Skip to main content

All-to-All Communication with CA Agents by Active Coloring and Acknowledging

  • Conference paper
Book cover Cellular Automata (ACRI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Included in the following conference series:

Abstract

We modeled a multi-agent system as a two-dimensional Cellular Automata and searched for a rule in order to solve the all-to-all communication task in shortest time. The rule contains two finite state machines (FSM) controlling the behavior of the uniform agents. The moving FSM controls the moving actions and the color FSM controls the changing of the cell’s color. Colors are used for indirect communication. In addition the agents receive an acknowledgment whenever they meet and communicate successfully. The FSMs were evolved by a genetic algorithm. It could be shown that acknowledging and especially coloring increases the performance of the agents. Certain initial configurations cannot be solved without coloring. Even with coloring, symmetric configurations cannot be solved when the initial colors are the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  2. Lin, J., Morse, A.S., Anderson, B.D.O.: The Multi-Agent Rendezvous Problem. An Extended Summary. In: Cooperative Control. LNCS, vol. 309, pp. 257–289. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Principe, G., Santoro, N.: Distributed algorithms for autonomous mobile robots. In: 4th IFIP Int. Conf. on TCS. IFIP, vol. 209, pp. 47–62. Springer, Heidelberg (2006)

    Google Scholar 

  4. Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communication. In: EPSRC Workshop Automata-2008. Theory and Applications of Cellular Automata, Bristol, UK, June 12-14, pp. 398–410 (2008)

    Google Scholar 

  5. Hoffmann, R., Ediger, P.: Evolving Multi-creature Systems for All-to-All Communication. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 550–554. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Ediger, P., Hoffmann, R.: Solving All-to-All Communication with CA Agents More Effectively with Flags. In: Malyshkin, V. (ed.) PACT 2009. LNCS, vol. 5698, pp. 182–193. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: Yacoubi, S.E., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Sipper, M.: Evolution of Parallel Cellular Machines, The Cellular Programming Approach. LNCS, vol. 1194. Springer, Heidelberg (1997)

    Book  Google Scholar 

  9. Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular automata. Theor. Comput. Sci. 217(1), 81–98 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform cellular automaton, and genetic programming for centroid detection with hardware agents. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Dijkstra, J., Jessurun, J., Timmermans, H.J.P.: A multi-agent cellular automata model of pedestrian movement. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 173–181. Springer, Heidelberg (2001)

    Google Scholar 

  12. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. de Physique 2, 2221 (1992)

    Article  Google Scholar 

  13. Mesot, B., Sanchez, E., Peña, C.A., Perez-Uribe, A.: SOS++: Finding smart behaviors using learning and evolution. In: Standish, R., Bedau, M., Abbass, H. (eds.) Artificial Life VIII: The 8th International Conference on Artificial Life, pp. 264–273. MIT Press, Cambridge (2002)

    Google Scholar 

  14. Halbach, M.: Algorithmen und Hardwarearchitekturen zur optimierten Aufzählung von Automaten und deren Einsatz bei der Simulation künstlicher Kreaturen. PhD thesis, Technische Universität Darmstadt (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ediger, P., Hoffmann, R. (2010). All-to-All Communication with CA Agents by Active Coloring and Acknowledging. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics