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Abstract. Probabilistic Graphical Models (PGM) are a well-established ap-
proach for modelling uncertain knowledge and reasoning. Since we focus on in-
ference, this paper explores Probabilistic Inference Networks (PIN’s) which are a
special case of PGM. PIN’s, commonly referred as Bayesian Networks, are used
in Information Retrieval to model tasks such as classification and ad-hoc retrieval.
Intuitively, a probabilistic logical framework such as Probabilistic Datalog (PDat-
alog) should provide the expressiveness required to model PIN’s. However, this
modelling turned out to be more challenging than expected, requiring to extend
the expressiveness of PDatalog. Also, for IR and when modelling more general
tasks, it turned out that 1st generation PDatalog has expressiveness and scalabil-
ity bottlenecks. Therefore, this paper makes a case for 2nd generation PDatalog
which supports the modelling of PIN’s. In addition, the paper reports the imple-
mentation of a particular PIN application: Bayesian Classifiers to investigate and
demonstrate the feasibility of the proposed approach.

1 Introduction

1.1 Motivation and Background

Nowadays, there is a big productivity challenge when designing customisable IR sys-
tems which are usually developed for specific cases, having to rewrite a high portion
of the original code for other purposes. This problem in IR is comparable with that
happened in the Software Industry, when Software Engineering evolved from programs
focused in one specific context to the developing of frameworks for general tasks that
could be adapted for specific ones. We propose a generic module for PIN’s based on
probabilistic logic. This concept would provide a generic framework for any task that
requires its use. Furthermore, thanks to the logical implementation, the functionality
would be defined in a high-level, making it more understandable. In addition, we show
the implementation of some classifiers and proof that the module could be adapted for
specific cases. PIN’s are a mechanism that allows modelling knowledge and reasoning.

Figure 1 presents the famous example [10] about burglary, earthquake, and alarm. It
shows the network expressing that a burglary implies an alarm, and so does an earth-
quake. Indeed, there is also an implication from earthquake to burglary (since burglaries
tend to happen during and after earthquakes). This arc increases the complexity of the
network, since the event earthquake implies alarm via two different paths.
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Fig. 1. PIN representing the hypothesis of an alarm being triggered in case of burglary/earthquake

The theory around PIN’s has been influential in many domains, including artificial in-
telligence and information retrieval. However, the latter tend to use more complex rep-
resentations. This is because in IR the application is large-scale in the sense that there
is a PIN for each document to retrieve. [17] describe the dominant approach of how IR
is modelled in a PIN.

Probabilistic inference also impacted the logical approach to IR [18,19, 6], and the
approach to utilise a probabilistic version of Datalog to model IR [5].

Intuitively, PDatalog should allow to model a PIN and we report in this paper that this
intuition is true to a certain degree, but in “real-world” applications, the modelling is
usually much more complex than initially expected.

Moreover, since the PIN theory is a natural candidate to model classification, we in-
vestigate the modelling of classifiers in 2nd generation PDatalog, reporting results on
expressiveness, processing issues, and quality measures.

1.2 Structure and Contributions

The remainder of this paper is structured as follows: Section 2 reviews PIN’s and their
application in IR. Section 3 reviews PDatalog, reflecting on the 1st generation [5], and
the 2nd generation (which incorporates the relational Bayes [13]). Section 4 binds the
sections on PIN’s and PDatalog: Modelling PIN’s in PDatalog. The main contributions
in this first part of the paper are the introduction and discussion of the 2nd generation
PDatalog and the modelling of PIN’s. Then, Section 5 presents a specific application of
PIN’s: Bayesian classifiers. Section 6 focuses on the modelling of Bayesian classifiers
in PDatalog. The contribution of the sections on classification is to study how PDatalog
copes with this concrete task. Finally, section 7 presents study of feasibility and exper-
iments, showing that the implementation achieves quality levels that could be expected
for other approaches.

2 Probabilistic Inference Networks

Probabilistic Inference Networks (PIN’s), also referred as Bayesian Networks, are one
of the most established technique for different IR and Al tasks. PIN’s are used for
representing conditional probabilities between different events. The definition of a PIN
can be formulate as:



Definition 1. A PIN is a directed acyclic graph (DAG). Let (N, V') denote a PIN where
N is the set of nodes and V' is a set of arcs, where an arc is a pair (n;,n;), and n; and
n; are nodes. For each node, there is a so-called conditional dependence probability
(CDP) matrix. This matrix represents the probability P(n;|parents;).

This technique allows to represent and use for reasoning conditional probabilities be-
tween different events.

2.1 PIN-based Modelling of IR

[17,16] utilised the PIN framework to investigate how the ranking provided by IR mod-
els (e.g. TF-IDF) can be explained via a PIN and its interpretation. The PIN model is
a formal framework which infers the probability that each document in the collection
satisfies the user’s information need.

It uses document representations as sources of evidence about its content and multiple
query representations as source of information need. In addition, it provides represen-
tation nodes that reflect different concepts in the model.

An inference network model (taken from [16]) is presented in figure 2. It contains four
different type of nodes and the conections (with a weight assigned) between them. The
links between nodes d and r are not shown in the diagram for clarity reasons:

Document nodes (d): Representing documents in the corpus

Representation nodes (r): Modelling the concepts considered (terms, phrases,...)
Query nodes (q): They are related to parts of the information needed by the user
Information need (I): It models the complete information needed by the user
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Fig. 2. Inference Network Model

This model represents the probabilities of an event class respect all the possible com-
binations in its parents values. It uses a link matrix known as conditional dependence
probabilities (CDP), an example of an event with respect two parents is shown in equa-
tion 1.
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One of the problems of this model is that the number of combinations exponentially
rises making its processing extremely expensive in terms of computational power.
Therefore, this model can not be directly applied to problems with a large quantity
of features such as ad hoc retrieval or text classification.

As a solution for the problems of the original PIN model, a modification was designed
by Turtle and Croft [16]. They assumed independence between terms and defined a
special setting of link matrix with a normalization over the total weight of the features.
These modifications lead to the equation 2. Using this approach, the model only needs
the probability of being and not being in a class respect the existence of each term.

Plid) =3 Z’fg(qf) - P(r]d) @)

The reason for the normalization in equation 2 is that the sum over P(g|r) for the
terms/representations in a query could be greater than one. Therefore, P(g|d) could be
it as well.

3 Probabilistic Datalog

PDatalog is a probabilistic logical retrieval framework that combines deterministic Dat-
alog (a query language used in deductive databases) and probability theory ( [4, 12]). It
was extended in [13, 20] to improve its expressiveness and scalability for modelling IR
models (ranking functions). In addition, it is a flexible platform for modelling and pro-
totyping different IR tasks. We utilise PDatalog here for implementing an abstraction
layer for modelling PIN’s. Moreover, it is also used for the implementation, as a proof
of concept, of Bayesian classifiers.

3.1 1st Generation PDatalog

The 1st generation PDatalog uses free Horn clauses with a probability attached to rules
and facts. It was introduced for IR in [5]. The main idea is to allow for probabilities in
facts and rules. Figure 3 describes the syntax utilized in traditional datalog and PData-
log.

A PDatalog rule consists of a head and a body. A head is a goal, and a body is a subgoal
list. A rule is evaluated such that the head is true if and only if the body is true. So far,
the syntax is the one of ordinary Datalog.



Traditional Datalog 2nd Generation Probabilistic Datalog

fact ::= NAME ’(’ constants *)’ goal ::= tradGoal | bayesGoal | aggGoal
rule := head ’:-” body subgoal ::= tradSubgoal |
head = goal bayesSubgoal | aggGoal
body ::= subgoals tradGoal = see 1st Generation
goal == NAME "( args ’)’ tradSubgoal ::= see 1st Generation
subgoal ::= pos_subgoal | bayesGoal  ::=tradGoal ‘|’
neg_subgoal {estAssump} evidenceKey
pos-subgoal ::= atom bayesSubgoal ::= tradSubgoal ‘|’
neg_subgoal ::=’!” atom {estAssump} evidenceKey
atom = NAME °(C args’)’ evidenceKey ::= °(’ variables ‘)’
arg ::= constant | variable aggGoal := NAME {aggAssump} ’(’ args’)’
constant  ::= NAME | STRING | aggSuboal'  ::= NAME {aggAssump} (" args )’
NUMBER tradAssump ::= ‘DISJOINT’ | ‘INDEPENDENT’
variable ::= VAR.NAME ‘SUBSUMED’
args n=|arg’) args irAssump u= ‘DF’ | ‘TF |
constants  ::= | constant ’, constants ‘MAX_IDF’ | ‘MAX_ITF’ | ...
subgoals ::= | subgoal *,” subgoals probAssump ::= tradAssump | irAssump
1st Generation Probabilistic Datalog algAssump  ::= ‘SUM’ | ‘PROD’

aggAssump  ::= probAssump

prob_fact  ::= prob fact
probAssump | complex Assump

prob_rule  ::= prob rule

Fig. 3. PDatalog syntax

3.2 2nd Generation PDatalog

The 2nd generation PDatalog includes a more complex syntax allowing assumptions
and probability estimation. These modifications include, among others, score agre-
gation (SUM, PROD) for the facts following certain patterns. For example, given
”grade(Mike, A, DCS225); grade(Mike, B, DCS115); grade(Mike, A, DCS111);“, a
rule can be defined for computing P(grade|student):

”p_grade_studentSUM (Grade, Student) : —grade(Student, Grade, Module)|(Student);*

This line uses probability estimation and an aggregation assumption (SUM) which is
needed for the score agregation. A simplified version (for improving readability) of
the syntax specification for the 2nd generation PDatalog is outlined in Figure 3. The
assumption between predicate name and argument list is the so-called aggregation as-
sumption (aggAssump). For example, for disjoint events, the sum of probabilities is the
resulting tuple probability. In this case, the assumptions ‘DISJOINT’ and ‘SUM’ are
synonyms, and so are INDEPENDENT’ and ‘PROD’. The assumption in a conditional
is the so-called estimation assumption (estAssump). For example, for disjoint events,
the subgoal “index(Term, Doc) | DISJOINT(Doc)” expresses the conditional probabil-
ity P(T'erm|Doc) derived from the statistics in the relation called “index”.

Complex assumptions such as DF (for document frequency) and MAX_IDF (max in-
verse document frequency) can be specified to describe in a convenient way proba-
bilistic parameters commonly used in IR. Expressions with complex assumptions can
be decomposed in PDatalog programs with traditional assumptions only. However, for
improving the readability and processing (optimisation), complex assumptions can be
specified. The decomposition of complex assumptions is shown in [13].



© ® N9 o L A W —

4 Modelling PIN in PDatalog

In this section we explain the modelling of PIN’s in PDatalog, showing one example
for each of its generations (Figure 4 for the 1st generation and Figure 5 for the 2nd).
The former illustrates how can we represent prior and conditional probabilities while
the latter represents all the input information about earthquakes, burglaries and alarms
being triggered. The main difference is that probabilistic rules are manually specified in
the 1st generation whereas probability estimation is being used in 2nd gen. In the second
case we model P(region|burglary) and P(alarm A burglary) for each region using
the relational bayes as en example of probability estimation.

According to the first example, the probability of an alarm being triggered if there is
a burglary is 90% while it is 40% in case of an earthquake. In addition, the example
represent the prior probability of a burglary (0.1%) and an earthquake (0.001%). Due to
the limitations of 1st generation the representation of all possible combinations between
any parents and their son is needed.

0.001 hypo(burglary);

0.00001 hypo(earquake);

0.1 hypo(burglary) :— hypo(earthquake);

0.9 evidence(alarm) : — hypo(burglary);

0.4 evidence(alarm) : — hypo(earthquake);

0.35 evidence(alarm) : — hypo2(burglary,earthquake);
0.55 evidence(alarm) : — hypo2(burglary,n_earthquake);
0.05 evidence(alarm) :— hypo2(n_burglary,earthquake);
0.05 evidence(alarm) : — hypo2(n_burglary,n_earthquake);

Fig. 4. Modelling PIN in 1st Generation PDatalog

event(burglary); #... 200 more facts similar this one representing 20 different crimes.
event(earthquake); #... 3 facts

event(alarm); #... 150 more facts representing 10 different alarms being triggered
event2(burglary, earthquake); #.. 10 facts

event2(n_burglary, earthquake); #.. 30 facts

event2(alarm, burglary); #.. 35 facts

event2(n_alarm, burglary); #... 5 facts

event2(alarm, earthquake); #... 10 facts

event2(n_alarm, earthquake); #... 30 facts

p-eventl_event2 SUM(Eventl, Event2) :— event2(Eventl, Event2)|(Event2);

Fig. 5. Modelling PIN in 2nd Generation PDatalog




5 Bayesian Classifiers

Bayesian classifiers are a set of different classifiers that uses the Bayes Theorem for in-
ference knowledge (Equation 3). However, different models use a different event space
for representation, different techniques for calculate certain probabilities or other as-
sumptions. Applying the Bayes theorem we can calculate the probability of a class
given a document, being d a document for classify and c one of the classes. This equa-
tion could be extended by referring P(d|c) and P(d) to the terms inside document d
(Equation 3). Finally, its numerator can be rewritten, applying equation 4.

_ P(d|c)- P(c)  P(ti,ta,...,tnlc) - P(c)
Pleld) = =™ =~ Pltiite, ) 3
P(t17t27 7tn|c) = P(tl‘c) : P(t2|0,t1) ' P(tﬂ|c7 tlv ---tn—l) (4)

5.1 Independence Assumption

The computational power required for Bayes inference exponentially grows with the
number of features making this method difficult to apply in large scale environments.

One of the most common solutions for this problem, known as “Independence Assump-
tion”, is assuming independence between features given the context of a class. Applying
this assumption, the join probability from the general equation for Bayesian classifiers
(equation 4) is modified, leading to:

P(t1,ta, ..o tnlc) = P(t1]c) - P(talc)... - P(talc) )

Assuming independence between features we can define the probability of a document
being labelled in a class as follows, where n(t,d) is the number of times that word t
appears in document d,

Pleld) = Tor - TT Pl ©
ted

Classifiers that make this assumption are usually referred as Naive-Bayes, even if there
are differences between them [8]. This is a common assumption that allows the appli-
cation of this algorithms to larger collections. However, it could be not correct.

5.2 Uniform prior distribution assumption

We can erase P(d) and P(c) from equation 6 if we assume that they are uniformly
distributed. In that case the prior probabilities of a document and a class are constants,
not having any effect in the ranking. Therefore, they can be erased.



5.3 Multi-variate Bernoulli

In this model [8] we represent different features (i.e. terms) using a binary vector that
indicates which features are present in which elements (i.e. documents). We can apply
this model for classification using the general Bayes formula (equation 3) substituting
the equations shown in this section. This model computes the class prior probability by
the maximum likelihood estimate (Equation 7), assuming P(d) = ﬁ for all documents
and the document prior (Equation 8). In addition, P(d|c) and P(t|c) are specified in
equations 9 and 10 respectively where B, is the binary value indicating if term t appears
in document d.

_ 2gep Plecld)
P(d) =) P(c) - P(d|c) ®)
ceC
P(dlc) = [[(B:- P(tle) + (1= By) - (1 = P(t[c))) )
teV
oy = Zaep Ba P(cld)
U =25 1o Pela) 1o

This model applies the naive independence assumption explained in section 5.1 and it
explicitly takes into account the non-occurrence probability of features that are not in
the element.

5.4 Multinomial

This model, explained in [8], uses a non-binary vector for representing different fea-
tures. It uses the frequency of each parameter (i.e. term) for each element (i.e. docu-
ment).

We can apply this model for classification using the general Bayes formula (equation 3)
substituting the equations shown in this section. It computes the probability of a doc-
ument given a class using Equation 11, where n(t, d) represents the number of times
term t occurs in document d and V is the set of terms contained in the document. The
definition of P(¢|c) in Multinomial-Bayes is illustrated in equation 12.

P(tlc)n(t,d)

P(d|c) = P(|d]) - |d|! H n(t,d)!

teV

P(t|e) = > aep n(t,d) - P(c[d) (12)

VI Xiev Zagep nlt, d) - Plcld)

Class and document priors are computed as they were in the Bernoulli model, applying
equations 7 and 8 respectively.

an
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6 Modelling Bayesian Classifiers in PDatalog

The modelling of Bayesian classifiers in PDatalog is a proof of concept regarding the
expressiveness of PDatalog. This section outlines the case for Naive-Bayes, and then
underlines that PDatalog programs are the result of a translation process, namely the
translation of a PIN/BN specification to PDatalog. This translation frees the developer
from actually “writing” PDatalog.

6.1 Naive-Bayes Classifier

Figure 6 shows a PDatalog program for modelling Naive-Bayes. This program uses as
input facts tuples representing terms in training documents (termDoc_sample), terms
contained in documents to classify (termDoc_classify) and the class labelled for each
training document (part_of) (i.e. 0.2 termDoc_sample(car, d1); 1.0 part_of(d1, earn);)

First of all, we define termClass(Term, Class), the representation of classes as it is
derived from the members of the class and the prior probability of classes prior(Class).
Secondly, It specifies the rule for predicate p_t_c, to model the feature likelihood P(¢|c).
The expressiveness of 2nd-generation PDatalog supports the description of this step,
namely the estimation of the feature probability. For IR, termClass(Term, Class) will
be term-based representation of the classes derived from the documents that are part of
the class. Then, there is a rule describing conditional probabilities of a document given
a class, P(d|c). Finally, it shows the probability of a class given a document using the
expression P(c|d).

prior(Class) :— part_of(Doc, Class) | ();

termClass(Term, Class) :— termDoc_sample(Term, Doc) & part_of(Doc, Class);
p-t-c SUM(Term,Class) :— termClass(Term, Class) | (Class);

p-d_c PROD(Doc, Class) :— termDoc_classify(Term, Doc) & p-t_c(Term, Class);
p-c_d(Class, Doc) :— p_d_c(Doc, Class) & prior(Class);

Fig. 6. Naive-Bayes Classifier in PD

6.2 Turtle-Croft-PIN-based Classifier

Figure 7 shows a PDatalog program for using the PIN model as a classifier. It follows
the same notation and input data explained for the Naive-Bayes classifier in section 6.1.

6.3 Generation of PDatalog Classifier Programs

A PDatalog program representing a classifier can be viewed as the result of translating
a PIN specification into a PDatalog program. This is currently a manual process.
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termClass(Term, Class) : — termDoc_sample(Term, Doc) & part_of(Doc, Class);
p-t_c SUM(Term, Class) :— termClass(Term, Class) | (Class);

p-d_t SUM(Doc, Term) :— termDoc_classify(Term, Doc) | (Term);

p-d_c SUM(Class, Doc) :— p_d_t(Doc, Term) & p_t_c(Term, Class);

Fig. 7. Turtle-Croft-PIN-based Classifier in PD

The future idea is to automatically generate PDatalog programs for specific problems.
We can use generic definitions of Bayesian classifiers that could be adapted to a single
problem using a mapping layer. This layer would be a connection between the abstract
implementation of classifiers and some specific facts representing the problem to be
solved. In addition, this strategy would be extended to other classification algorithms,
creating an abstraction layer for classification in PDatalog.

7 Feasibility and Experimental Study

The main focus at this stage of research is the feasibility of modelling PINs using PD.
However, we also present, as a proof of concept, the quality evaluation of our approach
for the Enron collection.

7.1 Collection

The Enron collection [1] contains emails from many of the senior management of En-
ron Corporation. This data was made public by SRI after clean-up and attachments
removal. This corpus has a large number of emails, although there are many users
with folders almost empty. The final corpus used in this paper is a subset of this
collection. It contains the emails of seven employees with a large number of fold-
ers and mails. In addition, non-topical folders such as “all_documents”, “calendar”
and “contacts” were removed. After this, folder hierarchies were flatten and folders
with less than three messages were deleted. Finally, the “X-folder” field in mail head-
ers were removed as it contains the class label. This collection was obtained from

http://www.cs.umass.edu/~ronb/enron_dataset.html.

7.2 Training splits

The most common strategy to divide a collection between train an test documents
for classification is using random splits. However, this method could create unnatu-
ral dependencies of earlier documents in latter documents for email foldering because
this collections could have strong chronological dependences. Some authors have rec-
ommended splits based on the chronological order of the emails, using incremental
splits [1] or using only one big split using half of the collections as a training set [7].
The former strategy can report non-realistic high rates for quality measures whereas the
latter has the problem that some classes could have documents only in one of the splits.




We propose a modification of the second strategy applying a chronological split for
each of the classes. By doing this we represent chronological dependencies and we
guarantee that all the classes have documents in both splits. The focus of this paper is
not a comparison between different split algorithms. However, we have decide to do
experiments using four different methods:

Global chronological split The train set is formed by the first n/2 emails, where n is
the size of the collection.

Class chronological split The train set is formed by the first n; /2 emails of each class,
where n; is the size of the class i.

Global random split The documents in the train set are randomly chosen from the
collection until its size is n/2, where n is the size of the collection.

Class random split The documents in the train set are randomly chosen from each
class until the number of emails selected is n;/2, where n; is the size of class i.

7.3 Document representation

For our experiments we have used a “bag of words” representation. In addition, we use
the terms that appear in more than 75% of the classes as stopwords.

7.4 Measures

The measures used for evaluation are the macro and micro-averaged F;. They measure
the classifier’s quality based on its precision and recall values for each class. Preci-
sion is defined as the ratio of correctly classified documents respect to the number of
documents classified by the system, while recall calculates the ratio between correctly
classified documents and total number of documents truly belonging to the class [15].

Macro-averaged is usually computed in two different ways. The “correct” method, ac-
cording to [21], is calculate the F} values for each category and then compute the av-
erage. On the other hand, I} could be computed using the macro-averaged recall and
precision. Both methods give different results and the “correct” one is often signifi-
cantly lower than the “incorrect” one [21]. We are using in the experiments the first
method described.

7.5 Results and Discussion

Figure 8 shows the macro-average F values for Naive-Bayes (implementation is shown
in figure 6) and PIN implementation in PDatalog. The NB code follows the definition in
equation 6 assuming uniform document frequency. P(t|d) is represented by the number
of times t appear in d divided by the total number of terms in it. Figure 9 presents the
micro-average F; (best value for each user in bold). They illustrate this quality measures
using four different split algorithms for the collection. The values shown for random
splits represent the average of three different executions for each configuration.



Global Random | Class Random |Global Chronological|Class Chronological
Enron user NB PIN NB PIN NB PIN NB PIN
beck-s 0.4642 | 0.3546 | 0.5099 | 0.3546 | 0.2035 | 0.1346 0.4108 | 0.3170
farmer-d 0.6166 | 0.3949 | 0.6169 | 0.3615 | 0.4541 | 0.2167 0.3937 | 0.2630
kaminski-v || 0.5893 | 0.3295 | 0.6009 | 0.3357 | 0.3619 | 0.2223 0.4086 | 0.2540
kitchen-1 0.4655 | 0.2823 | 0.4799 | 0.2522 | 0.2116 | 0.0534 0.3204 | 0.2462
lokay-m 0.7072 | 0.5188 | 0.7276 | 0.5262 | 0.5481 | 0.4994 0.6115 | 0.4132
sanders-r 0.6466 | 0.6010 | 0.6580 | 0.6206 | 0.4900 | 0.4508 0.4904 | 0.6362
williams-w3|| 0.6465 | 0.4055 | 0.6363 | 0.3631 | 0.8989 | 0.8998 0.5935 | 0.2612

Average ][ 0.5908 | 0.4124 [ 0.6042 [ 0.4020 | 0.4526 [ 0.3539 0.4613 | 0.3415

Fig. 8. Macro-Average F1 for different split strategies

Global Random | Class Random |Global Chronological [Class Chronological
Enron user NB PIN NB PIN NB PIN NB PIN
beck-s 0.5019 | 0.3656 | 0.5377 | 0.3672 | 0.2315 | 0.1076 0.4086 | 0.2978
farmer-d 0.7932 | 0.4700 | 0.7983 | 0.4261 | 0.5708 | 0.1531 0.6284 | 0.2612
kaminski-v || 0.6534 | 0.3044 | 0.6514 | 0.3050 | 0.4176 | 0.2242 0.4955 | 0.2327
kitchen-1 0.5119 | 0.2164 | 0.5333 | 0.2016 | 0.1574 | 0.0279 0.3786 | 0.2051
lokay-m 0.8095 | 0.5677 | 0.8163 | 0.6546 | 0.6996 | 0.4683 0.7454 | 0.2981
sanders-r 0.6953 | 0.5387 | 0.7156 | 0.5830 | 0.5286 | 0.3384 0.5751 | 0.5392
williams-w3|| 0.9275 | 0.5798 | 0.9360 | 0.5926 | 0.9949 | 0.9993 0.9160 | 0.5757

Average [ 0.6990 [ 0.4347 [ 0.7127 | 0.4472 [ 0.5143 [ 0.3313 [ 0.5925 | 0.3443

Fig. 9. Micro-Average F1 for different split strategies

As we can see, the choice of splitting algorithm significantly changes the quality mea-
sure assigned to it. The best performance for the Naive-Bayes implementation has been
obtained, both for macro and micro-averaged, using the random split per class. The ex-
planation for these results is that a random split per class uses different periods of time
as an information source, representing the “meaning” of the folder in all the time con-
sidered. In addition, this split algorithm guarantees that all the classes have at least one
representative in the test model. We consider that it could be beneficial doing more ex-
periments for an exhaustive comparison between different splitting methods. However,
such research is beyond the scope if this paper.

The Fy value for the user “williams-w3” with a global chronological split is much
higher than the ones obtained applying other strategies because using that configuration
the test collection only has documents from two different classes.

Given the assumption that “macro-averaged is higher for classifiers that behave well
for few positive training documents while micro-averaged is better in the opposite
case” [15] and the figures shown in this paper, we can say that the classifiers considered
perform slightly better for common classes in this specific case.

Results obtained by the PDatalog-based Naive-Bayes classifier are similar to the ones
expected for other implementations, showing its feasibility. On the other hand, Turtle-
Croft-PIN based classifier has obtained lower results than Naive-Bayes in almost all the
executions.



8 Summary and Conclusions

This paper has presented the modelling of PIN’s in 1st and 2nd generation PDatalog.
In Ist generation PDatalog, probabilistic rules have to be used to model the conditional
probabilities in PIN’s. In addition, it has no means to express the probability estimation
that is required to derive/learn a PIN from sample data, i.e. the “learning probabilities”
process is external to PDatalog. In the 2nd generation PDatalog, Bayesian goals and
subgoals support, on one hand the modelling of probability estimation, and, on the
other hand, the modelling of conditional probabilities.

The main contribution of this paper is to present and discuss the issues when modelling
PIN’s in PDatalog. Having used PDatalog for a decade, it was surprising to realise that
the modelling of PIN’s turned out to be much more challenging than could be expected,
since, intuitively, a probabilistic logical framework could be expected to naturally pro-
vide what the modelling of PIN’s requires. In addition to the conceptual and theoretical
aspects of modelling PIN’s, this paper contributes the modelling of classifiers in PDat-
alog, and an experimental study to confirm feasibility and investigate

the quality of a PDatalog-based implementation. We have demonstrated that it is pos-
sible to model PIN’s in PDatalog. In addition, we adapted these models to the concrete
task of text classification using a mapping layer, that would be automatically generated
in the future. Furthermore, we have shown that this implementation achieves quality
measures than could be expected by other implementations of Bayesian classifiers.

The potentially high impact of this research lies in the fact that PDatalog is an abstrac-
tion layer that gives access to more than just the modelling of PIN’s. It has been used as
an intermediate processing layer for semantic/terminological logics in different IR tasks
such as ad-hoc retrieval [9], annotated document retrieval [3] and summarization [2].

Furthermore, probabilistic versions of Datalog are regarded for the semantic web as a
platform layer on which other modelling paradigms (ontology-based logic) can rest and
rely upon [11, 14]. The 2nd generation of PDatalog provides extended expressiveness
using probability estimation and conditional probabilities. It also improved scalability
because probabilistic rules are not required and extensional relations and assumptions
can be used in order to achieve efficient and scalable programs. Therefore, it can be
expected to have an impact beyond the flexible modelling of classification.

The ultimate goal is to achieve a framework of logical building blocks that offers classi-
fiers, retrieval models, information extractors, and other functions, and those functional
blocks can be composed in a possibly web-based service infrastructure. Thereby, high-
level languages can be used that are translated to PDatalog for the purpose of composi-
tion and execution.

The next objective in the creation of a logical framework for Information Retrieval is
developing an abstraction layer for PIN’s and classification in PDatalog. This module
should include not only Naive-Bayes but also non-probabilistic classifiers such as Sup-
port Vector Machines (SVM) or k-NN. In addition, it should allow single and multilabel
strategies applying flat or hierarchical classification. Furthermore, the module would be
able to deal with large-scale classification tasks (in terms of documents and classes).



Moreover, we have started to work on design techniques (design patterns, UML-like) to
assist the design, composition and test of PDatalog programs. This framework supports
teams of knowledge engineers to efficiently “plug-and-play* components they need for
solving complex scenarios as they occur in information management tasks.
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