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Abstract. Consider an asynchronous network in a shared-memory environment
consisting of n nodes. Assume that up to f of the nodes might be Byzantine
(n > 12f), where the adversary is full-information and dynamic (sometimes called
adaptive). In addition, the non-Byzantine nodes may undergo transient failures.
Nodes advance in atomic steps, which consist of reading all registers, performing
some calculation and writing to all registers.
The three main contributions of the paper are: first, the clock-function problem is
defined, which is a generalization of the clock synchronization problem. This gen-
eralization encapsulates previous clock synchronization problem definitions while
extending them to the current paper’s model. Second, a randomized asynchronous
self-stabilizing Byzantine tolerant clock synchronization algorithm is presented.
In the construction of the clock synchronization algorithm, a building block that
ensures different nodes advance at similar rates is developed. This feature is the
third contribution of the paper. It is self-stabilizing and Byzantine tolerant and
can be used as a building block for different algorithms that operate in an asyn-
chronous self-stabilizing Byzantine model.
The convergence time of the presented algorithm is exponential. Observe that
in the asynchronous setting the best known full-information dynamic Byzantine
agreement also has an expected exponential convergence time.

1 Introduction

When tackling problems in distributed systems, there are many previously devel-
oped building blocks that assist in solving the problem. Some of these building
blocks allow one to design a solution under “easy” assumptions, then automati-
cally transform them to a more realistic environment. For example, it is easier to
construct an algorithm in the synchronous model, then add an underlying syn-
chronizer (see [4]) to adapt the solution to an asynchronous model. Similarly, de-
veloping a self-stabilizing algorithm can be challenging; instead, one can develop
a non-self-stabilizing algorithm, and use a stabilizer ([1]) to address transient
errors.

Among the different models of distributed systems, specific models received
more attention than others; and therefore the availability and versatility of build-
ing blocks differ from one model to another. For example, the synchronous no-
failures model can automatically be extended in many different directions: asyn-
chronous no-failures, synchronous self-stabilizing, asynchronous self-stabilizing,
etc. Zooming-in to the world of self-stabilizing, there are various model-convertors:
between shared-memory and message-passing, from an id-based to uniform sys-
tem, etc. (see [11]).
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However, when moving away from the commonly researched models, the avail-
ability of such model-converters diminishes. In the current paper we are interested
in an asynchronous network with Byzantine nodes and transient failures. That is,
we aim at solving a problem in a way that is Byzantine tolerant, self-stabilizing
and operates in an asynchronous network. The Byzantine adversary is assumed to
be full-information and dynamic (sometimes called adaptive). There are few pre-
vious works that operate in similar models [18,19,17]. In these works non-faulty
neighbors of Byzantine nodes may reach undesired states. However, as far as we
know, this is the first work operating in such a setting in which non-Byzantine
nodes reach their desired state even if they have Byzantine neighbors.

The problem we solve in the current work is clock-synchronization. Our solu-
tion assumes two simplifying assumptions: a) a “centralized daemon”, i.e., each
node can run the entire algorithm as an atomic step; b) an “en masse scheduler”
that adheres to the following: if p gets scheduled twice, then n − 2f other non-
faulty nodes get scheduled in between (formally defined in Definition 2). Under
these assumptions we define and solve the clock synchronization problem in an
asynchronous network while tolerating both Byzantine and transient faults. The
solution is a randomized algorithm with expected convergence time of O(3n−2f ).

Both assumptions can be seen as “building blocks that do not yet exist”.
When constructing a self-stabilizing asynchronous algorithm (without Byzantine
nodes), it is reasonable to assume a centralized daemon due to the mutual exclu-
sion algorithm of Dijkstra (see [8]). Thus, once an equivalent algorithm can be
devised for this paper’s model, the first assumption can be removed. In Section 6
we provide an algorithm that implements the second assumption, thus allowing
its usage without reducing the generality of a solution that uses it.

Due to our dependence on the first assumption, we consider this work as
a step towards a full solution of the clock synchronization in an asynchronous
network that is self-stabilizing and Byzantine tolerant. We hope it leads to fur-
ther research of this model, one which will produce an equivalent of Dijkstra’s
algorithm operating in the current work’s model.

Related Work Being able to introduce consistent “time” in a distributed system
is an important task, however difficult it may be in some models. For many
distributed tasks the crux of the problem is to synchronize the operations of the
different nodes. One method of doing this is using some sort of “time-awareness”
at each node, ensuring that different “clocks” advance in a relatively synchronized
manner. Therefore, it is interesting to devise such algorithms that are highly
robust.

In the past, various models were considered. Ranging from synchronous sys-
tems (see [10,12,15]), in which all nodes receive a common signal simultaneously
at regular intervals; through bounded-delay systems (see [9,?]), in which only a
bound on the message delivery time is given; to completely asynchronous systems
(see [7,14]), in which only an eventual (but not bounded) delivery of messages



is assumed. Independent of the timing model, different fault tolerance assump-
tions are considered: the self-stabilizing fault paradigm, in which all nodes follow
their protocol but may start with arbitrary values of their variables and program
counter (see [11]). Another commonly assumed faults are the Fail-stop faults,
in which some of the nodes may crash and cease to participate in the protocol.
Lastly, Byzantine faults are considered to be the most severe fault model, as they
assume that the faulty nodes can behave arbitrarily and even collude in trying
to keep the system from reaching its designated goals (see [3,16]).

“Knowing what time it is” acquires different flavors in different models. In
systems without any faults, it is usually assumed that each node has a physical
clock, and these clocks differ from node to node. The main issue is to synchro-
nize the different clocks as close as possible. In a synchronous, self-stabilizing
and Byzantine tolerant model, this problem was termed “digital clock synchro-
nization”, and consisted of having all nodes agree on some bounded integer and
increase it every round (see [2,10,12,15]).

The traditional concept of “clock synchronization” does not hold in an asyn-
chronous environment. Therefore, previous work has defined “phase clocks” or
“unison” (see [7,14]), which states that each node has an integer valued clock,
and neighboring nodes should be at most ±1 from each other. It is shown (for
example, see [14]) how such “synchronization” is sufficient in solving many prob-
lems.

Most previous works in the asynchronous model considered self-stabilizing
or Byzantine faults, but not both. In the current work, we consider both fault
models. However, defining what “telling the time” means in an asynchronous,
self-stabilizing and Byzantine tolerant manner is a bit tricky. To address that, a
new notion of “knowing what time it is” is introduced: a clock function.

All previous clock-synchronization (or phase-clock, or unison, etc.) algorithms
can be viewed in the following way: each time a non-faulty node is running, it
executes some piece of code (“function”) that returns a value (“the clock value”)
and there are constraints on the range of different non-faulty nodes’ values. In
the synchronous digital clock synchronization problem, the function returns an
integer value, and we require that all nodes executing the function at the same
round receive exactly the same value and a node executing the function in con-
secutive rounds receives consecutive values. In an asynchronous network (i.e., in
[14]), different nodes may execute their clock-functions at different times and at
different rates. The constraint on the returned values can be described as follows:
given a configuration of the system, if p would execute its clock-function and
receive a value v, then any neighbor of p that would execute its clock-function at
the same configuration, would receive a value that differs by at most ±1 from v.

In the current work it is assumed that the network is fully connected, which
means that every node is connected to every other node. Therefore, the constraint
of the clock-function is simplified, informally requiring any two non-faulty nodes
that execute the clock-function to receive values that are at most one apart.



In synchronous networks the problem of self-stabilizing Byzantine tolerant
clock synchronization is equivalent to the problem of Byzantine agreement, in the
sense that any solution to the self-stabilizing Byzantine tolerant clock synchro-
nization problem is also a solution to the (non-self-stabilizing) Byzantine agree-
ment problem. In asynchronous networks the best known full-information dy-
namic Byzantine agreement has expected exponential convergence time (see [5]).
While the synchronous equivalence between clock synchronization and Byzantine
agreement does not transfer to the asynchronous setting (as it strongly uses the
fact that all nodes agree on the exact same clock value), it raises the possibil-
ity that improving the result of this paper will require usage of new techniques.
That is, it is not known yet if the self-stabilizing clock synchronization of the
current work can be used to solve Byzantine agreement. However, if it can be
used, then improving the exponential convergence of the current work would lead
to an improvement of the best known asynchronous Byzantine agreement against
a dynamic full-information adversary.

Contribution Our contribution is three-fold. First, we define the clock-function
problem, which is a generalization of the clock synchronization problem. This
definition provides a meaningful extension of the clock synchronization problem
to the asynchronous self-stabilizing Byzantine tolerant model.

Second, we provide an algorithm that solves the clock-function problem in
the above model. Using shared memory, it has an expected O(3n−2f ) conver-
gence time, independent of the wraparound value of the clock. Notice that for
synchronous networks, the first two contributions were already presented in [12].
Our contribution is with respect to asynchronous networks.

Lastly, in Section 6 we construct a building block that bounds the relative
rates at which different non-faulty nodes progress with respect to other non-faulty
nodes. More specifically, between any two atomic steps of a non-faulty node p,
there are guaranteed to be atomic steps of n − 2f other non-faulty nodes. (See
the “en masse scheduler” assumption described in the introduction). We postu-
late that this building block can be used in other asynchronous self-stabilizing
Byzantine tolerant settings.

Overview We start by defining the model (see Section 2). A subset of all pos-
sible runs is defined and denoted “en masse” (see Definition 2). Section 3 dis-
cusses different aspects of defining clock synchronization in an asynchronous, self-
stabilizing, Byzantine tolerant environment; and defines a clock function, which
is a generalization of the clock synchronization problem.

Section 4 introduces Async-Clock, an algorithm that solves the problem at
hand. Section 5 contains the correctness proof for Async-Clock. Both Section 4
and Section 5 are correct only for en masse runs, for which Async-Clock re-
quires fault redundancy of n > 6f .



In Section 6 the algorithm EnMasse is presented, which transforms any run
into an en masse run. Leading to the correctness of Async-Clock for any run.
However, the transformation done by EnMasse increases the fault redundancy
of Async-Clock to n > 12f . Lastly, Section 7 concludes with a discussion of
the results.

2 Distributed Model

The system is composed of a set of n nodes denoted by P. Every pair of nodes
p, q ∈ P communicates via shared memory (i.e., a fully-connected communica-
tion graph), in an asynchronous manner. That is, p and q share two registers:
Rp,q, Rq,p.

1 Register Rp,q is written by p and read by q.2 A configuration C de-
scribes the global state of the system and consists of the states of each node
and the state of each register. A run of the system is an infinite sequence of
configurations C0 → C1 → · · · → Cr → · · · , such that the configuration Cr+1 is
reachable from configuration Cr by a single node’s atomic step. In the context
of the current paper, an atomic step consists of reading all registers, performing
some calculation and then writing to all registers.

The system is assumed to start from an arbitrary initial configuration C0. We
show that eventually - in the presence of continuous Byzantine behavior - the
system becomes synchronized.

In addition to transient faults, up to f of the nodes may be Byzantine . The
Byzantine adversary has full information, i.e., it can read the values in every
node’s memory3 and in the shared registers between any two nodes. There are
no private channels and the adversary is computationally unbounded. Moreover,
the adversary is dynamic, which means it may choose to “capture” a non-faulty
node at any stage of the algorithm. However, once the adversary has “captured”
f nodes in some run, it cannot affect other nodes and in a sense becomes static.
The results of this paper can be extended to the setting in which the adversary
continues to be dynamic throughout the run, as long as the adversary is limited
by the rate at which it can release and capture non-faulty nodes. We do not
present this extension in the current paper for the sake of clarity. However, one
can easily be convinced that it applies, once the main points of the work are
explained.

The adversary also has full control of the scheduling of atomic steps and
can use its full information knowledge in this scheduling. However, for a clock
synchronization algorithm to be meaningful, runs in which some of the non-faulty

1 Pair-wise communication is used to allow Byzantine nodes to present different values to
different nodes; as opposed to assuming a single register per-node that can be read by all
other nodes.

2 For simpler presentation we assume that p writes and reads Rp,p.
3 Actually, the presented algorithm stores all its state in the shared registers.



nodes never get to perform atomic steps should be excluded. Thus, throughout
the paper only fair runs are considered:

Definition 1. A run is fair if every non-faulty node performs infinitely many
atomic steps.

A subset of all fair runs is defined:

Definition 2. A run T is en masse with respect to node p if for any 2 atomic
steps p performs during T (say at configurations C and C′, respectively) there are
at least n− 2f non-faulty nodes that perform atomic steps between C and C′.

A run T is en masse if it is fair and it is en masse with respect to all
non-faulty nodes.

As stated in the overview, en masse runs are needed for Async-Clock to operate
correctly. Assuming all runs are en masse runs, the fault tolerance redundancy
required is n > 6f (see Lemma 3 for an example of the necessity of n > 6f).
However, in Section 6 we show how to remove the requirement of en masse runs,
at the cost of increasing the fault tolerance redundancy to n > 12f .

3 Problem Definition

Before formally defining the problem at hand, consider the properties a dis-
tributed clock synchronization algorithm should have in an asynchronous setting:

1. (clock-value) a means of locally computing the current clock value at any
non-faulty node;

2. (agreement) if different non-faulty nodes compute the clock value close (in
time) to each other, they should obtain similar values;

3. (liveness) if non-faulty nodes continuously recompute clock values, then they
should obtain increasing values.

For example, in a synchronous network, the clock synchronization problem is
usually formulated as: (clock-value) each node p has a bounded integer counter
Clockp; (agreement) for any two non-faulty nodes p, q it holds that Clockp =
Clockq; (liveness) if Clockp = z at round r then Clockp = z + 1 at round r + 1.
Since the clock is bounded, the previous sentence is slightly modified: “if Clockp =
z at round r, then Clockp = z + 1(mod k) at round r + 1”; where k represents
the wrap-around value of the clock.

Notation 31 Denote by a⊕k b the value (a+ b mod k).

In an asynchronous setting, it is impossible to ensure that all nodes update
their clocks simultaneously. Thus, the “agreement” property requires a relaxed
version as opposed to the synchronous setting’s stricter version. In addition, the
“liveness” property is somewhat tricky to define, due to the Byzantine presence.



To illustrate the difficulty, consider a set of f Byzantine nodes that “behave as if”
they were non-faulty, and they repeatedly recompute the clock value. According
to the definition above, the clock value will increase continuously, even though
non-faulty nodes did not perform a single step. Therefore, such a clock synchro-
nization algorithm is useless, as the Byzantine nodes can make it reach any clock
value; in other words, the Byzantine nodes “control” the clock value.

It is not immediately clear how these “benign” Byzantine nodes can be dif-
ferentiated from the non-faulty nodes. The following definitions address such
difficulties, and present a formalization of the clock synchronization problem in
this paper’s model.

Definition 3. A value v′ is at most d ahead of v if there exists j, 0 ≤ j ≤ d,
such that v ⊕k j = v′. Denote “v′ is at most d ahead of v” by v �d v

′.

Definition 4 addresses the “clock-value” property:

Definition 4. A clock-function F is an algorithm that when executed during
an atomic step returns a value in the range {0, ..., k − 1}. Denote by Fp(C) the
value returned when p executes F during an atomic step at configuration C.

Consider the “agreement” property: it requires that different non-faulty nodes
that compute the clock value simultaneously, receive similar values. What does
“simultaneously” mean in an asynchronous setting? It can be captured by require-
ments on the clock values computed in different runs. In addition, the interference
caused by Byzantine nodes in different runs needs to be captured.

Informally, “agreement” requires the following from F : given a configuration
C, no matter what the adversary does, if different non-faulty nodes execute F
they receive values that are close to each other. Definition 5, Definition 6 and
Definition 7 formally state the “agreement” requirement. First, “no matter what
the adversary does” is formally defined:

Definition 5. An adversarial move from a configuration C is any configura-
tion reachable by an arbitrary sequence of atomic steps of faulty nodes only.

Second, “different non-faulty nodes execute F” is divided into two cases. Let
p, q be non-faulty nodes. The first case considers the computed value of p (when
calculating F on C) as opposed to the computed value of q (see Definition 6).
The second case considers the computed value of q after p has computed its value
(see Definition 7). Both cases require the computed values of p and q to be close
to each other.

Definition 6. A configuration C is ℓ-well-defined (with respect to some clock-
function F) if there is a value v s.t. for any non-faulty node p and every adver-
sarial move C′ from C it holds that v �ℓ Fp(C′). v is called “a defined value” at
C. (There may be more than one such v).



Informally, Definition 6 says that C is ℓ-well-defined if there is an intrinsic
value v such that any adversarial move cannot increase the clock-value by more
than ℓ. Thus, any two non-faulty nodes p, q (in different run extensions from C)
that execute F on C (no matter what the adversary has done) will receive values
in the range {v, . . . , v + ℓ}; i.e., p and q’s values are at most ℓ apart.

Suppose C0 is ℓ-well-defined with value v, and that a non-faulty node p per-
forms an atomic step at C0 resulting in C1 and then a non-faulty node q performs
an atomic step at C1. Definition 6 does not imply any constraint on the value of
Fp(C0) with respect to Fq(C1), therefore the following definition is required:

Definition 7. A run is ℓ-well-defined (w.r.t. a clock-function F) if: a) every
configuration C in the run is ℓ-well-defined; b) for two consecutive configurations
C, C′, if v is a defined value of C and v′ is a defined value of C′ then v �ℓ v

′.

Definition 7 states that the values of a clock-function F on consecutive con-
figurations cannot be arbitrary. That is, they must be at most ℓ apart from
the previous configuration. However, there is no requirement that they actually
increase; i.e., “liveness” is not captured by the previous definitions.

Definition 8. A run is ℓ-clock-synchronized (w.r.t. some clock-function F),
if it is ℓ-well-defined (w.r.t. F) and the defined values of consecutive configura-
tions change infinitely many times. ( I.e., for infinitely many consecutive config-
urations C, C′ the defined values of C differ from the defined values of C′).

Notice that Definition 7 already requires that defined values of consecutive
configurations are non-decreasing (assuming that ℓ is sufficiently small with re-
spect to k). Thus, combined with Definition 8, it implies that in an ℓ-clock-
synchronized run, infinitely many configurations are configurations with increas-
ing defined values (informally, “increasing” means that one defined value is achieved
by adding less than k

2 to a previous defined value).

Remark 1. Definition 7 and Definition 8 impose requirements on the defined val-
ues of consecutive configurations. However, a specific node p might compute a
clock value that is decreasing between consecutive configuration. i.e., p’s clock
might “go backward”. For example, let C, C′ be two consecutive configurations,
and let the defined value of both configurations be v. It is possible that p will
compute the clock value to be v+1 for C, while computing the clock value to be
v for C′.

However, this possibility is immanent to an asynchronous Byzantine tolerant
clock synchronization that has a wraparound value k. Consider a setting in which
all nodes but one are advanced in a synchronous manner, while a single node p
performs atomic steps only once every k − 1 rounds. In such a setting, p should
update its clock value to be slightly below its previous value (alternatively, it can
be seen as increasing the value by k − 1).



Algorithm Async-Clock /* executed on node q */

01: do forever:

/* read all registers */
02: for i := 1 to n
03: set vali := read Rpi,q mod k;

/* some internal definitions */
04: let #v denote the number of times v appears in {vali}

n
i=1;

05: let count(v, l) denote
∑l

j=0 #(v ⊕k j);
06: let pass(l, a) denote {v|count(v, l) ≥ a};

/* update my val */
07: if pass(0, n− f) 6= ∅ then
08: set my valq := 1⊕k max{pass(0, n− f)};
09: else if pass(1, n− f) 6= ∅ then
10: set my valq := 1⊕k max{pass(1, n− f)};
11: else if pass(1, n− 2f) 6= ∅ then
12: let low /∈ pass(1, n− 2f) be such that low ⊕k 1 ∈ pass(1, n− 2f);
13: let relative median = min{l|l ≥ 0& count(low, l) > n

2
};

14: set my valq := low ⊕k relative median;
15: else set my valq := randomly select a value from pass(1, n−3f)

⋃
{0};

/* write my val to registers */
16: for i := 1 to n
17: write my valq into Rq,pi ;
18: od;

Fig. 1. A self-stabilizing Byzantine tolerant algorithm solving the 5-Clock-
Synchronization problem.

Definition 9. An algorithm A solves the ℓ-clock-synchronization problem

if there is a clock-function F s.t. any fair run starting from any arbitrary config-
uration has a suffix that is ℓ-clock-synchronized with respect to F .

An ideal protocol would solve the 0-clock-synchronization problem. However,
due to the asynchronous nature of the discussed model, the best that can be
expected is to solve the 1-clock-synchronization problem. We aim at solving the
ℓ-clock-synchronization problem for as many values of ℓ ≥ 1 as possible. Clearly,
if A solves the ℓ1-clock-synchronization problem, then A also solves the ℓ2-clock-
synchronization problem for any k

2 > ℓ2 ≥ ℓ1.

Therefore, the rest the paper concentrates on solving the 5-clock-synchronization
problem; thus, solving the ℓ-clock-synchronization problem for all k

2 > ℓ ≥ 5 . In

Section 7.1 we show how to use any k−1
2 -clock-synchronization problem to solve

the 1-clock-synchronization problem, thus solving the ℓ-clock-synchronization
problem for all k

2 > ℓ ≥ 1.



4 Solving the 5-Clock-Synchronization Problem

An atomic step consists of reading all registers, performing some calculations and
writing to all registers. Thus, an atomic step consists of executing once an entire
“loop” of Async-Clock (see Figure 1).

Each non-faulty node p has a bounded integer variable, my valp, which rep-
resents the current clock value of p. When p performs an atomic step, it reads all
of its registers, thus getting an impression of the clock values of the other nodes.
It then computes its own new clock value (which is saved in my valp) and writes
my valp to all registers.

Async-Clock operates in a similar fashion to many other Byzantine tolerant
algorithms. It first gathers information regarding the clock value of the other
nodes in the system. Then it uses various thresholds to decide on the clock value
for the next step. If no threshold works (i.e., no clear majority is found), it
chooses a random value from a small set of options.

To ensure all values read during Line 02-03 are in the range [0, . . . , k − 1],
the algorithm applies “ mod k” to the values read. This is a standard way of
dealing with uninitialized values.

The crux of Async-Clock is in the exact thresholds and their application
(Lines 07-15). In these lines, node p considers different possibilities. Either it sees
a decisive majority towards some clock value (Line 07 and Line 09) in which case
p updates its local clock value to coincide with the majority clock value it has
seen. Alternatively, if no clear majority exists (Line 15), p randomly selects a new
clock value. The interesting case is when p sees a “partial” majority (Line 11),
in which case p takes the relative median of the clock values it has seen. We call
this a “relative median” since the clock values are “mod k” and thus the median
in not well defined.

The full Async-Clock algorithm appears in Figure 1. Async-Clock solves
the ℓ-Clock-Synchronization problem for ℓ = 5; combined with the discussion at
the end of Section 3, it shows how to solve the ℓ-Clock-Synchronization problem
for any k

2 > ℓ ≥ 5.

Notation 41 The value of any variable var at configuration Cr is denoted by
Cr(var). For a node q that does not perform the atomic step that changes Cr to
Cr+1, the value of my valq, denoted Cr(my valq), is the same before and after the
atomic step.

For node p that performs the atomic step at configuration Cr, my val is the
only variable that is not deterministically determined by the values of the regis-
ters at the beginning of p’s atomic step. In such a case, for my val, the nota-
tion Cr(my valp) denotes the value of my val before p starts its atomic step, and
Cr+1(my valp) denotes the value of my val after p finishes its atomic step. For
all other variables, Cr(var) will denote the value of variable var, as computed for
configuration Cr; i.e., Cr(passp(1, n − 2f)) denotes the value that p computes for
pass(1, n − 2f) during its atomic step at Cr.



5 Correctness Proof

In the following discussion we consider the system only after all transient faults
ended and each non-faulty node has taken at least one atomic step. We consider
only runs of the system that begin after that initial sequence of atomic steps.

Informally, a round is a portion of a run such that each node that is non-
faulty throughout the round performs an atomic step at least once. The first
round (of a run T ) is the minimal prefix R of the run T such that each node
that is non-faulty throughout R performs an atomic step at least once. Consider
the suffix T ′ of T after the first round was removed. The second round of T is
the first round of T ′; the definition continues so recursively.

Consider any fair run of the system C0 → C1 → · · · → Cr → · · · , and consider
the transition from configuration Cr to configuration Cr+1, due to some (possibly
faulty) node p’s atomic step. Since we consider only runs after each non-faulty
node q has taken at least one atomic step past the end of the transient faults
events, the value of my valq reflects the latest value written to all of q’s write-
registers. This property is true for all configurations that we consider. Thus,
regarding a non-faulty p that performs an atomic step, for all non-faulty q it
holds that Rq,p = my valq.

The proof outline is as follows. First, define a tight configuration:

Second, we show that if a configuration Cr is tight then so is Cr+1. Third, if Cr
is not tight, then we show that with probability 1

3n−2f some configuration within 2

rounds from Cr will be tight. Concluding that after an expected O(3n−2f ) rounds
the system reaches a tight configuration; and all following configurations are tight
as well. At this stage, we need to show that the value v that a configuration is
tight around continuously increases.

To do so, we show that given that all configurations are tight, different non-
faulty nodes that perform atomic steps can have values from a set containing (at
most) 3 consecutive values. Moreover, for consecutive configurations, the minimal
value among these 3 values can increase by at most 3. Lastly, by closely analyzing
the behavior of Async-Clock, we conclude that within 4 rounds the minimal
value above increases. That is, the clock function value changes, and changes
again within at most 4 rounds, i.e., the clock value changes infinitely many times.

The reason behind the increase of the aforementioned minimal value lies in the
following claim: one of two things can happen, either the minimal value increases,
or all the non-faulty nodes’ clock values become at most 1 apart. In the second
scenario, after one round, the minimal value will increase. Concluding that the
clock value changes infinitely many times, as required.

Remark 2. The en masse property is used in the proof that if Cr is not tight, then
with probability 1

3n−2f a configuration within 2 rounds from Cr will be tight. Since
in an en masse run some set of n− 2f different non-faulty nodes are required to
take atomic steps in a consecutive manner. Together with a claim stating that



each such step has probability of 1
3 to flip a coin “in the right direction”, we get

that with probability 1
3n−2f a tight configuration is reached.

Lemma 1. If v1 �d v
′ and v2 �d v

′ then either v2 �d v1 or v1 �d v2.

Proof. By definition, there are j1, j2 (0 ≤ j1, j2 ≤ d) such that v′ = v1 ⊕k j1 and
v′ = v2 ⊕k j2. Thus, v2 ⊕k j2 = v1 ⊕k j1, which means that v2 = v1 ⊕k (j1 − j2).
Clearly, |j1 − j2| ≤ d. If j1 − j2 ≥ 0 then v2 is at most j1 − j2 ≤ d ahead of v1.
Otherwise, j2 − j1 > 0, meaning that v1 = v2 ⊕k (j2 − j1). That is, v1 is at most
j2 − j1 ≤ d ahead of v2.

We are interested in the set of non-faulty nodes that are “close” to each other
with respect to their value of my val.

Definition 10. H(Cr, v, d) is the set containing any non-faulty node q, such that
Cr(my valq) is at most d ahead of v. Formally, H(Cr, v, d) = {non-faulty q | v �d

Cr(my valq)}.

Definition 11. H(Cr, p, v, d) is the set containing any node q, such that Cr(Rq,p)
is at most d ahead of v. Formally, H(Cr, p, v, d) = {q | v �d Cr(Rq,p)}.

Notice that H(Cr, v, d) contains only non-faulty nodes, while H(Cr, p, v, d)
may contain faulty nodes. The difference stems from H(Cr, p, v, d) representing
what p “perceives” at configuration Cr, as opposed to H(Cr, v, d) which says
“what is true” in configuration Cr.

Lemma 2. |H(Cr, v, d)| ≥ |H(Cr, p, v, d)| − f and |H(Cr, p, v, d)| ≥ |H(Cr, v, d)|.

Remark 3. Notice thatH(Cr, p, v, d) contains all the nodes (including faulty nodes)
whose registers’ value (in Cr) is at most d ahead of v. Thus, v ∈ Cr(passp(d, x)) 6=
∅ if (and only if) |H(Cr, p, v, d)| ≥ x.

Definition 12. A configuration Cr is tight around value v if |H(Cr, v, 1)| ≥
n− 2f ; a configuration is tight if it is tight around some value.

Lemma 3. If a configuration Cr is tight around value v and around value v′ 6= v,
then either v �1 v

′, or v′ �1 v.

Proof. By the lemma’s assumption, it holds that |H(Cr, v, 1)| ≥ n − 2f and
|H(Cr, v

′, 1)| ≥ n−2f . Since n > 6f , there is some non-faulty node q ∈ H(Cr, v, 1)
⋂

H(Cr, v
′, 1).

Thus, Cr(my valq) is at most 1 ahead of v and at most 1 ahead of v′. The rest
follows from Lemma 1.

Remark 4. Following the same line of proof as in Lemma 3 shows that Cr(passp(1, n−
2f)) can contain at most 2 values, and these values are consecutive values.

Lemma 4. If in configuration Cr, non-faulty node p performs Line 12 then
Cr(lowp) is well defined, for k ≥ 3.



Proof. By Remark 4, if p passes the condition of Line 11 then Cr(passp(1, n−2f))
contains at most 2 values, which are consecutive. Thus, if k ≥ 3 then Cr(lowp) is
well defined.

Lemma 5. If p passes the condition in Line 11 and |H(Cr, v, 1)| ≥ n− 3f then
v �1 (low ⊕k relative median), for k > 4.

Proof. p passed the condition in Line 11, thus Cr(passp(1, n − 2f)) 6= ∅. Thus,
for some v′ it holds that |H(Cr, p, v

′, 1)| ≥ n− 2f (see Remark 3), and therefore
|H(Cr, v

′, 1)| ≥ n−3f (see Lemma 2). By the lemma’s assumption, |H(Cr, v, 1)| ≥
n−3f . Since n > 6f , there is some non-faulty node q ∈ H(Cr, v

′, 1)
⋂

H(Cr, v, 1).
That is v′ �1 Cr(my valq) and v �1 Cr(my valq). By Lemma 1 either v �1 v′ or
v′ �1 v.

According to Line 12 and Remark 4, low⊕k 1 �1 v
′. Thus, in both scenarios

(v �1 v′ or v′ �1 v) it holds that low �3 v. Informally, low is “before” v, and
relative median (see Line 13) is increased until there are more than n

2 nodes in
the range [low, low ⊕k relative median]. Since there are ≥ n− 3f > n

2 copies of
“v”, relative median will be such that low ⊕k relative median ∈ {v, v ⊕k 1}.

Formally, relative median is the minimal value such that countp(low, relative median)
contains more than n

2 nodes. Since |H(Cr, v, 1)| ≥ n−3f > n
2 , at least one copy of

“v” is counted towards the sum of countp(low, relative median). Since k > 4 (by
the lemma’s assumption), copies of v will not be counted in countp(low, relative median′)
for relative median′ such that low ⊕k relative median′ /∈ {v, v ⊕k 1}. On the
other hand, countp(low, relative median′) ≥ n − 2f for relative median′ such
that low ⊕k relative median′ = v ⊕k 1. Thus, relative median ⊕k low = v or
relative median ⊕k low = v ⊕k 1. In both cases v �1 low ⊕k relative median.

Lemma 6. If a configuration Cr is tight then so is Cr+1.

Proof. If p is faulty, its update of my valp and/or its write-registers do not affect
the “tightness” of the configuration Cr+1. Thus, the rest of the proof assumes
that p is non-faulty.

First, notice that if Cr(passp(0, n− f)) 6= ∅ then Cr(passp(0, n− f)) contains
a single value. This is because Cr(passp(0, n − f)) contains all the values v that
appear at least n− f times in the registers read by p. If two values appear more
than n− f times they must be the same value (since n > 6f).

Consider p updating my valp. If p updates it in Line 08, then it must have
passed the “if” in Line 07. Thus, Cr(passp(0, n − f)) 6= ∅, which means that
Cr(passp(0, n− f)) = {v}. Thus, my valp is updated to v⊕k 1. From Remark 3 it
holds that |H(Cr, p, v, 0)| ≥ n−f , and from Lemma 2 it holds that |H(Cr, v, 0)| ≥
n−2f . Thus, after p’s update of my valp to v⊕k 1 (and p’s writing my valp to all
of p’s write-registers), |H(Cr+1, v, 1)| ≥ n− 2f holds. Thus, configuration Cr+1 is
tight.

If p updates my valp in Line 10, then Cr(passp(1, n − f)) 6= ∅. Denote by
v := max{passp(1, n − f)}. (in Line 10, my valp is updated to v ⊕k 1). Notice



that v �1 my valp. In addition, v ∈ Cr(passp(1, n − f)), thus (by Remark 3),
|H(Cr, p, v, 1)| ≥ n− f . Therefore, after p’s update of my valp, p ∈ H(Cr+1, v, 1),
which means that |H(Cr+1, v, 1)| ≥ |H(Cr, v, 1)| (because p may not be counted
for in H(Cr, v, 1)). By Lemma 2, |H(Cr, v, 1)| ≥ n − 2f , thus we have that
|H(Cr+1, v, 1)| ≥ n− 2f , i.e., configuration Cr+1 is tight.

We are left to consider updates of my valp in Line 14 and Line 15. Notice that
since Cr is tight, |H(Cr, p, v, 1)| ≥ n−2f , for some v. Thus, Cr(passp(1, n−2f)) 6=
∅. Therefore, p passes the condition of Line 11, and p does not perform Line 15.

According to the lemma’s assumption Cr is tight around some value v, and by
Lemma 5 we have that v �1 relative median⊕k low. That is, p updates my valp
such that p ∈ H(Cr+1, v, 1). Since, |H(Cr, v, 1)| ≥ n − 2f and since p is the only
node changing its my valp at Cr, it holds that |H(Cr+1, v, 1)| ≥ n − 2f . That is,
Cr+1 is tight.

The following lemmas assume all runs are en masse. In Section 6 this assump-
tion is removed (at the cost of reducing the fault tolerance to n > 12f).

Lemma 7. Consider an en masse run, and a non-faulty node p performing an
atomic step at configuration Cr. Denote by Si the set of non-faulty nodes that
have performed an atomic step between Cr and Cr+i. Let m be the minimal m
s.t. |Sm| = n− 2f , then each node q ∈ Sm performed an atomic step exactly once
between Cr and Cr+m.

