Skip to main content

Use of Prior Knowledge in a Non-Gaussian Method for Learning Linear Structural Equation Models

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

We discuss causal structure learning based on linear structural equation models. Conventional learning methods most often assume Gaussianity and create many indistinguishable models. Therefore, in many cases it is difficult to obtain much information on the structure. Recently, a non-Gaussian learning method called LiNGAM has been proposed to identify the model structure without using prior knowledge on the structure. However, more efficient learning can be achieved if some prior knowledge on a part of the structure is available. In this paper, we propose to use prior knowledge to improve the performance of a state-of-art non-Gaussian method. Experiments on artificial data show that the accuracy and computational time are significantly improved even if the amount of prior knowledge is not so large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollen, K.A.: Structural Equations with Latent Variables. Wiley, Chichester (1989)

    MATH  Google Scholar 

  2. Pearl, J.: Causality: Models, Reasoning, and Inference. Camb. Univ. Pres., New York (2000)

    MATH  Google Scholar 

  3. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, Heidelberg (1993); 2nd edn. MIT Press (2000)

    MATH  Google Scholar 

  4. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Lear. Res. 7, 2003–2030 (2006)

    Google Scholar 

  5. Shimizu, S., Hyvärinen, A., Kawahara, Y., Washio, T.: A direct method for estimating a causal ordering in a linear non-gaussian acyclic model. In: Proc. the 25th Conf. on Uncertainty in Artificial Intelligence, UAI 2009 (2009)

    Google Scholar 

  6. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  7. Amari, S.: Natural gradient learning works efficiently in learning. Neu. Comp. 10, 251–276 (1998)

    Article  Google Scholar 

  8. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley, New York (2001)

    Book  Google Scholar 

  9. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Physical Review E 69(6), 066138 (2004)

    Article  Google Scholar 

  10. Bach, F.R., Jordan, M.I.: Kernel independent component analysis. J. Machine Learning Research 3, 1–48 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inazumi, T., Shimizu, S., Washio, T. (2010). Use of Prior Knowledge in a Non-Gaussian Method for Learning Linear Structural Equation Models. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics