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Abstract. SMALLbox is a new foundational framework for processing signals, 
using adaptive sparse structured representations. The main aim of SMALLbox 
is to become a test ground for exploration of new provably good methods to 
obtain inherently data-driven sparse models, able to cope with large-scale and 
complicated data. The toolbox provides an easy way to evaluate these methods 
against state-of-the art alternatives in a variety of standard signal processing 
problems. This is achieved trough a unifying interface that enables a seamless 
connection between the three types of modules: problems, dictionary learning 
algorithms and sparse solvers. In addition, it provides interoperability between 
existing state-of-the-art toolboxes. As an open source MATLAB toolbox, it can 
be also seen as a tool for reproducible research in the sparse representations 
research community.  
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1   Introduction 

Sparse representations has become a very active research area in recent years and 
many toolboxes implementing a variety of greedy or other types of sparse algorithms 
have become freely available in the community [1-4]. As the number of algorithms 
has grown, there has become a need for a proper testing and benchmarking 
environment. This need was partially addressed with the SPARCO framework [5], 
which provides a large collection of imaging, signal processing, compressed sensing, 
and geophysics sparse reconstruction problems. It also includes a large library of 
operators that can be used to create new test problems. However, using SPARCO with 
other sparse representations toolboxes, such as SparseLab [1] is non-trivial because of 
inconsistencies in the APIs of the toolboxes. 

Many algorithms exist that aim to solve the sparse representation dictionary 
learning problem [6-7, 10]. However, no comprehensive means of testing and 
benchmarking these algorithms exists, in contrast to the sparse representation problem 
when the dictionary is known. The main driving force for this work is the lack of a 
toolbox similar to SPARCO for dictionary learning problems. Recognising the need 
of the community for such a toolbox, we set out to design a MATLAB toolbox with 
three main aims:  



- to enable an easy way of comparing dictionary learning algorithms,  
- to provide a unifying API that will enable interoperability and re-use of 

already available toolboxes for sparse representation and dictionary 
learning, 

- to aid the reproducible research effort in the sparse signal representations 
and dictionary learning [12]. 

In the section 2 of this paper, we give a short overview of sparse representations 
and dictionary learning. In section 3, the SMALLbox toolbox design approach is 
presented, with implementation details in section 4, followed by usage examples in 
section 5 and conclusions in section 6. 

2   Sparse Representations and Dictionary Learning 

One of the main requirements in many signal processing applications is to 
represent the signal in a transformed domain where it can be expressed as a linear 
combination of a small number of coefficients. In many research areas such as 
compressed sensing, image de-noising and source separation, these sparse structured 
signal representations are sought-after signal models. Depending on the application, 
we seek either an exact solution for a noise-free models or an approximate sparse 
reconstruction of the signal in the presence of noise: 

Axb =  (1) 

or
nAxb +=  (2) 

where b mR∈ is the signal of interest, A nmR ×∈ is transformation matrix (or 
dictionary), x nR∈  is the sparse coefficients vector and n mR∈  is noise vector. When 
m<n the problem is undetermined and there is no unique solution. Evidently, 
additional constraint needs to be imposed to the signal model to find the solution of 
interest. In this sense, probably the most studied and well-understood constraint is to 
assume a Gaussian distribution on the coefficients and to minimise the l2 norm of the 
vector x. However, in applications such as compression for example, it is more 
appropriate to impose the sparsity assumption on the coefficients, i.e. to minimise the 
l0 norm of the vector x. Since l0 norm minimisation is known to be an NP-hard 
problem, one can try finding an approximate solution using greedy algorithms such as 
Matching Pursuit (MP) [8] or Orthogonal Matching Pursuit (OMP) [9]. Alternatively, 
we can relax the sparsity assumption by imposing a Laplace distribution on the 
coefficients and minimise the l1 norm, which can be solved using different convex 
optimisation methods. 

In the SPARCO toolbox, the problems to be solved are given through a consistent 
interface represented in the form of a problem structure that contains a measurement 
vector b, operator A and all other components of the test problem. Operator A is 
given in the following form: 

MBA =  (3) 



The measurement operator M describes how the signal was sampled and operator 
B represents a basis with which the signal can be sparsely represented [5]. It is 
assumed that the basis that can give a sparse solution is known in advance. The 
success of the sparse representation heavily depends on the choice of the basis and the 
transform dictionary A and how well the dictionary reflects the structure to be found 
in the signal. Learning the matrix A from the data itself is a key to finding a sparse 
representation of the new classes of data. Dictionary learning for a sparse 
representation can be formulated as a problem of the following type: 

siF ≤∀−
0

0

2 tosubject min iXA,
xAXY  (4) 

where Y is a matrix with vectors of training data and xi are sparse representations of 
the training vectors. We want to choose a transform matrix A that will minimise the 
residual, given that the training data representation vectors xi are sparse with a 
maximum of s non-zero coefficients. 

Reflecting high activity in the research area, many dictionary learning algorithms 
are available, but currently no evaluation framework exists for testing them.  

3   Design approach to SMALLbox  

The SMALLbox framework is designed to fulfil two main goals: (1) to provide a set 
of test problems that permit formative evaluation of the techniques and algorithms to 
be developed elsewhere, and (2) to be a framework within which to build 
demonstrator applications. The design of the SMALLbox toolbox was constructed to 
allow easy portability of existing algorithms and new algorithms to be developed, 
taking into account the experiences in using toolboxes such as SPARCO [5] and 
SparseLab [1]. A graphical overview of the design of  SMALLbox is shown in Fig 1. 

 

 
Fig. 1. Design of the Evaluation Framework. 

The main interoperability of the design is given through the Problems part that can 
be defined either as sparse representations or dictionary learning. In generating a 
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training set for dictionary learning. The dictionaries can be either defined or learned 
using dictionary learning algorithms. In the former case, they can be given as implicit 
dictionaries as a combination of the given operators and structures or explicit in the 
form of dictionary matix. In the latter case, they are leaned from the training data. 
Once the dictionary is set in the problem, the problem is ready to be solved by one of 
the sparse representation algorithms.  

SMALLbox is designed to enable an easy exchange of information and comparison 
of different modules developed through a unified API data structure. The structure is 
made to fulfil two main goals. The first goal is to separate typical sparse signal 
processing problems into three meaningful units:  

a) problem specification (preparing data for learning the structures, 
representation and reconstruction),  

b) dictionary learning (using a prepared training set to learn the natural 
structures in the data) and  

c) sparse representation (representing the signal with a pre-specified or 
learned dictionary). 

The second goal is a seamless connection between the three types of modules and 
ease of communication of data between the problem, dictionary learning and sparse 
representation parts of the structure. 

4   SMALLbox Implementation 

The evaluation framework is implemented as a Matlab toolbox called SMALLbox. To 
enable easy comparison with the existing state-of-the-art algorithms, during the 
installation procedure SMALLbox checks the Matlab path for existence of the 
following freely available toolboxes and will automatically download and install 
them, as required: 

- SPARCO (v.1.2) - set of sparse representation problems[5] 
- SparseLab (v.2.1) - set of sparse solvers [1] 
- Sparsify (v.0.4) - set of greedy and hard thresholding algorithms [2] 
- SPGL1 (v.1.7) - large-scale sparse reconstruction solver [3] 
- GPSR (v.6.0) - Gradient projection for sparse reconstruction [4] 
- KSVD-box (v.13) and OMP-box (v.10) - dictionary learning [6] 
- KSVDS-box (v.11) and OMPS-box (v.1) - sparse dictionary learning [7].1 
- SPAMS - Online dictionary learning [10] 2 

The SMALLbox provides a “glue” structure to allow algorithms from those 
toolboxes to be used with a common API. The structure consists of three main sub-
structures: Problem structure, DL (dictionary learning) structures and solver 
structures. Since the Problem structure is design to be backward compatible with the 
SPARCO problem structure [5], it can be filled with SPARCO generateProblem or 
one of the dictionary learning problems provided in SMALLbox. If the problem is 
dictionary learning, one or more DL structures can be specified, so [6-7] or any other 

                                                            
1  The list of 3rd party toolboxes included in SMALLbox version 1.0 
2  An API for SPAMS is included, but due to licensing issues this toolbox needs to be installed 

by the user. 



dictionary learning technique can be compared with specified set of parameters. 
Finally, to sparsely represent the signal in a dictionary (either defined in the Problem 
structure or learned in the previous step), one or more solver structures can be used to 
specify any solver from [1-4] or any of the solvers provided in SMALLbox.  

4.1   Generating Problems (Problem structure) 

The Problem structure defines all necessary aspects of a problem to be solved. To be 
compatible with the SPARCO, it needs to have five fields defined prior to any sparse 
representation of the data: 

- A – a matrix or operator representing dictionary in which signal is sparse 
- b – a vector or matrix representing signal or signals to be represented 
- reconstruct – a function handle to reconstruct the signal from coefficients 
- signalSize – the dimension of the signal 
- sizeA – if matrix A is given as an operator the size of the dictionary needs 

to be defined in advance. 
Other fields that further describe the problem, which are useful for either 

reconstruction of the signal or representation of the results, might be generated by the 
SPARCO generateProblem function or the SMALLbox problem functions. The new 
problems implemented in the SMALLbox version 1.0 are: Image De-noising [6], 
Automatic Music Transcription [11] and Image Representation using another image 
as a dictionary. 

In the case of a dictionary learning problem, fields A and reconstruct are not 
defined while generating the problem, but after the dictionary is learned and prior to 
the sparse representation. In this case, field b needs to be given in matrix form to 
represent the training data and another field p defining the number of dictionary 
elements to be learned needs to be specified. 

4.2   Dictionary Learning (DL structure) 

The structure for dictionary learning - DL is a structure that defines dictionary 
learning algorithm to be used. It is initialised with a utility function SMALL_init_DL, 
which will define five mandatory fields: 

- toolbox - a field used to discriminate the API 
- name - the name of dictionary learning function from the particular 

toolbox 
- param - a field containing parameters for the particular DL technique and 

in the form given by the toolbox API 
- D - a field where the learned dictionary will be stored 
- time - a field to store learning time. 

After toolbox, name and param fields are set, the function SMALL_learn is called 
with Problem and DL structures as inputs. According to the DL.toolbox field, the 
function calls the DL.name algorithm with its API and outputs learned dictionary D 
and time spent. The DL.param field contains parameters such as dictionary size, the 
number of iterations, the error goal or similar depending on the particular algorithm 



used. To compare a new dictionary learning algorithm against existing ones, the 
algorithm needs to be in the MATLAB path and introduced to SMALLbox by 
defining two parameters <Toolbox ID> and <Preferred API> in the SMALL_learn 
function, where examples and a simple explanation are provided. Once the new 
dictionary is learned, field A of the Problem structure is defined to be equal to DL.D 
and also the reconstruction function is instructed to use this particular dictionary. In 
this way, a SPARCO compatible Problem structure is defined and ready for use. 

4.3   Sparse Representation (solver structure)  

Similar to dictionary learning every instance of the sparse representation needs to be 
initialised with the SMALL_init_solver function. It will define mandatory fields of 
the solver structure: 

- toolbox - a field with toolbox name (e.g. sparselab) 
- name - the name of solver from the particular toolbox (e.g. SolveOMP) 
- param - the parameters in the form given by the toolbox API 
- solution - the output representation 
- reconstructed - the signal reconstructed from solution 
- time - the time spent for sparse representation. 

With the input parameters of the solver structure set, the SMALL_solve function is 
called with Problem and solver structure as inputs. The function calls solver.name 
algorithm with API specified by sover.toolbox and outputs solution, reconstructed 
and time fields. To introduce a new sparse representation algorithm it needs to be in 
the MATLAB path and <Toolbox ID> and <Preferred API> need to be defined for the 
algorithm in the SMALL_solve function. Three solvers that can find a sparse 
representation of the whole training set matrix in one go are included in SMALLbox 
(SMALL_MP, SMALL_chol and SMALL_cgp). 

 
Fig. 2. SMALLbox example results - KSVD [6] versus S-KSVD [7] in image de-noising. 

 



5   Examples 

As a part of SMALLbox, a variety of examples on how included dictionary 
learning and sparse representation techniques can be used and compared on SPARCO 
and SMALLbox problems. As an example, small_solver_test.m will generate 
SPARCO problem 6 (sparse representation of b – a piecewise cubic polynomial 
signal, in B – a Daubechies basis with M – a Gaussian ensemble measurement 
matrix), test four solvers on the problem (SMALL_cgp, SMALL_chol, Solve_OMP 
from SparseLab and greed_pcgp from Sparsify), show computational time and plot 
solutions and reconstructed signals against the original. 

Two examples of dictionary learning for image de-noising are presented in Figs 2 
and 3. In the first example, we compared the KSVD algorithm [6] with S-KSVD [7]. 
The main idea presented in [7] is that if an implicit dictionary (in this case an 
overcomplete DCT) is used as base dictionary on which the sparse dictionary is 
learned, much better computational time can be achieved while still keeping 
adaptability and performance characteristics of explicit dictionaries. The example and 
results in Figure 2 support this claim. De-noising in the S-KSVD is almost 3 times 
faster while the PSNR is only 0.09 dB lower. 

The example in Figure 3 presents a comparison of online dictionary learning [10] 
and KSVD [6] and shows how SMALLbox can be used to easy change the parameters 
of the problem (in this case the training size). It supports the claim from [10] that, in 
contrast to iterative algorithms [6], online dictionary learning does not depend on the 
size of the training set. 
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Fig. 3. SMALLbox example results - KSVD [6] versus SPAMS [10] with variable 

training size. 

6   Conclusions 

We have introduced SMALLbox - an Evaluation Framework that enables easy 
prototyping, testing and benchmarking of sparse representation and dictionary 



learning algorithms. This is achieved through a set of test problems and an easy 
evaluation against state-of-the-art algorithms. As a part of the EU FET SMALL 
project, more problems, solvers and dictionary learning techniques that are developed 
will be included in SMALLbox as the project proceeds. 

For instructions how to download the SMALLbox and reproduce the figures in this 
paper, please visit: http://small-project.eu/. 
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