Skip to main content

A Velocity-Clearance Relation in the Rule-184 Cellular Automaton as a Model of Traffic Flow

  • Conference paper
  • 1713 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Abstract

In this article, we investigate the velocity-clearance relation of vehicles in CA models for traffic flow using a calibration of the cell size (length) which we already proposed. We can mimic a more realistic behaviour of vehicles in traffic flow changing the cell size according to the density of particles in cellular automaton models. As a result, the velocity of particles in the rule-184 cellular-automaton model becomes dependent on the clearance, i.e., the distance to the next particle in front (in the right-hand side). Also, we show that the calibration is valid in that it reproduces a realistic flow-density diagram.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  2. DeMasi, A., Esposito, R., Lebowitz, J.L., Presutti, E.: Hydrodynamics of stochastic cellular automata. Commun. Math. Phys. 125, 127–145 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59, 117–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  5. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related system. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  6. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I, france 2, 2221–2229 (1992)

    Article  Google Scholar 

  8. Fukui, M., Ishibashi, Y.: Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed. J. Phys. Soc. Jpn. 65, 1868–1870 (1996)

    Article  Google Scholar 

  9. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.: Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 1425–1437 (1998)

    Article  Google Scholar 

  10. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: A realistic two-lane traffic model for highway traffic. J. Phys. A 35, 3369–3388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kanai, M., Nishinari, K., Tokihiro, T.: Stochastic optimal velocity model and its long-lived metastability. Phys. Rev. E 72, 035102-5 (R)(2005); Kanai, M., Nishinari, K., Tokihiro, T.: Analytical study on the criticality of the stochastic optimal velocity model. J. Phys. A 39, 2921–2933 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kanai, M., Isojima, S., Nishinari, K., Tokihiro, T.: Ultradiscrete optimal velocity model: A cellular-automaton model for traffic flow and linear instability of high-flux traffic. Phys. Rev. E 79, 056108 (2009)

    Article  Google Scholar 

  13. MacDonald, C.T., Gibbs, H.: Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopolymers 7, 707–725 (1969)

    Article  Google Scholar 

  14. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The Asymmetric Exclusion Process: Comparison of Update Procedures. J. Stat. Phys. 92, 151–194 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kanai, M., Nishinari, K., Tokihiro, T.: Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring. J. Phys. A 39, 9071–9079 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wölki, M., Schadschneider, A., Schreckenberg, M.: Asymmetric exclusion processes with shuffled dynamics. J. Phys. A 39, 33–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Phenomenological Study of Dynamical Model of Traffic Flow. J. Phys. I, france 5, 1389–1399 (1995)

    Article  Google Scholar 

  19. Kerner, B.S., Rehborn, H.: Experimental Properties of Phase Transitions in Traffic Flow. Phys. Rev. Lett. 79, 4030–4033 (1997); Kerner, B.S.: Experimental Features of Self-Organization in Traffic Flow. Phys. Rev. Lett. 81, 3797–3800 (1998)

    Article  MATH  Google Scholar 

  20. Tadaki, S., Nishinari, K., Kikuchi, M., Sugiyama, Y., Yukawa, S.: Observation of Congested Two-lane Traffic Caused by a Tunnel. J. Phys. Soc. Jpn. 71, 2326–2334 (2002)

    Article  Google Scholar 

  21. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S., Yukawa, S.: Traffic jams without bottlenecks–experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10, 033001 (2008); Nakayama, A., Fukui, M., Kikuchi, M., Hasebe, K., Nishinari, K., Sugiyama, Y., Tadaki, S., Yukawa, S.: Metastability in the formation of an experimental traffic jam. New J. Phys. 11, 083025 (2009)

    Article  Google Scholar 

  22. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A 229, 317–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schadschneider, A., Schreckenberg, M.: Cellular automaton models and traffic flow. J. Phys. A 26, L679–L683 (1993)

    Article  Google Scholar 

  24. Kanai, M.: Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process. J. Phys. A 40, 7127–7138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  26. Newell, G.F.: Nonlinear Effects in the Dynamics of Car Following. Oper. Res. 9, 209–229 (1961)

    Article  MATH  Google Scholar 

  27. Ossen, S., Hoogendoorn, S.P., Gorte, B.G.H.: Interdriver differences in car-following: a vehicle trajectory-based study. Transp. Res. Rec. 1965, 121–129 (2006)

    Article  Google Scholar 

  28. Toledo, T., Koutsopoulos, H.N., Davol, A., Ben-Akiva, M.E., Burghout, W., Andreasson, I., Johansson, T., Lundin, C.: Calibration and validation of microscopic traffic simulation tools - Stockholm case study. Transp. Res. Rec. 1831, 65–75 (2003)

    Article  Google Scholar 

  29. Brockfeld, E., Wagner, P.: Calibration and Validation of Microscopic Traffic Flow Models. In: Hoogendoorn, S.P., Luding, S., Bovy, P.H.L., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow 2003, pp. 373–382. Springer, Heidelberg (2005)

    Google Scholar 

  30. Kanai, M.: Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow. arXiv:1002.1382, http://arxiv.org/abs/1002.1382

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanai, M. (2010). A Velocity-Clearance Relation in the Rule-184 Cellular Automaton as a Model of Traffic Flow. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics