Skip to main content

The Group-Lasso: ℓ1, ∞  Regularization versus ℓ1,2 Regularization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Abstract

The ℓ1, ∞  norm and the ℓ1,2 norm are well known tools for joint regularization in Group-Lasso methods. While the ℓ1,2 version has been studied in detail, there are still open questions regarding the uniqueness of solutions and the efficiency of algorithms for the ℓ1, ∞  variant. For the latter, we characterize the conditions for uniqueness of solutions, we present a simple test for uniqueness, and we derive a highly efficient active set algorithm that can deal with input dimensions in the millions. We compare both variants of the Group-Lasso for the two most common application scenarios of the Group-Lasso, one is to obtain sparsity on the level of groups in “standard” prediction problems, the second one is multi-task learning where the aim is to solve many learning problems in parallel which are coupled via the Group-Lasso constraint. We show that both version perform quite similar in “standard” applications. However, a very clear distinction between the variants occurs in multi-task settings where the ℓ1,2 version consistently outperforms the ℓ1, ∞  counterpart in terms of prediction accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58(1), 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B, 49–67 (2006)

    Google Scholar 

  3. Turlach, B.A., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47, 349–363 (2005)

    Article  MathSciNet  Google Scholar 

  4. Meier, L., van de Geer, S., Bühlmann, P.: The Group Lasso for Logistic Regression. J. Roy. Stat. Soc. B 70(1), 53–71 (2008)

    Article  MATH  Google Scholar 

  5. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge (2007)

    Google Scholar 

  6. Kim, Y., Kim, J., Kim, Y.: Blockwise sparse regression. Statistica Sinica 16, 375–390 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Roth, V., Fischer, B.: The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In: ICML 2008, pp. 848–855. ACM, New York (2008)

    Chapter  Google Scholar 

  8. Schmidt, M., Murphy, K., Fung, G., Rosales, R.: Structure learning in random fields for heart motion abnormality detection. In: CVPR (2008)

    Google Scholar 

  9. Quattoni, A., Carreras, X., Collins, M., Darrell, T.: An efficient projection for l 1 ∞  regularization. In: 26th Intern. Conference on Machine Learning (2009)

    Google Scholar 

  10. Liu, H., Palatucci, M., Zhang, J.: Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: 26th Intern. Conference on Machine Learning (2009)

    Google Scholar 

  11. Osborne, M., Presnell, B., Turlach, B.: On the LASSO and its dual. J. Comp. and Graphical Statistics 9(2), 319–337 (2000)

    Article  MathSciNet  Google Scholar 

  12. McCullaghand, P., Nelder, J.: Generalized Linear Models. Chapman & Hall, Boca Raton (1983)

    Google Scholar 

  13. Liu, Q., Xu, Q., Zheng, V.W., Xue, H., Cao, Z., Yang, Q.: Multi-task learning for cross-platform sirna efficacy prediction: an in-silico study. BMC Bioinformatics 11(1), 181 (2010)

    Article  Google Scholar 

  14. Yeo, G., Burge, C.: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comp. Biology 11, 377–394 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vogt, J.E., Roth, V. (2010). The Group-Lasso: ℓ1, ∞  Regularization versus ℓ1,2 Regularization. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics