
Approximation of δ-Timeliness?

Carole Delporte-Gallet1, Stéphane Devismes2, and Hugues Fauconnier1

1 Université Paris Diderot, LIAFA
{Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr

2 Université Joseph Fourier, Grenoble I, VERIMAG UMR 5104
Stephane.Devismes@imag.fr

Abstract. In asynchronous message-passing distributed systems prone to pro-
cess crashes, a communication link is said δ-timely if the communication delay
on this link is bounded by some constant δ. We study here in which way processes
may approximate and find structural properties based on δ-timeliness (e.g., find
δ-timely paths between processes or build a ring between correct processes using
only δ-timely links).
To that end, we define a notion of approximation of predicates. Then, with help
of such approximations, we give a general algorithm that enables to choose and
eventually agree on one of these predicates. Finally, applying this approach to
δ-timeliness, we give conditions and algorithms to approximate δ-timeliness and
dynamically find structural properties using δ-timeliness.

1 Introduction

Assume an asynchronous message-passing system prone to process crash failures and
consider the following problem: we know that after some unknown time there is at
least one path from process p to process q such that every message sent along this path
arrives to process q by δ time units (such a path is said δ-timely). Now, how can we
determine one of these paths or at least one path that is ∆-timely for a ∆ close to δ? By
“determine” we mean that eventually all processes agree on the chosen path.

To that end, the processes must be at least able to test the δ-timeliness of paths and
one of the contribution of this paper is to give some necessary and sufficient conditions
to do this. In particular, we prove that without synchronized clocks, the system has to
ensure strong synchrony properties in the sense that there must not only exist δ-timely
paths from p to q but also from q to p.

The δ-timeliness of a path is a property that is only eventually ensured. Moreover,
δ-timeliness of a link can only be approximated by processes. We would like that an
approximation algorithm outputs boolean values in such a way that if the path is truly
δ-timely, then eventually only true is output, and if the path is not δ-timely, then false
is output infinitely often. However as we will see, such approximations of δ-timeliness
are generally too strong because there is some incertitude on the time it takes to go from
p to q on the path. Therefore the approximation algorithm only ensures that if the path
is δ-timely, then true is eventually output forever and if the path is not ∆-timely (with
∆ > δ), then false is output infinitely often. Hence, between δ and∆ the approximation
algorithm may output true or false just as well.

The existence of such approximations enables to answer to our initial problem (but
with the little restriction on δ and ∆): if at least one δ-timely path exists from p to q,
it is then possible to ensure that all processes eventually agree on the same ∆-timely

? This work has been supported in part by the ANR project SHAMAN and the INRIA project
GANG.



2

path from p to q. An algorithm which ensures that all correct processes eventually agree
on the same structure verifying some properties is called an extraction algorithm [7].
Many other problems can be solved in the same way: for example extraction of a tree
containing all correct processes whose all paths from the root are ∆-timely, or a ring
containing all correct processes and whose links are ∆-timely, etc.

Actually, all these aforementioned algorithms use methods very similar to the ones
used, for example, in the eventual leader election problem in [1–4, 9, 11]. In fact, we
prove here that this approach can be expressed in a very general framework. Approxi-
mation of δ-timeliness and extraction of some structures based on the δ-timeliness rela-
tion are special cases of the more general problem of approximating properties on runs
and extracting structures based on these properties. Instead of δ-timeliness, one can
consider more general properties on runs and consider when they are eventually true
forever. Then, assuming approximation algorithms for these predicates, it is possible to
extract (i. e. choose and agree) one of these predicates that is true in the run. More pre-
cisely, as for δ-timeliness, the approximation is defined by pairs of predicates (P,Q),
where P specifies when the approximation has to eventually output true forever and
¬Q when the approximation has not to eventually output true forever (in other words
has to output infinitely often false). Then, given a set of pairs of predicates (Pi, Qi) in-
dexed by some set I , the extraction algorithm, assuming that at least one Pi is true, will
converge to some i0 for all correct processes such that Qi0 is true. This generalization
enables to have the same algorithms for many different problems.

In this way, the extraction of structures based on the δ-timeliness relation is only a
special case of this general case. For example, assuming that processes have a trusting
mechanism (like a failure detector) giving to each processes lists of process supposed
to be alive, and consider the predicate “p is eventually in all lists”, then the extraction
algorithm gives one of such processes. Assuming that these lists are given by failure de-
tector ♦S ([5]) then the extraction algorithm gives an implementation of failure detector
Ω and the algorithm is rather close to algorithm of [6].

Contributions. In this paper, we first define a general framework in which processes
may approximate predicates on runs and give a generic extraction algorithm that en-
ables processes to converge on one of the predicates satisfied in the run. Then, we
apply these concepts by proposing algorithms and impossibility results about the ap-
proximation of δ-timeliness. In particular we give sufficient conditions to approximate
δ-timeliness on links. More precisely, we prove that we need either to have perfectly
synchronized clocks or to assume very strong timeliness requirements. Finally, we give
examples of general extractions based on approximation of link δ-timeliness. These il-
lustrations emphasizes the two mains points of our contribution. Firstly, this general
approach allows to drastically simplify the design of algorithm. Indeed, from a simple
algorithm that approximates a local predicate, like “a link is δ-timely”, we can easily
derive an algorithm to extract a more complex structure such as a δ-timely path or a
δ-timely ring. Secondly, our algorithms have practical applications, as they can be used
to find efficient routes in a network (that is, δ-timely paths), or efficient overlay such as
δ-timely rings.

Related works. Many works [1–4, 9, 11] on eventual leader election or Ω implementa-
tions uses the same techniques as here. This paper may be also seen as a formalization
and abstraction of these techniques. To the best of our knowledge [7] was the first one to
study timeliness for itself and not as a mean to get information about process crashes.
Note that as link timeliness only means that the communication delay of the link is
bounded, its interest is mainly theoretical.



3

Roadmap. In Section 2 we present the model. Section 3 gives the basic definitions
for approximations of predicates and the general extraction algorithm. Section 4 gives
conditions for the existence algorithms for approximation of δ-timeliness. In Section 5
we give some examples of applications of extraction algorithms for δ-timeliness.

2 Model

Processes. We consider distributed systems composed of n processes that communicate
by message-passing through directed links. We denote the set of processes by Π =
{p1, ..., pn}. We assume that the communication graph is complete, i.e., for each pair
of distinct processes p, q, there is a directed link from p to q, denoted by (p, q). A
process may fail by crashing, in which case it definitely stops its local algorithm. A
process that never crashes is said to be correct, faulty otherwise.

We assume the existence of a discrete global clock to which processes cannot ac-
cess. The range T of the clock’s ticks is the set of natural integers. All correct processes
p are synchronous, i.e., they are able to take step at each clock tick. So, they can accu-
rately measure time intervals.

As processes can accurately measure time intervals, our algorithms can use local
timers. A process p starts a timer by setting settimer(F ) to a positive value. F
is a flag that identifies the timer. The timer F is then decremented until it expires.
When the timer expires, timerexpire(F ) becomes true. Note that a timer can be
restarted (by setting settimer(F ) to some positive value) before it expires. Finally,
unsettimer(F ) allows to disable timer F .

Communication pattern. A communication pattern CP is a function from T ×Π ×Π
to N: CP (τ, p, q) = k means that if process p sends a message to process q at time τ
then the message is received by process q at time τ + k.

Communication between processes is assumed to be reliable and FIFO. Reliable
means that (1) every message sent through a link (p, q) is eventually received by q if q
is correct, also (2) if a message m from p is received by q, then m is received by q at
most once and only if p previously sent m to q. FIFO means that messages from p to
q are received in the order they are sent. The links being reliable, an implementation of
reliable broadcast [8] is possible and in the following reliable broadcast is defined by
two primitives: rbroadcast〈〉 and rdeliver〈〉.

Runs. An algorithm A consists of n deterministic (infinite) automata, one per process.
The execution of an algorithmA proceeds as a sequence of process steps. Each process
performs its steps atomically. During a step, a process may send and/or receive some
messages and changes its state.

A run R of algorithm A is a tuple R = 〈CP, I, E, S, F 〉 where CP is a communi-
cation pattern, I is the initial state of the processes in Π , E is an infinite sequence of
steps ofA, S is a list of increasing time values indicating when each step inE occurred,
and F is a failure pattern, i.e. a non decreasing function from T to 2Π such that F (τ)
is the set of processes that are crashed at time τ . Faulty(R) =

⋃
τ∈T F (τ) is the set

of faulty processes and Correct(R) = Π − Faulty(R) is the set of correct processes.
Process p may take a step at time τ only if it is not crashed at this time. A process

p takes an infinite number of steps if and only if p ∈ Correct(R). Moreover a run
satisfies properties concerning sending and receiving messages according to CP : if
p sends message m to q at time τ , and q is correct then m is received by q at time
τ + CP (τ, p, q).



4

δ-timeliness. Given some δ and two correct processes p and q, we say that link (p, q)
is δ-timely if and only if there is a time τ such that for all time τ ′ ≥ τ we have
CP (τ ′, p, q) ≤ δ. By convention, if q is faulty then link (p, q) is δ-timely, and if p
is faulty and q is correct, link (p, q) is not δ-timely.

3 Approximation and extraction

Predicates. Given a run R, the local state of process p in R at time τ is denoted
SR(p, τ). Predicates considered here are defined from functions φ from Π × T to
{true, false} that define the truth value in local states SR(p, τ). We always assume
that φ(p, τ) = true if p is crashed at time τ . By extension, φ(τ) denotes

∧
p∈Π φ(p, τ).

By definition, the predicate associated to φ, denoted Pφ, is true for run R if and only
if there is a time τ0 such that for all time τ ≥ τ0, φ(τ) is true. In this case, we also
say that φ is eventually forever true. In the following, a predicate P on run R is always
associated in this way to some φ. When the context is clear we do not give φ explicitly.

For example letQ be the predicate “the boolean variable v of process p is eventually
forever true”. Q is a predicate on the run for which φ(q, τ) is true if and only if v is true
in SR(p, τ). Remark that ¬Q is true if and only if we have “the boolean variable v of
process p is infinitely often false”. Generally, ¬Pφ is equivalent to for all time τ there
is some τ ′ ≥ τ and some process p such that φ(p, τ ′) is false, that is, there is a process
p such that φ(p, τ) is false infinitely often.

Predicate Pφ is said to be local to process p if and only if for all time τ we have
φ(τ) = φ(p, τ). Let ψp,q be the function defined by ψ(p,q)(r, τ) = true if and only
if CP (τ, p, q) ≤ δ. Pψp,q

is the predicate corresponding to the δ-timeliness of the
link (p, q). In the following, Pψ(p,q)

will be abbreviated as Tpq(δ). With help of the
assumption made on predicates for faulty processes, this predicate is local to process q.
In the same way, predicate “p is eventually crashed”, denoted Pp is crashed, is local to
p.

Approximation algorithms. In the following, we are interested in algorithms that ap-
proximate some predicates in the sense that to approximate P we want to get some
variable v such that: P is true if and only if v is eventually forever true. Actually, such
approximations are too strong, so we consider here weaker approximations: we define
the approximation by a pair of predicates (P,Q) such that (1) P ⇒ Q, (2) if P is true
then v must be eventually forever true, and (3) if Q is false then v is not eventually
forever true.

More precisely, consider pair (P,Q) of predicates such that P ⇒ Q, an approxi-
mation algorithm A for process p of predicates (P,Q) is an algorithm with a special
boolean variable local to p OutpA (actually the output of A for p) written only by algo-
rithm A such that:

– if P is true then OutpA is eventually forever true
– if Q is false then OutpA is not eventually forever true (i.e. is infinitely often false)

By convention, we assume that if p is correct then OutpA is written infinitely often (as
processes are synchronous it is always possible). Not that if P is false but Q is true then
OutpA may be eventually true forever or infinitely often false. In this way, for Q ∧ ¬P
there is no requirement on the output of A.

By extension, predicates (P,Q) are local to process p if both P and Q are local
to p. In the case of approximation of predicates (P,Q) local to p, an approximation
algorithm can be implemented for every correct process:



5

Proposition 1. IfA is an approximation algorithm for p of predicates local to p (P,Q),
then for every correct process q there exists an approximation algorithm for q of predi-
cate (P,Q).

Sketch of Proof. Let A be an approximation algorithm for p of predicates local to p
(P,Q).

Algorithm given in Figure 1 implements an approximation algorithm B of (P,Q)
for every correct process. In this algorithm, each time algorithm A modifies OutpA, (1)
OutpB is written and (2) a message is (reliably) broadcast to inform every process. When
a process q delivers this message, it writes its output value OutqB with the new value. If
this new value is false then true is written again into OutqB.

Assume that p is faulty. Then, by assumption about faulty processes and local pred-
icates, P is true. Also, by definition of the algorithm, every correct process q only
finitely delivers messages from p. As a consequence, OutqB is eventually forever true.

Assume that p is correct. First, by (1) OutpB is eventually forever true if and only if
OutpA is eventually forever true. Then, by (2), for every correct process q 6= p, OutqB
is eventually forever true if and only if OutpA is eventually forever true.

Hence, ifA is an approximation algorithm for p of predicates local to p (P,Q), then
B is an approximation algorithm for every correct process of predicate (P,Q). ut

In Code for A of p:

1: wheneverA writesOutpA with b /∗ b is a boolean value ∗/
2: OutpB := b;rbroadcast〈(P, b)〉
In Code for process q 6= p:

1: whenever rdeliver〈(P,b)〉
2: OutqB := b

3: if ¬b thenOutqB := true

Fig. 1. B, approximation algorithm of (P,Q) for every correct process

The next proposition can be verified using an algorithm very similar to the one given
in Figure 1.

Proposition 2. If AP,Q and AP ′,Q′ are approximation algorithms for correct process
p of predicates (P,Q) and correct process q of predicates (P ′, Q′), respectively, then
for all correct processes r, there are approximation algorithms for r of predicates (P ∧
P ′, Q ∧Q′).

In the following we are only interested in approximation algorithms for all correct
processes. Then, by default, an approximation algorithm of (P,Q) means an approxi-
mation algorithm for all correct processes.

Given a finite set of indexes I and a set of predicates indexed by I say (Pi, Qi)i∈I ,
the set (Ai)i∈I denotes the set of approximation algorithms of (Pi, Qi)i∈I , that is, for
each i ∈ I , Ai is an approximation algorithm for (Pi, Qi).

Extraction algorithms. Consider a set of predicates indexed by some finite set and as-
sume that at least one of these predicates is true. We would like that all correct processes
choose and converge to the same predicate satisfied in the run. To evaluate these pred-
icates, processes use approximations algorithms as defined just before. Hence, we do
not have sets of single predicates but sets of pair of predicates (Pi, Qi) indexed by some
set in which Pi specifies when the approximation outputs true forever and ¬Qi when



6

the approximation does not output true forever. Hence, if at least one of the Pi is true,
the extraction algorithm has to converge to one index j such that Qj is true. In this way,
from a property guaranteed in the run for at least one Pi, we find an index i0 such that
Qi0 is true. Of course, if Qi = Pi then the chosen index verifies Pi0 .

More precisely, let (Pi, Qi)i∈I be a set of predicates indexed by I , an extraction
algorithm for (Pi, Qi)i∈I is an algorithm such that in each run R where at least one
Pi is true, all correct processes eventually choose the same index i0 ∈ I such that
Qi0 is true. In other words, each process p has a variable dp and in each run R where∨
i∈I Pi = true, there is an index i0 ∈ I satisfying the following two properties:

– Eventual Agreement: there is a time τ after which for all correct processes p
dp = i0,

– Validity: Qi0 is true.

Let I be a finite set of indexes, and (Pi, Qi)i∈I a set of predicates indexed by I , if
(Ai)i∈I is a set of approximations of (Pi, Qi)i∈I , then the algorithm in Figure 2 is an
extraction algorithm for (Pi, Qi)i∈I .

In this algorithm, each process p associates a (local) counter variable Acc[i] to each
variable OutpAi

. Each time OutpAi
becomes false at p, p increments Acc[i]. Moreover,

each p regularly sends Acc to all other processes. Upon receiving a message containing
the array acc, a process locally updatesAcc[i] for all iwith the maximum value between
Acc[i] and acc[i]. This way:

– If there is a time after which OutpAi
is true forever for all processes, then the value

of Acc[i] is eventually fixed to the same value for all correct processes.
– If OutqAi

is false infinitely often at some process q, then Acc[i] is incremented
infinitely often by q. Consequently, Acc[i] is unbounded for all correct processes.

If for some j, Pj is true in the run then, asAj approximates (Pj , Qj), at leastAcc[j]
is eventually fixed to the same value for all correct processes. To agree on some i, the
processes call updateExtracted() each time they modify their array: this function sets
the variable d to the index i0 such that Acc[i0] is minimum (we use the order on the
indices to break tie). Hence, if for some j, Pj is true in the run then, eventually the
d-variable of every correct process p is set to the same index i0 such that OutpAi0

is
eventually forever true. As Ai0 approximates (Pi0 , Qi0), Qi0 is true in the run and we
can conclude:

Proposition 3. Let I be a finite set of indexes, and (Pi, Qi)i∈I a set of predicates in-
dexed by I , if (Ai)i∈I is a set of approximation algorithms of (Pi, Qi)i∈I , then there
exists an extraction algorithm for (Pi, Qi)i∈I .

Note that this extraction algorithm has two additional properties: it is self-stabilizing
and may tolerates fair lossy links.

Unfortunately in this extraction algorithm all correct processes send infinitely many
messages and consult infinitely many times all approximation algorithms (Ai). Now, it
is possible to achieve a more efficient extraction concerning communication.

Let (Ai)i∈I be a set of approximation algorithms of (Pi, Qi)i∈I . The extraction al-
gorithm A obtained with (Ai)i∈I is communication-efficient [10] if: (1) A is an extrac-
tion algorithm for (Pi, Qi)i∈I , and (2) for each run R if at least one Pi of (Pi, Qi)i∈I is
true then there is a time τ after which (a) there exists some j in I such that every correct
process p reads only OutpAj

, and (b) no message is sent by A after τ .
If (Ai)i∈I is a set of approximations of (Pi, Qi)i∈I , then the algorithm in Figure 3

is an efficient extraction algorithm for (Pi, Qi)i∈I .



7

Code for each process p

1: Procedure updateExtracted()
2: d← i such that (Acc[i], i) = min≺lex

{(Acc[i′], i′) such that i′ ∈ I}

3: On initialization:
4: for all i ∈ I doAcc[i]← 0
5: updateExtracted()
6: start tasks 1, 2 and 3

7: task 1:
8: loop forever
9: each timeOutpAi

becomes false
10: Acc[i]← Acc[i] + 1
11: updateExtracted()

12: task 2:
13: loop forever
14: send〈(ACC,Acc)〉 to every process except p every η /∗ η is a constant ∗/
15: task 3:
16: upon receive〈(ACC, a)〉 do
17: for all i ∈ I do
18: Acc[i]← max(Acc[i], a[i])
19: updateExtracted()

Fig. 2. Extraction algorithm for (Pi, Qi)i∈I assuming (Ai)i∈I is a set of approximations of (Pi, Qi)i∈I

Again in this algorithm, a counter variable Acc[i] is associated to each variable
OutpAi

. Again, updateExtracted() returns the index i0 such that Acc[i0] is minimum
and the variable d is set to this index. However, to get the efficiency, each process p
now only tests the value ofOutpAd

. Each timeOutpAd
becomes false, process p blames

d by reliably broadcasting the message (ACC, d) to every process. Upon delivering
(ACC, x), a process increments Acc[x] and calls updateExtracted() to refresh the
value of d.

If for some i, Pi is true in the run then, as Ai approximates (Pi, Qi), Out
q
Ai

is
eventually forever true at all correct processes p and the message (ACC, i) can only be
finitely broadcasted. Moreover, by the property of the reliable broadcast, all correct pro-
cesses delivers the same number of (ACC, i) messages. Hence, eventually every correct
process agrees on a fixed value of Acc[i]. As the value in Acc are monotically increas-
ing, by definitions of updateExtracted() and the reliable broadcast, the d-variables of
all correct processes eventually converge to the same index i0.

Assume now that the d-variables of all correct processes eventually converge to the
same index i0 but OutqAi0

is false infinitely often for some correct process q. In this
case, q continuously tests OutqAi0

and, consequently, (reliably) broadcasts infinitely
many (ACC, i0) messages. So, the value of Acc[i0] grows infinitely often at every
correct process and eventually the d-variables of all correct processes are set to some
other index.

Hence, if for some j, Pj is true in the run then, eventually the d-variable of every
correct process p is set to the same index i0 such that OutpAi0

is eventually forever true.
As Ai0 approximates (Pi0 , Qi0), Qi0 is true and we can conclude:

Proposition 4. If (Ai)i∈I is a set of approximation algorithms of (Pi, Qi)i∈I , then
there exists an communication-efficient extraction algorithm for (Pi, Qi)i∈I .

4 Approximation algorithms for δ-timeliness

We now consider the predicates Tqp(δ) on δ-timeliness of links (q, p). We notice that
even in the good case where processes are equipped with perfectly synchronized clocks,



8

Code for each process p

1: Procedure updateExtracted()
2: d← i such that (Acc[i], i) = min≺lex

{(Acc[i′], i′) such that i′ ∈ I}

3: On initialization:
4: for all i ∈ I doAcc[i]← 0
5: updateExtracted()
6: start tasks 1 and 2

7: task 1:
8: loop forever
9: each timeOutpAd

becomes false
10: rbroadcast〈(ACC, d)〉
11: task 2:
12: upon rdeliver〈(ACC,x)〉 do
13: Acc[x]← Acc[x] + 1
14: updateExtracted()

Fig. 3. Communication-efficient extraction algorithm for (Pi, Qi)i∈I assuming (Ai)i∈I is a set of approximations of
(Pi, Qi)i∈I

process q has to send a message every tick of time to approximate (Tqp(δ), Tqp(δ)). This
does not seem reasonable, so we consider the predicate (Tqp(δ), Tqp(∆)) with ∆ > δ.
Obviously, we have a good approximation when ∆ is close to δ. That is, if there exist
two reasonable constants m and a such that ∆ = mδ + a.

We first show that without additional assumptions there is no approximation algo-
rithm for (Tqp(δ), Tqp(∆)). Then we consider two assumptions that make the problem
solvable: (1) each process is equipped with a perfectly synchronized clock, and (2)
there is a Γ -timely path from q to p. We show that in both cases, there exist two con-
stants m and a such that if ∆ ≥ mδ + a, then there is an algorithm to approximate
(Tqp(δ), Tqp(∆)).

4.1 Impossibility results

If the system does not have additional assumptions, like perfectly synchronized clocks
in processes p and q or a Γ -timely path from q to p, then there is no algorithm to
approximate (Tqp(δ), Tqp(∆)). This result holds even if we consider a system without
crash failures.

Proposition 5. There is no approximation algorithm for (Tqp(δ), Tqp(∆)).

Sketch of Proof. In a run, it is possible that p starts executing its code at some time τ0
while q starts at some time τ ′0. (If we know that p and q start executing their local code
at the same time, then as their local clock can accurately measure the time, they have a
perfect synchronized clock.)

We proceed by contradiction. Assume there is an approximation algorithm A for
(Tqp(δ), Tqp(∆)). Let R be a run of A in which (i) the link q to p is δ-timely, (ii)
all messages from any process different from q take a time K > ∆ + 2, and (iii) all
messages to any process different from p take a time K > ∆ + 2. R defines the real
time at which processes takes steps, but by hypothesis processes do not have access to
this time. It is then possible to construct a run RK of A in which (1) process q takes
the same steps at the same time than in R, and (2) for each other process r, r takes
at time τ + K − 1 the step it takes at time τ in R. For every process, R and RK are
indistinguishable. Now, the properties of the approximation algorithm gives that there
is a time after which OutA is forever true in R, and consequently, in RK . However, in
RK , the messages sent by q are received by p with a delay of K − 1 > ∆. That is, the



9

communication from q to p is not ∆-timely in RK , contradicting the properties of the
approximation algorithm. ut

Note that when it is possible to design, an approximation algorithm for (Tqp(δ), Tqp(δ))
is really expensive. To see this, assume that q sends a message at time 2τ − 1 and at
time 2τ + 1. These messages are received by process p at 2τ − 1 + δ and 2τ + 1 + δ.
As q has omitted to send a message at time 2τ , we cannot evaluate if CT (2τ, q, p) = δ
or δ + 1. In this latter case, the link is not δ-timely but p cannot observe that. Hence,
follows:

Proposition 6. When an approximation algorithm for (Tqp(δ), Tqp(δ)) can be designed,
then in the algorithm, if q is correct, it must eventually send messages at every clock
tick.

4.2 Approximation algorithms

Algorithm assuming perfectly synchronized clocks. We first assume that processes are
equipped with perfectly synchronized clocks denoted clock(), i.e., for every time τ ,
every process p and q, we have clockp() = clockq() at time τ . Considering the link
(q, p), a constant K > 1, algorithm given in Figure 4 allows process p to approximate
(Tqp(δ), Tqp(δ+K)). In the algorithm, process p has a boolean variable OutA(q,p)

that
is initialized to true and reset to true every η time. This variable remains true until p
learns that a message from q to p may take more than δ + K time units. In this case
OutA(q,p)

is set to false. If in the extraction algorithm, p waits that OutA(q,p)
is false,

then it is notified.
To test the timeliness of the link, we proceed as follows: every K time, q sends to p

a TIMELY? message where it stores the current value of its local clock. As the clocks
are perfectly synchronized, upon receiving a TIMELY? message tagged with the clock
value c, p knows the exact time the message spends to traverse the link. If the message
spends more that δ time units, p has an evidence that was not timely and, consequently,
setsOutA(q,p)

to false. Moreover, we use a timer of periodK+δ. If p does not receive
any message from q during a period of K + δ time units, p suspects q and consequently
sets OutA(q,p)

to false.
If the link (q, p) is δ-timely, then q is correct. Hence, q sends TIMELY? messages

to p infinitely often and eventually all these messages are received by p on time. So,
eventually p stops setting OutA(q,p)

to false. Hence, OutA(q,p)
is eventually forever

true.
If the link (q, p) is not (δ +K)-timely, there is two cases to consider:

– If q eventually crashes, the timer guarantees thatOutA(q,p)
is false infinitely often.

– Assume now that q is correct. If the link is not (δ + K)-timely then for infinitely
many time τ , CT (τ, q, p) > δ +K. Let τ be such a time. There exists τ ′ such that
process q sends (TIMELY?) messages at τ ′ and at τ ′ +K with τ ′ < τ ≤ τ ′ +K.
By the FIFO property on the links, the message sent at τ ′ + K is received after
τ + δ +K + 1 > (τ ′ +K) + δ + 1. Hence, OutA(q,p)

is set to false.

In both cases OutA(q,p)
is false infinitely often.

Lemma 1. If processes are equipped with perfectly synchronized clocks, algorithm
given in Figure 4 is an approximation algorithm of (Tqp(δ), Tqp(δ +K)) for process
p.

With Proposition 1, we obtain:



10

Theorem 1. If processes are equipped with perfectly synchronized clocks, there is an
algorithm for all processes to approximate (Tqp(δ), Tqp(δ +K)).

Code for process p

1: Initialization
2: OutA(q,p)

← true

3: settimer(qp)← K + δ
4: start Task 1, Task 2 and Task 3

5: Task 1
6: upon receive〈TIMELY?, c〉 from q do
7: settimer(qp)← K + δ
8: if clock()− c > δ then
9: OutA(q,p)

← false /∗ the extraction algorithm at p will notice thatOutA(q,p)
isfalse ∗/

10: Task 2
11: upon timerexpire(qp) do
12: settimer(qp)← K + δ
13: OutA(q,p)

← false /∗ the extraction algorithm at p will notice thatOutA(q,p)
isfalse ∗/

14: Task 3
15: do every η time /∗ η is a constant ∗/
16: OutA(q,p)

← true

Code for process q

1: Initialization
2: start Task 4

3: Task 4
4: do everyK time
5: send〈TIMELY?, clock()〉 to p

Fig. 4. Algorithm for p to approximate (Tqp(δ), Tqp(δ +K)), assuming perfectly synchronized clocks.

Algorithm assuming a Γ -timely path in the reverse side. We now assume that local
clocks may not be synchronized. Instead, we assume that if the link (q, p) is δ-timely,
then there exists a Γ -timely path from p to q, that is, a path such that if p and q are
correct and p sends a message to q at time τ , then there exists some correct processes
r1,...,rk and some time τ1,...,τk such that (1) r1 = p, (2) rk = q, (3) τ1 = τ , (4)
τk ≤ τ + Γ , and (5) for all 1 ≤ i < k, if ri sends a message at time τi, it is received by
ri+1 at time τi+1.

Considering the link from q to p, the algorithm given in Figure 5 allows process p
to approximate the predicate (Tqp(δ), Tqp(2δ + Γ +K)).

In the algorithm, process p has a boolean variable OutA(q,p)
that behaves as in the

previous algorithm.
To test the timeliness of (q, p), we proceed by phases. Every K times, p broadcasts

to every other process a TIMELY? message where it stores the current phase number
and a counter value initialized to 0. Then, using the counter, the message is relayed at
most n− 1 times in all directions except p until reaching q. These relays guarantee that
if there exists a Γ -timely path from p to q, then at least one TIMELY? message tagged
with the current phase number arrives to q in less than Γ time units. Upon receiving
such a message, q relays the message a last time to p only. Hence, if (q, p) is δ-timely, p
receives from q at least one TIMELY? message tagged with the current phase number
in less than δ + Γ time units. If p does not receive this message by time δ + Γ , it sets
OutA(q,p)

to false. To this end, it uses one timer per phase that is activated when it
sends a TIMELY? message and this timer is disabled if the corresponding TIMELY?
message is received from q on time.



11

Code for process p

1: Initialization
2: phase qp← 0
3: OutA(q,p)

← true

4: start Task 1, Task 2, Task 3 and Task4

5: Task 1
6: do everyK time
7: phase qp← phase qp+ 1
8: send〈TIMELY?, phase qp, 0〉 to every process except p
9: settimer(phase pq)← δ + Γ

10: Task 2
11: upon receive〈TIMELY?, `,−〉 from q
12: unsettimer(`)

13: Task 3
14: upon timerexpire(`) do
15: OutA(q,p)

← false /∗ the extraction algorithm at p will notice thatOutA(q,p)
isfalse ∗/

16: Task 4
17: do every η time /∗ η is a constant ∗/
18: OutA(q,p)

← true

Code for process q

1: Initialization
2: start Task 5

3: Task 5
4: upon receive〈TIMELY?, t, k〉 from any process r do
5: send〈TIMELY?, t, k + 1〉 to p

Code for every process except p and q

1: Initialization
2: start Task 6

3: Task 6
4: upon receive〈TIMELY?, t, k〉 from any process r do
5: if k ≤ n− 1 then
6: send〈TIMELY?, t, k + 1〉 to every process except p

Fig. 5. Algorithm for p to approximate (Tqp(δ), Tqp(2δ + Γ +K)) assuming a Γ -timely path in the reverse side.

If the link (q, p) is δ-timely, then q is correct. So, there is a time after which, during
every phase, p receives at least one TIMELY? message from q in less than δ + Γ time.
Hence, OutA(q,p)

is eventually forever true.
If the link (q, p) is not (2δ + Γ +K)-timely, there is two cases to consider:

– If q eventually crashes, eventually p stops receiving TIMELY? messages and, con-
sequently, sets OutA(q,p)

to false infinitely often.
– Assume now that q is correct. If the link is not (2δ + Γ + K)-timely then for

infinitely many time τ , CT (τ, q, p) > 2δ + Γ +K. Let τ be such a time.
By definition, if q sends a message to p at time τ , then p receives the message at a
time τ ′ such that τ ′ > τ + 2δ + Γ +K. Moreover, the link being FIFO, (1) every
message sent by q to p after time τ is received after time τ ′ > τ + 2δ + Γ +K.
Every K time, p increments ph, sends a message (TIMELY?,ph,0), and starts a
timer identified by ph that will expire δ + Γ times later. In particular, p sends such
a message, say (TIMELY?,phi,0), at a time τi such that τ ≤ τi ≤ τ +K and starts
a timer phi that will expire at the latest at time τ+δ+Γ +K. Moreover, (2) before
time τi no (TIMELY?,phi,−) message exists in the system. So by (1) and (2), p
cannot receive any (TIMELY?,phi,−) message before time τ ′ > τ +2δ+ Γ +K.
Hence, p cannot receive any (TIMELY?,phi,−) message before timer phi expires.
Consequently, p will set OutA(q,p)

to false. Hence, if (q, p) is not (2δ + Γ +K)-
timely, p sets OutA(q,p)

to false infinitely often.



12

In both cases OutA(q,p)
is false infinitely often.

Lemma 2. If there is a Γ -timely path from p to q, algorithm given in Figure 4 is an
approximation algorithm (Tqp(δ), Tqp(2δ + Γ +K)) for process p.

With Proposition 1, we obtain:

Theorem 2. If there is a Γ -timely path from p to q, then there is an algorithm for all
processes to approximate (Tqp(δ), Tqp(2δ + Γ +K))

δ-timely paths In the same way it possible to approximate a δ-timely path P from p
to q, (every message sent along the path arrives to process q within δ), we denote this
predicate TP (δ). The algorithms that approximate (TP (δ), TP (∆)) are similar to those
Figure 4 and Figure 5. Let P be a path from p to q, we have:

Theorem 3. If processes are equipped with perfectly synchronized clocks, there is an
algorithm for all processes to approximate (TP (δ), TP (δ +K)).

Theorem 4. If there is a Γ -timely path from q to p, then there is an algorithm for all
processes to approximate (TP (δ), TP (2δ + Γ +K))

5 Extraction of δ-timeliness graphs

In this section, we apply our previous results to extract graphs. To that end, we give few
examples of sets of predicates on graphs. These predicates concern the δ-timeliness of
the edges of the graph. We show that we can extract an element of such sets under some
assumptions. We also exhibit some desirable properties of the extracted graphs.

We begin with some definitions and notations about graphs.

5.1 Graphs

For a directed graph G = 〈N,E〉, Nodes(G) and Edges(G) denote N and E, respec-
tively. The tuple (X,Y ) is a directed cut (dicut for short) of G if and only if X and Y
define a partition of Nodes(G) and there is no directed edge (y, x) ∈ Edges(G) such
that x ∈ X and y ∈ Y .

Lemma 3. For every path p0, . . . pm constituted of ∆-timely links, there exists k ∈
[0 . . .m+ 1] such that:

– for all j such that 0 ≤ j < k, pj is a correct process, and
– for all j such that k ≤ j ≤ m, pj is faulty.

Proof: For all i ∈ [0 . . .m − 1], (pi, pi+1) is ∆-timely and, by definition, if pi+1 is
correct then pi is also correct, which proves the lemma. ut

We deduce the following corollary from Lemma 3:

Corollary 1. Let P be a path from p to q constituted of ∆-timely links.

– If p and q are correct, then all processes in P are correct.
– If P is a cycle, then either all processes are correct or all processes are faulty.



13

5.2 Extracting an elementary δ-timely path from p to q

Let (Pathi)i∈I be the set of all possible elementary paths from p to q. If (Ai)i∈I is a set
of approximation algorithms of (TPathi(δ)), TPathi(∆))i∈I , then from Proposition 3,
there is an extraction algorithm for (TPathi

(δ), TPathi
(∆))i∈I , and from Proposition 4,

there is a communication-efficient extraction algorithm for (TPathi
(δ), TPathi

(∆))i∈I .
By Proposition 2 and Theorem 3, assuming perfectly synchronized clocks, there is an
approximation algorithm for (TPathi(δ), TPathi(∆))i∈I for every ∆ > δ. Hence, we
can conclude:

Theorem 5. Assuming perfectly synchronized clocks and∆ > δ, there exists a (commu-
nication-efficient) extraction algorithm for (TPathi

(δ), TPathi
(∆))i∈I .

Following a similar reasoning, using Theorem 2, we have:

Theorem 6. Assuming a Γ -timely path in the reverse side, if ∆ > 2δ + Γ , there is a
(communication-efficient) algorithm for (TPathi

(δ), TPathi
(∆))i∈I .

By Corollary 1, if p and q are correct, then every ∆-timely path from p to q only
contains correct processes. Hence, the algorithm we obtained allows to efficiently route
message in the network. Moreover, our approach being modular, one can design a rout-
ing algorithm for only a restricted subset of processes. For example, if we consider a
clustered network, one may want to design an efficient routing algorithm only for the
set of clusterheads (the communication inside a cluster being usually local or managed
using an overlay like a tree).

5.3 Extracting δ-timely graphs

We want now to extract δ-timely graphs containing all correct processes. Below, we
give some definitions to formally explain our approach.

Consider the set of all graphs (Gi)i∈I that can be constructed withNodes(Gi) ⊆ Π
and Edges(Gi) ⊆ Nodes(Gi)×Nodes(Gi).

TGGi
(δ) is true in run R if and only if eventually (1) all nodes of Π − Gi are

crashed, and (2) all edges (p, q) of Gi are δ-timely.
By definition, if TGGi

(δ) is true in a run R, Gi contains all correct processes. If
(Ai)i∈I is a set of approximations of (TGGi(δ), TGGi(∆))i∈I , then by Propositions
2, 3, and 4, there is an (efficient) extraction algorithm for (TGGi(δ), TGGi(∆))i∈I .

To define TGGi
(δ) we need a local predicate Pp is crashed that states if a process p

is crashed. A local algorithm that approximates this predicate is given below.

Approximate crashed processes. We can easily design an approximation algorithm Ap
for (Pp is crashed, Pp is crashed) at every process q 6= p: process p regularly sends mes-
sages. Each time a process receives such a message it sets OutAp to false. Moreover, q
regularly resets OutAp

to true. If p is faulty, OutAp
is eventually forever true. Other-

wise (p is correct), OutAp
is infinitely often false. Hence, follows:

Proposition 7. Algorithm given in Figure 6 allows every process q to approximate
(Pp is crashed, Pp is crashed).

Using Pp is crashed and Te(δ), we can now define TGGi
(δ) as follows: TGGi

(δ) ≡∧
e∈Edges(Gi)

Te(δ) ∧
∧
v/∈Nodes(Gi)

Crash(v).
Assuming perfectly synchronized clocks, by Propositions 7, 2, and Theorem 1,

there is an approximation algorithm AGi
for (TGGi

(δ), TGGi
(∆))i∈I if ∆ > δ. By

Propositions 3 and 4, we can conclude:



14

Code for process p

1: Initialization
2: start Task 1

3: Task 1
4: do every η time /∗ η is a constant ∗/
5: send〈(ALIV E)〉 to every process except p
6: OutAp ← false /∗ the extraction algorithm at p will notice thatOutAp is false ∗/

Code for process q 6= p

1: Initialization
2: start Task 2 and Task 3

3: Task 2
4: upon receive〈ALIVE〉 from p do
5: OutAp ← false

6: Task 3
7: do every η time /∗ η is a constant ∗/
8: OutAp ← true

Fig. 6. Algorithm to approximate (Pp is crashed, Pp is crashed).

Theorem 7. Assuming perfectly synchronized clocks and∆ > δ, there exists a (commu-
nicationn-efficient) algorithm that extracts (TGGi(δ), TGGi(∆))i∈I .

Following a similar reasoning, by Proposition 2, 3, 4, 7, and Theorem 2, we have:

Theorem 8. Assuming a Γ -timely path in the reverse side, if ∆ > 2δ + Γ , there is a
(communication-efficient) algorithm that extracts TGGi

(δ), TGGi
(∆))i∈I .

From the previous theorem and Corollary 1, we can deduce the next corollary, which
states that the extracted graph is a dicut between correct and faulty processes. Note that
this property is very useful. For example, one can design an approximation algorithm to
extract a tree. Then, if not all the processes are faulty, the extracted tree will be rooted
at a correct process, the tree will contain all correct processes, and in the tree there will
exist a ∆-timely path from the root to every other correct process. Hence, the algorithm
will allow to communication-efficiently route message from a correct to all others.

Corollary 2. If Gi0 is the extracted graph, Gi0 [Correct(R)], Gi0 [Faulty(R)] is a
directed cut of Gi0

From Corollaries 1 and 2, we have the next corollary, which gives a sufficient con-
dition to evaluate ♦P , the eventually perfect failure detector [5] that eventually outputs
exactly the set of correct processes.

Corollary 3. If there is at least one correct process and if (Gi)i∈I contains only strongly
connected graphs, the extracted graph Gi0 contains only correct processes.

Extracting a ring containing all correct processes. We now want to extract a δ-timely
ring among all correct processes. Consider the set of all graphs (Ringi)i∈I , that are all
possible rings among any non-empty subset of Π .

TGRingi(δ) is true in run R if and only if eventually (1) all nodes of Π − G are
crashed, and (2) all edges (p, q) of G are δ-timely.

By Corollary 1, if RingG(δ) is true in run R then G contains exactly the set of
correct processes of run R.

Assuming perfectly synchronized clocks, by Propositions 2, 7, and Theorem 1, there
is an approximation algorithms for (TGRingi(δ), TGRingi(∆))i∈I . By Propositions 3
and 4, we can conclude:



15

Theorem 9. Assuming perfectly synchronized clocks, if ∆ > δ, there exists a (commu-
nication-efficient) extraction algorithm for (TGRingi(δ), TGRingi(∆))i∈I .

In a ring composed of δ-timely links, each link (p, q) of the ring is δ-timely and
there is a path from q to p that is (n − 1)δ-timely. Then, by Propositions 2, 3, 4, and
Theorem 2 , we have:

Theorem 10. If ∆ > (n + 1)δ, there is a (communication-efficient) extraction algo-
rithm for (TGRingi(δ), TGRingi(∆))i∈I .

As noted previously the extracted ring contains exactly the correct processes.

6 Concluding remarks

In this paper, we studied in which way processes may approximate and agree on struc-
tural properties based on δ-timeliness (e.g., find δ-timely paths between processes or
build a ring between correct processes using only δ-timely links).

We focused on δ-timeliness of the links, however other properties are also interest-
ing to approximate. For example, with general timeliness defined as the existence of
some unknown bound on communication delays, we can get the same results as in [7].
Approximation and extraction algorithms may be considered as a first step to dynami-
cally evaluate predicates expressed in some kind of temporal logic.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election. In:
Welch, J.L. (ed.) DISC. Lecture Notes in Computer Science, vol. 2180, pp. 108–122.
Springer (2001)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega
with weak reliability and synchrony assumptions. In: PODC. pp. 306–314 (2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient
leader election and consensus with limited link synchrony. In: Chaudhuri, S., Kutten, S.
(eds.) PODC. pp. 328–337. ACM (2004)

4. Aguilera, M.K., Deporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega in
systems with weak reliability and synchrony assumptions. Distributed Computing 21(4),
285–314 (2008)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

6. Chu, F.: Reducing Ω to ♦W . Information Processing Letters 67(6), 298–293 (Sep 1998)
7. Delporte-Gallet, C., Devismes, S., Fauconnier, H., Larrea, M.: Algorithms for extracting

timeliness graphs. In: SIROCC0 (2010)
8. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and related prob-

lems. Tech. Rep. TR 94-1425, Department of Computer Science, Cornell University (1994)
9. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for imple-

menting omega and consensus. IEEE Trans. Dependable Sec. Comput. 6(4), 269–281 (2009)
10. Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable fail-

ure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC. Lecture Notes in
Computer Science, vol. 1693, pp. 34–48. Springer (1999)

11. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detec-
tors. In: DSN. pp. 351–360. IEEE Computer Society (2003)


