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Coxeter Groups and

Asynchronous Cellular Automata

Matthew Macauley⋆ and Henning S. Mortveit⋆⋆

Abstract. The dynamics group of an asynchronous cellular automaton
(ACA) relates properties of its long term dynamics to the structure of
Coxeter groups. The key mathematical feature connecting these diverse
fields is involutions. Group-theoretic results in the latter domain may
lead to insight about the dynamics in the former, and vice-versa. In
this article, we highlight some central themes and common structures,
and discuss novel approaches to some open and open-ended problems.
We introduce the state automaton of an ACA, and show how the root
automaton of a Coxeter group is essentially part of the state automaton
of a related ACA.

Key words: Asynchronous cellular automaton, Coxeter group, dynam-
ics group, sequential dynamical system

1 Introduction

An asynchronous cellular automaton (ACA) is defined in the same manner as a
classical cellular automaton (CA) in all aspects except the evaluation mechanism.
As the name suggests, the maps associated to the vertices (or nodes) are applied
synchronously for a CA, and asynchronously for an ACA. In general, there are
many ways that one can apply maps asynchronously. For example, one may
select a vertex at random according to some probability distribution, apply the
corresponding map, and repeat this procedure. Alternatively, one may select a
fixed permutation over the vertices and apply the maps in the sequence specified
by this permutation. This permutation evaluation process would correspond to
increasing the time by one unit, and would be applied repeatedly to generate
the system dynamics. An important aspect of having a fixed permutation update
sequence is that one obtains a dynamical system. This is not necessarily the case
in the more general situation, such as when the individual states are updated at
random.

The analysis of CAs and ACAs does not have the support that the study
of ODEs has from established fields such as analysis and differential geometry.
As such, a key goal of CA/ACA research is to make connections to existing
mathematical theory. We will consider the class of π-independent ACAs – those
whose periodic points (as a set) are independent of the permutation update se-
quence. While this may seem to be a rather exotic property, we have shown that

⋆ Department of Mathematical Sciences, Clemson University.
⋆⋆ Department of Mathematics and NDSSL/VBI, Virginia Tech.

http://arxiv.org/abs/1010.1955v1


2 M. Macauley and H. S. Mortveit

roughly 40% of the elementary CA rules give rise to π-independent ACAs [8].
Given a π-independent ACA, one can define its dynamics group. This permuta-
tion group on the set of periodic points is a quotient of a Coxeter group, and
it captures the possible long-term dynamics that one can generate by suitable
choices of update sequence. Its structure can answer questions about the exis-
tence and non-existence of periodic orbits of given sizes.

In this paper, we will revisit the notions of Coxeter systems and sequential
dynamical systems (SDSs). An SDS is a generalization of an ACA (assuming
a fixed update sequence) where the underlying graph is arbitrary, and is not
limited to being a regular lattice or circle (i.e., a one-dimensional torus). We will
show how the word problem for Coxeter groups is related to functional equiva-
lence of SDS maps. This forms the basis for our next result, on how conjugation
of Coxeter elements corresponds to cycle equivalence of SDS maps, and addition-
ally, how this extends from conjugacy classes to spectral classes. After defining
dynamics groups and showing how they arise as quotients of Coxeter groups,
we show how key features of mathematical objects in both the fields of SDSs
and Coxeter groups are encoded by finite (or infinite) state automata. We illus-
trate this by explicit examples, and then close with a table summarizing these
connections.

2 Background

A Coxeter system is a pair (W,S) consisting of a group W generated by a set
S = {s1, . . . , sn} of involutions given by the following presentation

W = 〈s1, . . . , sn | s2i = 1, (sisj)
m(si,sj) = 1〉 ,

where m(si, sj) ≥ 2 for i 6= j. Let S∗ be the free monoid over S, and for each
integer m ≥ 0 and distinct generators s, t ∈ S, define

〈s, t〉m = stst · · ·
︸ ︷︷ ︸

m

∈ S∗ .

The relation 〈s, t〉m(s,t) = 〈t, s〉m(s,t) is called a braid relation, and is additionally
called a short braid relation if m(s, t) = 2. Note that s and t commute if and
only if m(s, t) = 2. A Coxeter system can be described uniquely by its Coxeter

graph Γ , which has vertex set V = {1, . . . , n} and an edge {i, j} for each non-
commuting pair of generators {si, sj}, with edge label m(si, sj).

Switching to ACAs and SDSs, let Γ be an undirected graph (called the
base graph or dependency graph) with vertex set V = {1, . . . , n}. We equip
each vertex i with a state xi ∈ K where K is a set called the state space, and
a vertex function fi that maps (or updates) xi(t) to xi(t + 1) based on the
states of its neighbors (itself included). Unless explicitly stated otherwise, we
will assume that K = F2 = {0, 1}, which is the most commonly used state space
in cellular automata research. If the vertex functions are applied asynchronously,
it is convenient to encode fi as a Γ -local function Fi : K

n → Kn defined by

Fi(x1, . . . , xn) = (x1, . . . , xi−1, fi(x1, . . . , xn), xi+1, . . . , xn) .
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If fi does not depend on all n states, it may be convenient to omit the fictitious
variables. Given a sequence of local functions and a word w = w1w2 . . . wm ∈ V ∗

called the update sequence, the SDS map Fw is the composition of the local
functions in the order prescribed by w, i.e.,

Fw : Kn −→ Kn , Fw = Fwm
◦ Fwm−1

◦ · · · ◦ Fw2
◦ Fw1

.

SDSs represent a generalization of ACAs, which are usually defined over a regular
grid, such as Z or Zn. The following example illustrates some SDS concepts –
see [14] for a more complete treatment.

Example 1. We take Γ = Circ4 as base graph (see Figure 1) and use K =
{0, 1} as the state space. Also, we take all vertex functions to be Boolean
nor-functions given by nor: K3 → K where nor(x, y, z) equals 1 if x = y =
z = 0 and 0 otherwise. In this case we have, for example, F1(x1, x2, x3, x4) =
(nor(x4, x1, x2), x2, x3, x4). Using the update sequence π = 1234, we obtain

F1(0, 0, 0, 0) = (1, 0, 0, 0)

F2 ◦ F1(0, 0, 0, 0) = (1, 0, 0, 0)

F3 ◦ F2 ◦ F1(0, 0, 0, 0) = (1, 0, 1, 0)

F4 ◦ F3 ◦ F2 ◦ F1(0, 0, 0, 0) = (1, 0, 1, 0) ,

and thus Fπ(0, 0, 0, 0) = (1, 0, 1, 0). The phase space of the map Fπ is the directed
graph containing all global state transitions and is shown in Figure 1.

1 2
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Fig. 1. The base graph Γ = Circ4 and the phase space of Fπ from Example 1.

3 The word problem

A fundamental question given any finitely presented group 〈S | R〉, is when do
two words

w = w1w2 · · ·wm , and w′ = w′

1w
′

2 · · ·w
′

k

in S∗ yield the same group element? This is the word problem, and it is in gen-
eral undecidable. However, there are many classes of groups for which the word
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problem is solvable. A classic result in Coxeter groups, known as Matsumoto’s

theorem [5, Theorem 1.2.2], says that any two reduced expressions for the same
element differ by braid relations. Matsumoto’s theorem provides an algorithmic
solution to the word problem for Coxeter groups.

There is an analog of the word problem for SDSs. Specifically, given two
update sequences w,w′ ∈ V ∗, when are the corresponding SDS maps

Fw = Fwm
◦ Fwm−1

◦ · · · ◦ Fw2
◦ Fw1

, Fw′ = Fw′

k
◦ Fw′

k−1
◦ · · · ◦ Fw′

2
◦ Fw′

1

equal as functions, or equivalently, when do they have identical phase spaces?
This is clearly solvable because there are only finitely many functions Fn2 → F

n
2 .

However, it would be desirable to solve this problem algorithmically for general
SDSs, without resorting to checking the image of all 2n global states.

4 Equivalences on Dynamics and Acyclic Orientations

In this section, we show how topological conjugation of SDS maps corresponds
to conjugation of elements in a Coxeter group, and how this connection leads
to a coarser equivalence relation when the graph Γ has non-trivial symmetries.
Acyclic orientations are mathematically convenient to capture several types of
equivalences on permutation SDS maps, as well as on Coxeter elements in Cox-
eter groups. A Coxeter element is the product of the generators of S in some
order. Every Coxeter element defines a partial ordering on S, which we can rep-
resent by an acyclic orientation of Γ . Specifically, for a Coxeter element c, define
the orientation (Γ, c) so that edge {i, j} is oriented (i, j) if si appears before sj
in c. It is easy to show that this is well-defined, and that it defines a bijection be-
tween the set Acyc(Γ ) of acyclic orientations of Γ and the set C(W ) of Coxeter
elements of W .

Next, consider conjugating a Coxeter element c = sx1
· · · sxn

by the initial
letter s = sx1

, which results in a cyclic shift of the word:

scs = sx1
(sx1

sx2
· · · sxn

)sx1
= sx2

sx3
· · · sxn

sx1
.

The corresponding acyclic orientations (Γ, c) and (Γ, scs) differ by converting
the source vertex of (Γ, c) into a sink. This source-to-sink conversion generates
an equivalence relation ∼κ on Acyc(Γ ), and it was recently proven (see [4]) that
(Γ, c) ∼κ (Γ, c′) if and only if c and c′ are conjugate. (Note that the “if” direction
is obvious; the “only if” direction is difficult).

Turning to SDSs, let Sn ⊂ V ∗ be the set of words where each vertex appears
precisely once, which we may identify with the permutations of V . Each permu-
tation π ∈ Sn defines a partial ordering on V , and there is a natural map from
Acyc(Γ ) to the set of permutation SDS maps (π is mapped to Fπ). Two finite
dynamical systems φ, ψ : Kn → Kn are said to be cycle equivalent if for some
bijection h : Kn → Kn we have ψ|Per(ψ) ◦h = h ◦φ|Per(φ) , where Per(φ) denotes
the set of periodic states of φ. The following result provides the connection be-
tween κ-equivalence of acyclic orientations and cycle equivalence of permutation
SDS maps.
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Theorem 1 ([12]). If (Γ, π) ∼κ (Γ, σ), then Fπ and Fσ are cycle equivalent.

If the automorphism group Aut(Γ ) is non-trivial, we can say even more. The
group Aut(Γ ) acts on Aut(Γ )/∼κ by γ · [(Γ, π)] = [(Γ, γπ)], which gives rise
to the equivalence relation ∼κ̄ on Aut(Γ )/∼κ. This coarser equivalence relation
also has an interpretation in the settings of both Coxeter groups and SDSs.

If (W,S) is a Coxeter system with |S| = n, let V be an n-dimensional real
vector space with basis {α1, . . . ,αn}. Put a symmetric bilinear form B on V ,
defined by B(αi,αj) = − cos

(
π/m(si, sj)

)
. The group W acts on V by

si : v 7→ v − 2B(v,αi)αi , (1)

and the set of elements Φ = {wαi | w ∈ W , i = 1, . . . , n} are called roots. This
action is faithful and preserves the bilinear form B. Geometrically, the root siv
is the reflection of v across the hyperplane α

⊥

i , and so there is a representation
ρ : W → GL(V), defined on the generators by

ρ : si 7−→
(
v

Fi7→ v − 2B(v,αi)αi
)
, (2)

called the standard geometric representation of W (see [1, 7]). This allows us to
view elements in W as matrices, and hence we can speak of the characteristic
polynomial of any given w ∈W .

Now, if (Γ, c) and (Γ, c′) differ by some γ ∈ Aut(Γ ), then ρ(c) and ρ(c′)
are similar as linear transformations. Specifically, they are conjugate in GL(V)
by the permutation matrix Pγ of γ. In this case, we say that c and c′ have the
same spectral class, because ρ(c) and ρ(c′) have the same multiset of eigenvalues.
Clearly, this is a weaker condition than conjugacy, and so all Coxeter elements
in the same κ̄-equivalence class have the same spectral class.

Similarly, in the context of SDSs, if (Γ, π) ∼κ̄ (Γ, σ), then the SDS maps Fπ
and Fσ are cycle equivalent, due to the following argument. If γ ∈ Aut(Γ ), then
the permutations π and γπ give topologically conjugate SDS maps, Fπ and Fγπ.
Strictly speaking, this requires the maps fi to be Aut(Γ )-invariant (see [12]),
a condition which is frequently satisfied in practice, such as when all vertices
of the same degree share the same symmetric function (e.g., logical AND, OR,
Majority, Parity, threshold functions, etc.). Since topologically conjugate maps
are cycle equivalent, our statement follows.

It is worth mentioning the role of the Tutte polynomial here [15]. The Tutte
polynomial of a graph Γ is a 2-variable polynomial TΓ (x, y) that satisfies a re-
currence under edge deletion and contraction, and plays a central role in graph
theory. Many graph counting problems are simply the evaluation of the Tutte
polynomial at some (x0, y0) ∈ Z × Z. For example, |Acyc(Γ )| = TΓ (2, 0) and
|Acyc(Γ )/∼κ| = TΓ (1, 0). Thus, TΓ (2, 0) counts the number of Coxeter elements
in the Coxeter group with Coxeter graph Γ , and it bounds the number of per-
mutation SDS maps in an SDS with dependency graph Γ . This bound is known
to be sharp for certain classes of functions [14]. Similarly, TΓ (1, 0) counts the
number of conjugacy classes of Coxeter elements (see [4, 10]), and it bounds the
number of cycle equivalence classes of SDS maps (see [12]).
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5 Groups

A sequence F = (F1, . . . , Fn) of local functions is π-independent if Per(Fπ) =
Per(Fσ) for all π, σ ∈ Sn. Note that this is an equality of sets; we do not assume
anything about the organization of the respective periodic points into periodic
orbits. In this case, each Fi permutes the periodic points, and these permutations
generate the dynamics group of F , denoted DG(F ). Let F ∗

i denote the restriction
of Fi to Per(Fπ). Because Fi only changes the ith coordinate of a state, and since
we assume that K = F2, F

∗

i ◦F
∗

i is the identity function on Per(Fπ). If we define
mij := |F ∗

i ◦ F ∗

j |, then there is a surjection

〈s1, . . . , sn | s2i = 1, (sisj)
mij = 1〉 −→ DG(F ) , (3)

showing that dynamics groups are quotients of Coxeter groups. The particular
homomorphism is determined by adding relations to the presentation of the
Coxeter group, and these relations arise because the state space is F2. Thus,
dynamics groups are in a sense “reflection groups over F2.” An open-ended
research problem is to give an efficient presentation of the dynamics groups of
an SDS based on the functions, i.e., to determine these extra relations.

When the base graph Γ of an SDS is the circular graph Zn, and the local
functions are all identical, the resulting SDS is an elementary ACA. Each local
function Fi takes {xi−1, xi, xi+1} as input, and is completely described by the
following rule table

xi−1xixi+1 111 110 101 100 011 010 001 000
fi(xi−1, xi, xi+1) a7 a6 a5 a4 a3 a2 a1 a0

Clearly, there are 22
3

= 256 such choices of functions, which can be indexed
by k =

∑
ai2

i ∈ {0, . . . , 255}. The corresponding sequence of local functions is
denoted ECAk. In [8], it was shown that ECAk is π-independent for precisely
104 values of k. Moreover, this holds for all n > 3. The dynamics groups of these
104 rules were classified in [11]. Among some of the interesting groups were
DG(ECA60) = SLn(F2) and DG(ECAk) = Z

n
2 for k ∈ {28, 29, 51}. Moreover,

other dynamics groups were found computationally to be either the symmetric
or alternating groups, with the size depending on the nth Fibonacci or Lucas
number, leading to a few conjectures.

6 The root automaton

The dynamics of all possible SDSs given a sequence of Γ -local functions F =
(F1, . . . , Fn) can be encoded by the state automaton of the sequence. This is
a directed graph Φ with vertex set Kn – the set of global system states, and
directed edges (x, Fi(x)) for each x ∈ Kn and each i ∈ V . Label such an edge
with the index i corresponding to its vertex function; see Figure 2 for an example.



Coxeter Groups and ACAs 7

010001010111 0110

00100001 00000011

1000 10101011 1001

1111 1101 11101100

1

1

1

3

3

3

1,3

1

3

3

4

4

4

4

4

4

4 4

4

4

4

4

2

2

22 2

1,3 2,4

1,4

2,42,3

3,4

2 2,4

1,2

1

3 4

1,3

2 2 2

3

3

3

1

1

1

1

1

1

11

Fig. 2. The state automaton Φ for the SDS in Example 1. Horizontal/vertical dashed
lines and arrows indicate horizontal/vertical wrap-around, and arrowheads are omitted
from the bidirectional edges for clarity.

The image of a state x ∈ Kn under an SDS map Fπ , where π = π1π2 · · ·πn,
is represented on the state automaton by a path in Φ. Specifically, start at vertex
x and traverse the path

x , Fπ1
(x) , Fπ2

Fπ1
(x) , . . . , Fπn

· · ·Fπ2
Fπ1

(x) = Fπ(x) .

The phase space of Fπ can be easily derived from the state automaton – it is
the graph with vertex set Kn and an edge (x, y) for every directed path from
a state x to y that traverses a path of edges labeled π1, π2, . . . , πn. Note that if
F is π-independent, then DG(F ) acts on Per(F ). In this case, all of the edges
within Per(F ) are bidirectional, and so we may view them as undirected.

This is the SDS analog of the action ofW on Φ ⊂ V , as described in (1). Since
V is any n-dimensional vector space, we can identify it with R

n, and assume that
the basis elements are αi = ei, the standard unit normal vectors. This associates
roots with vectors in R

n, and we partially order Φ by ≤ componentwise (z � z
′

iff zi ≤ z′i for each i) to get the root poset. It is well-known that for every root,
all non-zero entries have the same sign, thus we have a notion of positive and
negative roots, and the root poset has a positive side Φ+ and a negative side,
Φ−, with Φ = Φ+ ∪ Φ−. The image of si under the geometric representation
from (2) is a linear map Fi : R

n → R
n, where

Fi : (z1, . . . , zn) 7−→ (z1, . . . , zi−1, zi +
n∑

j=1

2 cos(π/mi,j)zj , zi+1, . . . , zn) . (4)

To summarize, Fi changes the i
th entry of a vector by flipping its sign and then

adding each neighboring state zj weighted by 2 cos(π/mij).
In 1993, Brink and Howlett proved that Coxeter groups are automatic [2], and

soon after, H. Eriksson developed the root automaton [3]. The root automaton
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has vertex set Φ and edge set {(z, siz) | z ∈ Φ, si ∈ S}. For convenience, label
each edge (z, siz) with the corresponding generator si. It is clear that upon
disregarding loops and edge orientations (all edges are bidirectional anyways),
we are left with the Hasse diagram of the root poset. We represent a word
w = sx1

sx2
· · · sxm

in the root automaton by starting at the unit vector ex1
∈ Φ+

and traversing the edges labeled sx2
, sx3

, . . . , sxm
in sequence. Denote the root

reached in the root poset upon performing these steps by r(W,w). The sequence

ex1
= r(W, sx1

) , r(W, sx1
sx2

) , . . . , r(W, sx1
sx2

· · · sxm
) = r(W,w) ,

is called the root sequence of w. If r(W, sx1
sx2

· · · sxi
) is the first negative root

in the root sequence for w, then a shorter expression for w can be obtained by
removing sx1

and sxi
. By the exchange property of Coxeter groups (see [1, 7]),

every word w ∈ S∗ can be made into a reduced expression by iteratively removing
pairs of letters in this manner. Thus, the root automaton can algorithmically
detect reduced words.

We conclude with an example that illustrates these concepts, and shows how
the root automaton of a Coxeter group is essentially a connected component of
the state automaton of an sequential dynamical system with state space K = R.

Example 2. Let W = H4, which has Coxeter graph as shown in Figure 3, and
presentation (using a, b, c, d instead of s1, s2, s3, s4):

H4 = 〈a, b, c, d | a2, b2, c2, d2, (ab)5, (bc)3, (cd)3, (ac)2, (ad)2, (bd)2〉 .

It is well-known (see [7]) that H4 is a finite group of order 14400, and is the
PSfrag replacements

a b c d

5

Fig. 3. The Coxeter graph Γ of the group W = H4. As is customary, edge labels of 3
are suppressed.

isometry group of the 120-cell and its dual, the 600-cell, two of the six regular
4-polytopes. Thus, the root poset Φ consists of 14400 roots. A portion of the
root automaton is shown in Figure 4. Recall that the root automaton is built on
top of the root poset – stripping away the self-loops and edge labels leaves the
Hasse diagram of Φ. The dotted-line in Figure 4 shows the boundary between
the positive roots Φ+ and negative roots Φ−. The non-loop edges of the root
automaton are all bidirectional – arrowheads are omitted for clarity.

Consider the word w = abdcabacbca ∈ H4. Starting at ea = (1, 0, 0, 0) (see
Figure 4), and traversing the edges labeled b, d, c, a, b, a, c, b, c, a in sequence, we
see that the first negative root in the root sequence of w is r(W,abdcabacbc).
Therefore, removing the first instance of a and the last instance of c from w
results in bdcabacba, a shorter expression for w. It is easily checked that no matter
where we begin in bdcabacba, the corresponding path in the root automaton
consists of only positive roots. Therefore, bdcabacba is a reduced word in H4.
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Fig. 4. Part of the root automaton of the group W = H4. Here, φ = 2 cos(π/5), the
golden ratio. The dotted line separates the positive roots from the negative roots.

7 Summary

This paper presented a collection of results connecting properties of Coxeter
groups and properties of the dynamics of ACAs/SDSs (see Table 1). These newly
established connections provide possible avenues for ACA research. In a larger
setting, we hope that our example linking properties of asynchronous, finite
dynamical systems and group theory can provide inspiration for other approaches
seeking to better understand the dynamics of ACAs through the use of existing
mathematical structures and theory.
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6. Hansson, A. Å., Mortveit, H.S., Reidys, C.M.: On asynchronous cellular automata.
Adv. Comp. Sys. 8, 521–538 (2005)

7. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University
Press. (1990)

8. Macauley, M., McCammond, J., Mortveit, H.S.: Order independence in asyn-
chronous cellular automata. J. Cell. Autom. 3, 37–56 (2008)

9. Macauley, M., McCammond, J., Mortveit, H.S.: Dynamics groups of asynchronous
cellular automata. J. Algebraic Combin. In press (2010)

10. Macauley, M., Mortveit, H.S.: On enumeration of conjugacy classes of Coxeter
elements. Proc. Amer. Math. Soc. 136, 4157–4165 (2008)

11. Macauley, M., Mortveit, H.S.: Posets from admissible Coxeter sequences. Submit-
ted (2010)

12. Macauley, M., Mortveit, H.S.: Cycle equivalence of graph dynamical systems. Non-
linearity 22, 421–436 (2009)

13. Macauley, M., Mortveit, H.S.: Update sequence stability in graph dynamical sys-
tems. Discrete Cont. Dyn. Sys. Ser. S. In press (2010)

14. Mortveit, H.S., Reidys, C. M.: An Introduction to Sequential Dynamical Systems.
Springer Verlag, New York (2007)

15. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canad. J.
Math. 6, 80–91 (1954)