Proof. First, since we consider only fair runs, eventually Si will contain all non-
faulty nodes. Thus, m, as defined in the lemma is well defined. Assume by way
of contradiction that some node q in Sm performed two atomic steps between
Cr and Cr+m. In that case, there must be n− 2f non-faulty nodes that perform
atomic steps between q’s two atomic steps. Thus, all of these nodes must be in
Sm, leading to the fact that |Sm−1| ≥ n − 2f which contradicts m being the
minimal m s.t. |Sm| = n− 2f . Therefore, there is no such q ∈ Sm, and all nodes
in Sm perform a single atomic step between Cr and Cr+m.

Lemma 8. Let Cr1 denote the first configuration of some round R, and Cr2 de-
note the last configuration of round R+1. With probability at least 1

3n−2f config-
uration Cr2 is tight.

Proof. Consider non-faulty nodes performing atomic steps between Cr1 and Cr2 .
If some configuration Cr, r1 ≤ r ≤ r2 is tight, then - by using Lemma 6 - every
configuration after Cr is tight. Thus, Cr2 is tight. Therefore, our target is proving
that with probability at least 1

3n−2f some configuration Cr is tight.
Let Cr, r1 ≤ r ≤ r2 be some configuration, and let p be a non-faulty node per-

forming an atomic step on Cr. p performs exactly one of the following: Line 08,
Line 10, Line 14 or Line 15. If p performs Line 08 or Line 10, then Cr(passp(1, n−
f)) 6= ∅. That is, for some value v ∈ Cr(passp(1, n−f)) it holds that |H(Cr, p, v, 1)| ≥
n− f which means that |H(Cr, v, 1)| ≥ n− 2f (see Lemma 2); that is, Cr is tight



around v. Therefore, if any non-faulty node performs Line 08 or Line 10 during
rounds R,R+1, then Cr2 is tight.

The rest of the proof assumes no non-faulty node performs either Line 08 or
Line 10 on any configuration Cr, r1 ≤ r ≤ r2. Consider the first n − 2f non-
faulty nodes performing atomic steps in round R. (By Lemma 7 these nodes
perform exactly one atomic step, i.e., the adversary cannot reschedule a node if
“it does not like” the outcome of that node’s random coin). If they all perform
only Line 15, then there is some probability that they all choose the same value
of my val, as they all choose from a set that contains “0”. Each node chooses
from a set pass(1, n − 3f)

⋃
{0}, which contains at most 3 items. Thus, with

probability at least 1
3n−2f all non-faulty nodes choose the same value, leading to

a tight configuration.

The proof continues under the assumption that some non-faulty node p per-
forms Line 14 on some configuration Cr during round R. Using the notations
Sm of Lemma 7, there are n − 2f non-faulty nodes that perform atomic steps
between Cr and Cr′ = Cr+m. Notice that since all non-faulty nodes perform an
atomic step during round R+ 1 then configuration Cr′ is reached in round R or
in round R+ 1, and in any case Cr′ is reached before Cr2 .

Since p performs Line 14 it passed the condition of Line 11 and it holds that
Cr(passp(1, n − 2f)) 6= ∅. By Lemma 2 and Remark 3 |H(Cr, v, 1)| ≥ n − 3f for
some value v. According to Lemma 5, v �1 Cr+1(my valp); thus, |H(Cr+1, v, 1)| ≥
n− 3f .

The proof continues by showing that if |H(Cr′′ , v, 1)| ≥ n − 3f for r′′, r +
1 ≤ r′′ ≤ r′, then with probability at least 1

3 it holds that |H(Cr′′+1, v, 1)| ≥
n − 3f ; and if node q performing an atomic step on Cr′′ is non-faulty then also
q ∈ H(Cr′′+1, v, 1). Assume that |H(Cr′′ , v, 1)| ≥ n − 3f and consider a node q
performing an atomic step on Cr′′ . If q is faulty then its action does not change
the value of H(Cr′′+1, v, 1), thus |H(Cr′′+1, v, 1)| ≥ n−3f . If q is non-faulty and it
performs Line 15 then since v ∈ Cr′′(passq(n−3f, 1)), with probability at least 1

3 ,
q selects v as its value of my valq (as it is selected from a set containing at most
three items). On the other hand, if q performs Line 14, then since |H(Cr′′ , v, 1)| ≥
n − 3f by Lemma 5 q ∈ H(Cr′′+1, v, 1) and |H(Cr′′+1, v, 1)| ≥ n − 3f . Thus,
in either case with probability at least 1

3 it holds that q ∈ H(Cr′′+1, v, 1) and
|H(Cr′′+1, v, 1)| ≥ n− 3f .

Therefore, if at some configuration Cr it holds that |H(Cr, v, 1)| ≥ n − 3f ,
then any non-faulty node q operating in a configuration Cr′′ , r

′′ ≥ r will have
Cr′′+1(my valq) ∈ H(Cr′′+1, v, 1) (with probability ≥ 1

3 ). Therefore, once n −
2f non-faulty nodes perform an atomic step, they are all in H(Cr′ , v, 1) with
probability at least 1

3n−2f . Thus, Cr′ is tight with probability ≥ 1
3n−2f .

From this point on, the discussion assumes that all configurations are tight.
Therefore, Line 15 will never be executed.



Definition 13. Denote by V(Cr) the set containing any value v of a non-faulty
node p, such that p “helps” in the configuration Cr being tight around v. Formally,

V(Cr) =
⋃

v s.t. |H(Cr ,v,1)|≥n−2f

{Cr(my valp)|p ∈ H(Cr, v, 1)} .

Lemma 9. If k ≥ 6, then V(Cr) is exactly one of the following: {v}, {v, v ⊕k 1}
or
{v, v ⊕k 1, v ⊕k 2}, for some value v.

Proof. From Lemma 3 it follows that |V(Cr)| ≤ 3. Moreover, if k ≥ 6 then for
any two values v, v′ ∈ V(Cr) it holds that v �2 v′ or v′ �2 v, which is proved
by way of contradiction. Assume that neither hold; notice that v ∈ V(Cr) due
to some value v such that v �1 v and |H(Cr, v, 1)| ≥ n − 2f ; for similar reasons
v′ ∈ V(Cr) due to v′ �1 v′. Thus, if neither v �2 v′ or v′ �2 v, we have that
H(Cr, v, 1)

⋂
H(Cr, v

′, 1) = ∅, leading to |H(Cr, v, 1)
⋃

H(Cr, v
′, 1)| ≥ 2(n−2f) =

2n − 4f > n. From the above discussion, if |V(Cr)| = 3, it must be of the form
V(Cr) = {v, v ⊕k 1, v ⊕k 2}.

If |V(Cr)| = 2, then V(Cr) can either be {v, v⊕k1} or {v, v⊕k2}. In the second
option, no non-faulty node has a value of v⊕k 1, that is, H(Cr, v, 1)

⋂
H(Cr, v⊕k

2, 1) = ∅. As before, we reach a contradiction from |H(Cr, v, 1)
⋃

H(Cr, v ⊕k

2, 1)| ≥ 2(n − 2f) = 2n− 4f > n.
Therefore, V(Cr) is exactly one of the following: {v}, {v, v ⊕k 1} or {v, v ⊕k

1, v ⊕k 2}.

Lemma 9 leads to defining the “minimal” and “maximal” values of V(Cr) in
the following way: Vmin(Cr) := {v|v ∈ V(Cr)& v⊕k−1 /∈ V(Cr)} and Vmax(Cr) :=
{v|v ∈ V(Cr)& v⊕k 1 /∈ V(Cr)}. By the above lemma both Vmin(Cr) and Vmax(Cr)
are well defined (for k ≥ 6).

Lemma 10. Let k > 6 and let Cr, Cr+1 be two consecutive configurations. Then,
Vmin(Cr) �3 Vmin(Cr+1).

Proof. Let p be the node that performs an atomic step between Cr and Cr+1. If p
is faulty, then its update of my valp does not affect the value of Vmin(Cr+1), and
we have that Vmin(Cr) = Vmin(Cr+1), which means that Vmin(Cr) �3 Vmin(Cr+1).

The rest of the proof assumes p is non-faulty. p updates my valp due to
Line 08, Line 10 or Line 14. If p performs Line 08 then my valp is updated
to v ⊕k 1, where v = max{passp(0, n − f)}. By definition, v ∈ V(Cr); thus,
Vmax(Cr) �1 Vmax(Cr+1).

Similarly, if p performs Line 10, then my valp is updated to v ⊕k 1, where
v = max{passp(1, n − f)}. Again, by definition v ∈ V(Cr); thus, Vmax(Cr) �1

Vmax(Cr+1).
Consider p performs Line 14. By definition, |H(Cr,Vmin(Cr), 1)| ≥ n − 3f ;

thus, by Lemma 5 Vmin(Cr) �1 (low ⊕k relative median). Thus, Vmax(Cr) �1

Vmax(Cr+1).



In all 3 scenarios it was shown that Vmax(Cr) �1 Vmax(Cr+1). However,
|V(Cr)| ≤ 3 (see Lemma 9) and thus Vmin(Cr) �2 Vmax(Cr). Therefore, Vmin(Cr) �3

Vmax(Cr+1). Since Vmin(Cr+1) �2 Vmax(Cr+1), we have that Vmin(Cr) �3 Vmin(Cr+1);
as required.

Lemma 11. If a non-faulty node p performs an atomic step between Cr, Cr+1

then Cr+1(my valp) ∈ V(Cr+1).

Proof. If p performs Line 08 or Line 10 then Cr+1(my valp) = v ⊕k 1 for some
v ∈ Cr(passp(1, n − f)). By Remark 3 and Lemma 2, |H(Cr, v, 1)| ≥ n − 2f .
Therefore, p ∈ H(Cr+1, v, 1) and |H(Cr+1, v, 1)| ≥ n − 2f , which means that
Cr+1(my valp) ∈ V(Cr+1).

Consider p performing Line 14. Since Cr is tight there is some value v such
that |H(Cr, v, 1)| ≥ n−2f . By Lemma 5 we have that v �1 Cr+1(my valp). Thus,
p ∈ H(Cr+1, v, 1) and |H(Cr+1, v, 1)| ≥ n−2f , which means that Cr+1(my valp) ∈
V(Cr+1).

Lemma 12. Starting from a tight configuration C′, within 4 rounds there are two
consecutive configurations Cr, Cr+1 for which Vmin(Cr) 6= Vmin(Cr+1).

Proof. Consider configurations C′ = Cr1 , Cr2 , Cr3 , Cr4 , Cr5 such that Cri+1
is one

round after Cri . Let Cr′ , r1 ≤ r′ < r5 be some configuration, and let p be a non-
faulty node performing an atomic step on Cr′ . If Vmin(Cr′) 6= Vmin(Cr′+1), we are
done. Otherwise, assume by way of contradiction that for all r1 ≤ r′ < r5 it holds
that Vmin(Cr′) = Vmin(Cr′+1); denote V = Vmin(Cr1). Therefore, by Lemma 9
and Lemma 11, Cr′+1(my valp) ∈ H(Cr′+1,V, 2). Since all non-faulty nodes have
performed an atomic step between Cr1 and Cr2 , for any Cr′ , r2 ≤ r′ < r5 it holds
that |H(Cr′ ,V, 2)| = n− f . We continue to consider only configurations Cr′ such
that r2 ≤ r′ < r5.

Notice that if p performs Line 08 or Line 10 then my valp is updated to
be at least “+1” from V. This is because only V,V ⊕k 1,V ⊕k 2 may be in
Cr′(passp(1, n − f)) or Cr′(passp(0, n − f)). Thus, taking the maximum of these
sets and adding “1” produces a value that is at least “+1” from V.

We divide the proof into two scenarios: 1) for some configuration Cr′ , r2 ≤
r′ ≤ r4 it holds that |H(Cr′ ,V, 0)| <

n
2 −f ; 2) for all Cr′ , r2 ≤ r′ ≤ r4 it holds that

|H(Cr′ ,V, 0)| ≥
n
2 − f . Consider the first case, ant let Cr′ be some configuration

s.t. |H(Cr′ ,V, 0)| < n
2 − f . Clearly, if p performs Line 08 or Line 10 then it

updates my valp to be “greater” than V. If p performs Line 14, then because
values that are not V ⊕k 1,V ⊕k 2 can appear at most n

2 times, p must update
my valp to be “greater” than V. Therefore, if |H(Cr′ ,V, 0)| <

n
2 − f , then also

|H(Cr′+1,V, 0)| <
n
2 − f . Moreover, Cr′+1(my valp) ∈ {V ⊕k 1,V ⊕k 2}.

Thus, if for some configuration Cr′ , r2 ≤ r′ ≤ r4 it holds that |H(Cr′ ,V, 0)| <
n
2 − f , then starting from Cr5 (at least one round after Cr′), no non-faulty node
has my val equal to V, which means that Vmin(Cr5) 6= V = Vmin(Cr1).



We continue under the assumption that |H(Cr′ ,V, 0)| ≥
n
2−f , for all r2 ≤ r′ ≤

r4. Recall that all non-faulty nodes have values from the set {V,V ⊕k 1,V ⊕k 2}.
Thus, |H(Cr′ ,V ⊕k 1, 1)| ≤ n

2 . Therefore, if p passes Line 08 or Line 10 then
Cr′(passp(0, n− f)) and Cr′(passp(1, n− f)) do not contain V ⊕k 1,V ⊕k 2; which
means they may contain V ⊕k −1 or V. Thus, p updates my valp to V or V ⊕k 1.
On the other hand, if p performs Line 14 it updates my valp to be either V or
V ⊕k 1 (recall that Vmin(Cr′) = V which means that |H(Cr′ ,V, 1)| ≥ n − 2f >
n
2 ). Thus, in all cases, p updates my valp to be either V or V ⊕k 1. Therefore,
|H(Cr3 ,V, 1)| = n− f , and |H(Cr′ ,V, 1)| = n− f for all r3 ≤ r′ ≤ r4.

Thus, any non-faulty node performing an atomic step on configuration Cr′ , r3 ≤
r′ ≤ r4, either passes the condition of Line 08 or Line 10. In both cases, it up-
dates my valp to be “greater” than V. Thus, starting from Cr4 it holds that
|H(Cr′ ,V, 0)| < n

2 − f . And we are back to the previous case, in which we
have shown that Vmin must change within 1 round. Thus, for some configuration
Cr′ , r4 ≤ r′ < r5 it holds that Vmin(Cr′) 6= V. In other words, within 4 rounds
there is some configuration Cr such that Vmin(Cr) 6= Vmin(Cr+1).

Following is the main result of the paper, which is shown to be true assuming
that the runs are en masse. In the following section en masse runs are constructed
from fair runs. Thus, the theorem can be updated to only require that the run is
fair.

Theorem 1. Async-Clock solves the 5-clock-synchronization problem within
expected O(3n−2f ) rounds, for any en masse run and wrap-around value greater
than 6 ( i.e., k > 6).

Proof. Define the clock-function F executed by non-faulty node p at configuration
Cr to be the value of Cr+1(my valp) as updated by Async-Clock when executed
as an atomic step. Combining Lemma 9, Lemma 10 and Lemma 11 shows that a
tight configuration is 5-well-defined with respect to F ; where Vmin(Cr) a defined
value at Cr. In addition, these lemmas show that any fair run T consisting of
only tight configurations is 5-well-defined. By Lemma 12, run T is also 5-clock-
synchronized.

Given any en masse run T ′ and any initial configuration C0, Lemma 8 states
that with probability ≥ 1

3n−2f there is some configuration Cr ∈ T ′ (within two
rounds from C0) that is tight. By Lemma 6 every configuration after Cr is also
tight. Thus, every fair run T ′ has a suffix T that consists of only tight configu-
rations; and this suffix is reached within O(3n−2f ) rounds in expectation. From
the above paragraph, T is 5-clock-synchronized.

Thus, Async-Clock solves the 5-clock-synchronization problem.

6 Ensuring En Masse Runs

Our goal is to ensure that if a non-faulty node p performs a step, at least n− 2f
non-faulty nodes have performed a step since p’s last step. That is, given an



algorithm A we want to ensure that if some non-faulty node performs two steps
of A then there are at least n− 2f different non-faulty nodes that also perform
steps of A. To ensure this, we present an algorithm EnMasse that ensures that
a specific action, denoted “act”, is executed twice by the same non-faulty node p
only if there are at least n − 4f other non-faulty nodes that have also executed
“act”. By setting “act” to execute an atomic step of A, we achieve the required
goal. I.e., Async-Clock will be executed entirely every time “act” appears in
EnMasse.

As the algorithm we present ensures only n − 4f nodes execute “act” in
between two “acts” of every non-faulty node, we must reduce the Byzantine
tolerance by half (n > 12f) to use EnMasse as a subcomponent of Async-

Clock. That is, Async-Clock requires a threshold of 2
3n non-faulty nodes

(n−2f threshold for n > 6f); EnMasse ensures a threshold of n−4f . Therefore,
by reducing the fault tolerance to n > 12f we ensure that n−4f > 2

3n, as required
by Async-Clock.

Our solution borrows many ideas from [13]. Due to our model’s atomicity
assumptions, each node can read all registers and write to all registers in a single
atomic step. Thus, the problems that [13] encounters do not exist in the current
paper at all. However, in the current model there are additional faults (Byzantine
and self-stabilizing) which do not exists in [13]. Interestingly, the same ideas used
in [13] can be adapted to the self-stabilizing Byzantine tolerant setting.

For each node p, there is a set of labels Labelsp associated with p. In addition,
each node p has a variable labelp from the set Labelsp; Also, p has an ordering
vector orderp, of length |Labelsp|, which induces an order on the labels in Labelsp.
Lastly, each node p has a time-stamp timep, which is a vector of n entries,
consisting of a single label timep[q] ∈ Labelsq for each node q.

Definition 14. A label b is of type p if b ∈ Labelp.

Definition 15. Two labels b, c of type p are compared according to orderp, where
b <p c if b appears before c in the vector orderp. The inequalities ≤p, >p,≥p,=p

are similarly defined.

Definition 16. Given two time-stamps timep, timeq, and a set of nodes I, we
say that timep >I timeq if p, q ∈ I and for every entry i ∈ I, timep[i] ≥i timeq[i],
timep[q] =q timeq[q] and timep[p] >p timeq[p].

To simplify notations, when it is clear from the context, we write p >I q
instead of timep >I timeq. That is, when comparing nodes (according to >I), we
actually compare the nodes’ time stamps.

Definition 17. A set I of nodes is comparable if for any p, q ∈ I either p >I q
or q >I p.

Lemma 13. If I is a comparable set, and p, q, w ∈ I, and p >I q, q >I w then
p >I w.



Proof. Since I is comparable, either p >I w or w >I p. Suppose by way of
contradiction that w >I p, thus timep[w] <w timew[w]. However, since p >I q
we have that timep[w] ≥w timeq[w], and since q >I w we have that timeq[w] =w

timew[w]. Thus, timep[w] ≥w timew[w], contradicting timep[w] <w timew[w].
Therefore, it is not true that w >I p, leaving only one other option: p >I w.

Lemma 14. Let I, I ′ be comparable sets, then I ∩ I ′ is a comparable set. More-
over, for p, q ∈ I ∩ I ′, p <I∩I′ q iff p <I q.

Proof. Let I, I ′ be comparable sets, and let p, q ∈ I ∩ I ′. Since p, q ∈ I and I
is comparable, either p <I q or q <I p, similarly, either p <I′ q or q <I′ p.
Suppose by way of contradiction that p <I q and q <I′ p. Due to p <I q it holds
that timeq[q] >q timep[q] and due to q <I′ p it holds that timeq[q] =q timep[q];
leading to a contradiction. Thus, either p <I q and p <I′ q or p >I q and p >I′ q.

Assume that p <I q and p <I′ q. Therefore, for all i ∈ I ∪ I ′ it holds that
timep[i] ≤i timeq[i], timep[p] = timeq[p] and timep[q] < timeq[q]. Thus, for all
i ∈ I ∩ I ′ it holds that timep[i] ≤i timeq[i], and by definition we have that
p <I∩I′ q. Similarly, if p >I q and p >I′ q then p >I∩I′ q.

It was shown that only two options exist: 1) p <I q and p <I′ q, 2) p >I q and
p >I′ q. If option 1 occurs, then p <I∩I′ q; if option 2 occurs then p >I∩I′ q. Thus,
any p, q ∈ I ∩ I ′ either p >I∩I′ q or p <I∩I′ q holds. i.e., I ∩ I ′ is comparable.
Moreover, we have shown that p <I∩I′ q iff p <I q, as required.

Remark 5. Notice that proof of the lemma above also implies that p <I q iff
p <I′ q.

Notice that a comparable set I induces a total order among the elements in
I, therefore we can refer to the index of an element in I.

Definition 18. A node p ∈ I is said to be the kth highest (in I) if |{q ∈ I|q >I p}| =
k − 1. Let I#(p) = k if p ∈ I is the kth highest in I.

The 1st highest in I is the node that is larger than all other nodes. The 2nd
highest node in I is the node that has only one node larger than it; (and so on).

Informally, we wish to show that given two intersecting comparable sets I, I ′,
if a node p is the ith highest item in I, it is at most i + ℓ highest in I ′; where ℓ
changes according to I, I ′. The following lemma formally bounds the difference
between I#(p) and I ′#(p).

Lemma 15. Let I, I ′ be comparable sets, and denote ℓ = |I|−|I∩I ′|. If p ∈ I∩I ′

then I#(p) ≤ I ′#(p) + ℓ.

Proof. Let p ∈ I ∩ I ′. By definition I#(p) = |{q ∈ I|q >I p}| + 1 and I ′#(p) =
|{q ∈ I ′|q >I′ p}| + 1. Therefore, it is enough to show that |{q ∈ I|q >I p}| ≤
|{q ∈ I ′|q >I′ p}|+ ℓ. Consider the set A = {q ∈ I ∩ I ′|q >I∩I′ p}, be Lemma 14,
it holds that A ⊆ {q ∈ I|q >I p} and A ⊆ {q ∈ I ′|q >I′ p}. Clearly, {q ∈ I|q >I



Algorithm EnMasse /* executed on node q */

01: do forever:

/* read all registers and initialize structures */
02: for each node p, read timep and orderp;
03: set I := ∅;
04: for each set W ⊆ P s.t. |W | ≥ n− f and q ∈ W :
05: construct I := {timep | p ∈ W };
06: if W is comparable then I := I ∪ {I};

/* decide whether to execute “update” and whether to execute “act” */
07: if for some I ∈ I, it holds that I#(q) ≥ n− 3f then
08: update timeq, orderq and “act”;
09: if I = ∅ then update timeq, orderq;
10: write timeq and orderq;
11: od;

Updating timeq is done by setting timeq[p] = labelp, for every p ∈ P .

Updating orderq consists of changing the order induced by orderq such that labelq is

first and for other labels the order is preserved.

Fig. 2. A self-stabilizing Byzantine tolerant algorithm ensuring en masse runs.

p}−A contains only items in I− I ∩ I ′. Thus, |{q ∈ I|q >I p}−A| ≤ |I|− |I ∩ I ′|
and since A ⊆ {q ∈ I|q >I p} it holds that |{q ∈ I|q >I p}| − |A| ≤ |I| − |I ∩ I ′|.
That is, |{q ∈ I|q >I p}| ≤ |A| + ℓ. Since, A ⊆ {q ∈ I ′|q >I′ p} it holds that
|A| ≤ |{q ∈ I ′|q >I′ p}|. Thus, |{q ∈ I|q >I p}| ≤ |{q ∈ I ′|q >I′ p}| + ℓ, as
required.

Corollary 1. Let I, I ′ be comparable sets, and denote ℓ′ = max{|I|, |I ′|}−|I∩I ′|.
If p ∈ I ∩ I ′ then I ′#(p)− ℓ′ ≤ I#(p) ≤ I ′#(p) + ℓ′.

6.1 Algorithm EnMasse

This section proves general properties of comparable sets. It discusses “static”
sets, that do not change over time. The following algorithm considers comparable
sets that change from step to step. However, during each atomic step, the com-
parable sets that are considered do not change, and the claims from the previous
section hold. That is, when reasoning about the progress of the algorithm, the
comparable sets that are considered are all “static”.

In the following algorithm, instead of storing both labelp and timep, each
node stores just timep and the value of labelp is the entry timep[p]. In addition,
during each atomic step, the entire algorithm is executed, i.e., a node reads all
time stamps and all order vectors of other nodes, and can update its own time
stamp during an atomic step.

When a node q performs an update, it changes the value of timeq and orderq
in the following way: a) orderq is updated such that timeq[q] is larger than any



other label in Labelsq. b) timeq[p] is set to be timep[p], for all p. Notice that the
new orderq does not affect the relative order of labels in Labelsq that are not
timeq[q]. That is, if l1, l2 6= timeq[q] and l1 ≤q l2 before the change of orderq, it
holds that l1 ≤q l2 also after updating the orderq.

Intuitively, the idea of EnMasse is to increase the time stamp of a node q
only if q sees that most of the other nodes are ahead of q. When the time stamp
is increased, q also performs “act”. This leads to the following dynamics: a) If
q has performed an “act” twice, i.e., updated its time stamp twice, then after
the first update, q is ahead of all other nodes. b) However, since q is ahead of
all non-faulty nodes, if q updates its time stamp again it must mean that many
nodes have updated their time stamps after q’s first update. i.e., between two
“act” of q many other nodes have performed “act” as well.

