Skip to main content

A Cellular Automaton Model for Crowd Evacuation and Its Auto-Defined Obstacle Avoidance Attribute

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Abstract

In this paper, a crowd evacuation model based on Cellular Automata (CA) is described. The model takes advantage of the inherent ability of CA to represent sufficiently phenomena of arbitrary complexity and to be simulated precisely by digital computers as well. Pedestrian movement depends on their distance from the closest exit, which is defined dynamically. The adoption of Manhattan distance as the reference metric provides calculation simplicity, computational speed and improves significantly computational performance. Moreover, the model applies an efficient method to overcome obstacles. The latter is based on the generation of a virtual field along obstacles. A pedestrian moves along the axis of the obstacle towards the direction that the field increases its values, leading her/him to avoid the obstacle effectively. Distinct features of crowd dynamics and measurements on different distributions of pedestrians have been used to evaluate the response of the model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstone, R.L., Janssen, M.A.: Computational models of collective behaviour. Trends in Cognitive Sciences 9(9), 424–430 (2005)

    Article  Google Scholar 

  2. Xiaoping, Z., Tingkuan, Z., Mengting, L.: Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44, 437–445 (2009)

    Article  Google Scholar 

  3. Schultz, M., Lehmann, S., Fricke, H.: A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenber, M. (eds.) Pedestrian and Evacuation Dynamics 2005, pp. 369–375. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: foraging ants and pedestrians. Physica A 372, 132–141 (2006)

    Article  Google Scholar 

  5. Yu, Y.F., Song, W.G.: Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Physical Review E 75(046112), 1–8 (2007)

    Google Scholar 

  6. Fang, W.F., Yang, L.Z., Fan, W.C.: Simulation of bi-direction pedestrian movement using a cellular automata model. Physica A 321, 633–640 (2003)

    Article  MATH  Google Scholar 

  7. Yuan, W.F., Tan, K.H.: An evacuation model using cellular automata. Physica A 384, 549–566 (2007)

    Article  Google Scholar 

  8. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynam-ics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  9. Kretz, T., Bönisch, C., Vortisch, P.: Comparison of Various Methods for the Calculation of the Distance Potential Field, http://arxiv.org/abs/0804.3868

  10. Georgoudas, I.G., Sirakoulis, G.C., Andreadis, I.: Potential Field Approach of a Cellular Automaton Evacuation Model and its FPGA implementation. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 546–549. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  12. Johansson, A., Helbing, D., Al-Abideen, Al-Bosta, H.Z.S.: From crowd dynamics to crowd safety: A video-based analysis. Advances in Complex Systems 11(4), 497–527 (2008)

    Google Scholar 

  13. Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited, J. Stat. Mech., P10002 (2005)

    Google Scholar 

  14. Weidmann, U.: Transporttechnik der Fußganger (Schriftenreihe des Institut fur Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau 90, ETH Zurich, Zurich (1993)

    Google Scholar 

  15. Predtechenskii, V.M., Milinskii, A.I.: Planning for Foot Traffic Flow in Buildings. Amerind Publishing Co., New Delhi (1978)

    Google Scholar 

  16. Mori, M., Tsukaguchi, H.: A new method for evaluation of level of service in pedestrian facilities. Transportation Research A 21(3), 223–234 (1987)

    Article  Google Scholar 

  17. Polus, A., Schofer, J.L., Ushpiz, A.: Pedestrian flow and level of service. Journal of Transportation Engineering 109, 46–56 (1983)

    Article  Google Scholar 

  18. Fruin, J.J.: Designing for pedestrians: A level-of-service concept. Highway Research Record 355, 1–15 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgoudas, I.G., Koltsidas, G., Sirakoulis, G.C., Andreadis, I.T. (2010). A Cellular Automaton Model for Crowd Evacuation and Its Auto-Defined Obstacle Avoidance Attribute. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics