Skip to main content

Random Fourier Approximations for Skewed Multiplicative Histogram Kernels

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Abstract

Approximations based on random Fourier features have recently emerged as an efficient and elegant methodology for designing large-scale kernel machines [4]. By expressing the kernel as a Fourier expansion, features are generated based on a finite set of random basis projections with inner products that are Monte Carlo approximations to the original kernel. However, the original Fourier features are only applicable to translation-invariant kernels and are not suitable for histograms that are always non-negative. This paper extends the concept of translation-invariance and the random Fourier feature methodology to arbitrary, locally compact Abelian groups. Based on empirical observations drawn from the exponentiated χ 2 kernel, the state-of-the-art for histogram descriptors, we propose a new group called the skewed-multiplicative group and design translation-invariant kernels on it. Experiments show that the proposed kernels outperform other kernels that can be similarly approximated. In a semantic segmentation experiment on the PASCAL VOC 2009 dataset, the approximation allows us to train large-scale learning machines more than two orders of magnitude faster than previous nonlinear SVMs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text categorization research. JMLR 5, 361–397 (2004)

    Google Scholar 

  2. Attenberg, J., Dasgupta, A., Langford, J., Smola, A., Weinberger, K.: Feature hashing for large scale multitask learning. In: ICML (2009)

    Google Scholar 

  3. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: A database and web-based tool for image annotation. IJCV 77(1-3), 157–173 (2008)

    Article  Google Scholar 

  4. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: NIPS (2007)

    Google Scholar 

  5. Shi, Q., Patterson, J., Dror, G., Langford, J., Smola, A., Strehl, A., Vishwanathan, V.: Hash kernels. In: AISTATS (2009)

    Google Scholar 

  6. Bo, L., Sminchisescu, C.: Efficient match kernels between sets of features for visual recognition. In: NIPS (2009)

    Google Scholar 

  7. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research, 1871–1874 (2008)

    Google Scholar 

  8. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient solver for svm. In: ICML (2007)

    Google Scholar 

  9. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV (2009)

    Google Scholar 

  10. Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10 (1999)

    Google Scholar 

  11. Rudin, W.: Fourier Analysis on Groups (1962)

    Google Scholar 

  12. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In: CVPR (2010)

    Google Scholar 

  13. Fine, S., Scheinberg, K.: Efficient svm training using low-rank kernel representation. JMLR 2, 243–264 (2001)

    Article  Google Scholar 

  14. Bach, F., Jordan, M.I.: Predictive low-rank decomposition for kernel methods. In: ICML (2005)

    Google Scholar 

  15. Williams, C.K.I., Seeger, M.: Using the nyström method to speed up kernel machines. In: NIPS (2001)

    Google Scholar 

  16. Drineas, P., Mahoney, M.: On the nyström method for approximating a gram matrix for improved kernel-based learning. JMLR 6, 2153–2175 (2005)

    MathSciNet  Google Scholar 

  17. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. JMLR 8, 725–760 (2007)

    Google Scholar 

  18. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: CVPR (2008)

    Google Scholar 

  19. Hein, M., Bousquet, O.: Hilbertian metrics and positive definite kernels on probability measures. In: AISTATS (2005)

    Google Scholar 

  20. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge, VOC 2009 Results (2009), http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html

  21. Carreira, J., Sminchisescu, C.: Constrained parametric min cuts for automatic object segmentation. In: CVPR (2010)

    Google Scholar 

  22. Li, F., Carreira, J., Sminchisescu, C.: Object recognition as ranking holistic figure-ground hypotheses. In: CVPR (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Ionescu, C., Sminchisescu, C. (2010). Random Fourier Approximations for Skewed Multiplicative Histogram Kernels. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics