — y)}. Itis clear that
there exists n& C ¥ s.t.£ = Arg(S), since such a s&& would containX’ and,
consequentlyArg(S) would contain({z,z — y},y), an argument not belonging
to £.



Proof of Property 7 LetS C .

— Assume thatS is consistent andrg(S) is not conflict-free. This means that there
exista,a’ € Arg(S) s.t.a undercuts:’. From Definition 2 of undercut, it follows
thatSupp(a)USupp(a’) is inconsistent. Besides, from the definition of an argument
Supp(a) € S andSupp(a’) C S. Thus,Supp(a) U Supp(a’) € S. Then,S is
inconsistent. Contradiction.

— Assume now thaf is inconsistent. This means that there exists a finiteSset

{hl, Ceey hk} S.t.
e S'CS
e S’ L
e S’ is minimal (wrt. set inclusion) s.t. previous two items hold
SinceS’ is a minimal inconsistent set, théh, ..., hy—1} and{hs} are consis-

tent. Thus,({h1,..., hx—1}, ki), ({hx}, he) € Arg(S). Furthermore, those two
arguments are conflicting (the former undercuts the lafférs means thatrg(S)
is not conflict-free.

Proof of Theorem 1Let S be a preferred sub-theory of a knowledge h&s@hus,S is
consistent. From Property 7, it follows thatg(S) is conflict-free. Assume thala ¢
Arg(S). Sincea ¢ Arg(S) andS is a maximal consistent subbase Xf(according
to Property 2), theh € Supp(a) s.t. S U {h} F L. Assume that: € X;. Thus,
Level(Supp(a)) > j.

SinceS is a preferred sub-theory df, thenS; U ... U S; is a maximal (for set
inclusion) consistent subbase®f U...U X;. Thus,S; U...US; U{h} - L. This
means that there exists an argum@t —h) € Arg(S) s.t.§8’ C S; U...US;. Thus,
Level(S') < j. Consequently(S’,—h) >wrp a. Moreover,(S’, —h) undercuts:.
Thus,(S’, —h) undercutsa.

The second part of the theorem follows directly from Propért