We continue with an overview of the proof. First, consider the set of non-faulty
nodes, and consider the set of time stamps of these nodes. The proof shows that
if this set is comparable for some configuration Cr then it is comparable for any
configuration Cr′ where r′ > r. Second, we consider an arbitrary starting state,
and consider the set Yr containing non-faulty nodes that have updated their time
stamp by the end of round r. It is shown that if |Yr| ≥ n−2f then |Yr+1| ≥ n−f .
Moreover, if |Yr| < n− 2f then |Yr+1| ≥ |Yr|+ 1. Thus, we conclude that within
O(n) rounds all non-faulty nodes have performed an update.

Once all non-faulty nodes have performed an update since the starting state,
it holds that the set of all non-faulty nodes’ time stamps is comparable. Thus,
during every round at least 2f nodes perform an update (as they see themselves
in the lower 3f part of the comparable set). This ensures that within n

2f rounds
some node will perform “act” twice. That is, there is no deadlock in the EnMasse

algorithm. To conclude the proof, it is shown that when the set of all non-faulty
nodes values is comparable and some non-faulty node performs “act” twice, it
must be that another n− 4f non-faulty nodes have performed “act” in between.

Definition 19. Let Z be a set of non-faulty nodes, and consider an atomic step
on configuration Cr. Denote by T SCr(Z) the set of time-stamps of nodes in Z,
as they are at the beginning of the atomic step. When the configuration Cr is
clear from the context, we simply say “Z is comparable”, instead of “T SCr (Z) is
comparable”.

Lemma 16. Let Z be a set of non-faulty nodes and consider any atomic step on
configuration Cr. If T SCr(Z) is comparable, then T SCr′ (Z) is comparable for any
r′ ≥ r.

Proof. First, notice that whether T SCr′ is comparable or not depends only on
the values of nodes in Z and is not affected by nodes not in Z . Therefore, only
changes incurred by nodes in Z matter. Consider the first node p ∈ Z to perform
an update at some configuration Cr′′ , r

′′ ≥ r. Thus, p sets timep[q] = timeq[q]



for all nodes q ∈ Z and also p ensures that timep[p] >p timeq[p] for all nodes
q ∈ Z, q 6= p. Thus, p >Z q for all nodes q ∈ Z, q 6= p.

Consider two nodes q1, q2 6= p in Z. p’s update does not change the value
of timeq1 [q] and timeq2 [q] for all q ∈ Z, q 6= p. What about the relative order
of timeq1 [p] and timeq2 [p]? W.l.o.g. q1 <Z q2 before p’s update. According to
the way p changes orderp, after p’s update timeq1 [p] ≤p timeq2 [p]. Therefore,
q1 <Z q2.

Thus, for any pair of nodes q1, q2 ∈ Z either q1 <Z q2 or q1 <Z q2 after p’s
update. Repeating the above line of proof for any node in Z inductively proves
that T SCr′ (Z) is comparable.

Consider the system starts in an arbitrary state. Denote by Ur the set of
non-faulty nodes that have not performed any “update” by the end of round r,
and by Yr the set of non-faulty nodes that have performed “update” by the end
of round r.

Lemma 17. The set Yr is comparable during the last configuration of round r.

Proof. Consider the order at which non-faulty nodes performed updates by the
end of round r: let p1 denote the first node to perform an update, p2 the second,
. . . , pm be the mth (and last) non-faulty node to perform an update. A node
may appear more than once in that order, for example, if some node was the
2nd and 5th to perform an update, p2 = p5. Denote by Ai the set containing all
non-faulty nodes in {p1, . . . , pi}, where pi is the ith node performing an update.
Clearly, Am = Yr, and it is left to show that the set of time-stamps of nodes from
Am is comparable. Notice that if pi+1 ∈ Ai then Ai = Ai+1, that is, if the node
performing the “next” update has already performed an update, Ai = Ai+1.

We show something stronger: for all 0 ≤ i ≤ m let Ci be the configuration
after pi performs an atomic step, then T SCi(Ai) is comparable. The proof is by
induction on i. For i = 0, 1, clearly Ai is comparable. We are left to show that if
Ai is comparable so is Ai+1.

If pi+1 ∈ Ai (i.e., pi+1 already performed an update) then by Lemma 16 it
holds that Ai+1 is comparable. Consider pi+1 such that pi+1 /∈ Ai. According to
the way pi+1 updates its registers, for any two nodes q1, q2, if q1 <Ai

q2 then also
q1 <Ai+1

q2. Moreover, for any node q ∈ Ai it holds that q <Ai
pi+1. Thus, for

any pair of nodes p, q ∈ Ai+1 either p <Ai+1
q or q <Ai+1

p.
Thus, Ai+1 is comparable. To complete the proof, recall that Am = Yr.

Lemma 18. Let q be a node in Ur. Whenever q performs an atomic step before
the end of round r, it holds that I 6= ∅, and for all I ∈ I it holds that I#(q) <
n− 3f .

Proof. If I = ∅ during q’s atomic step, then q will perform an updated, and
q /∈ Ur. Similarly, if for some I ∈ I it holds that I#(q) ≥ n− 3f then q will also
perform an update. Since q ∈ Ur, by definition, q does not perform an update
until the end of round r.



Lemma 19. Let q be a non-faulty node and consider q’s atomic step during
round r′′, r < r′′ ≤ r′. For any comparable set I ∈ I that q considers in Line 07,
and for any p′ ∈ Ur′ , p

′′ ∈ Yr: if p
′, p′′ ∈ I then I#(p

′′) < I#(p
′).

Proof. Since p′, p′′ are both in I, either p′ <I p
′′ or p′′ <I p

′. Since p′ ∈ Ur′ it has
not yet performed an update, while p′′ has performed an update before the end
of round r. Thus, timep′′ [p

′] = timep′ [p
′] and therefore it cannot be that p′′ <I p

′,
leaving us with p′ <I p

′′. Since I is totaly ordered, any node w such that p′′ <I w
also holds that p′ <I w. Therefore, there are more nodes in I that are larger than
p′ than there are nodes that are larger than p′′. i.e., I#(p

′′) < I#(p
′).

Lemma 20. If |Yr| ≥ n− 2f then |Yr+1| ≥ n− f .

Proof. If Ur+1 = ∅ we are done. Otherwise, assume by way of contradiction that
q ∈ Ur+1. By Lemma 18 during q’s atomic steps in round r+1 it holds that I 6= ∅
and for all I ∈ I we have that I#(q) < n − 3f . Consider such an I ∈ I; since
|Yr| ≥ n− 2f , it holds that |I ∩ Yr| ≥ n− 3f . That is, I contains at least n− 3f
nodes that have performed an update. Thus, by Lemma 19, I#(q) ≥ n−3f which
contradicts the fact that I#(q) < n− 3f . Thus, q /∈ Ur+1 and Ur+1 = ∅.

Lemma 21. If |Yr| < n− 2f then |Yr+1| ≥ |Yr|+ 1.

Proof. Assume by way of contradiction that |Yr+1| < |Yr|+1. Therefore, |Yr+1| ≤
|Yr| < n − 2f and |Ur+1| ≥ f + 1. Thus, for any set I containing at least n − f
nodes, it holds that I ∩ Ur+1 6= ∅.

Let q ∈ Ur+1, by Lemma 18 during q’s atomic steps in round r+1 it holds that
I 6= ∅ and for all I ∈ I we have that I#(q) < n−3f . By Lemma 19, for any node
q′ ∈ Ur+1 and any node p′ ∈ Yr it holds that if q′, p′ ∈ I then I#(p

′) < I#(q
′).

Therefore, for any node p ∈ I ∩ Ur+1 it holds that I#(p) > |I ∩ Yr|. As there
are |I ∩ Ur+1| > 0 nodes from Ur+1 in I, there is a node p ∈ I ∩ Ur+1 such that
I#(p) ≥ |I ∩ Yr|+ |I ∩ Ur+1|.

Notice that Yr ⊆ Yr+1, and since |Yr+1| ≤ |Yr| it holds that Yr = Yr+1.
Moreover, Ur+1 ∩ Yr+1 = ∅ and |Ur+1 ∪ Yr+1| = n − f . Thus, |I ∩ Yr| + |I ∩
Ur+1| = |I ∩ (Yr ∪ Ur+1)| ≥ n − 2f . That is, there is a node p ∈ I ∩ Ur+1

such that I#(p) ≥ n − 2f . i.e., there are at most 3f − 1 nodes p′ that have the
following property: timep′ [p

′] <p′ timep[p
′]. Since p does not perform an update,

this property can change only if p′ performs an update, which will reduce the
number of nodes such that timep′ [p

′] <p′ timep[p
′]. Therefore, throughout round

r + 1, if p considers a comparable set I ∈ I, it will always have I#(p) ≥ n− 3f .

Consider an atomic step by p during round r+1, by Lemma 18 for any I ′ ∈ I
that p considers in Line 07, I ′#(p) < n − 3f , which contradicts the above fact
that I#(p) ≥ n− 3f . Thus, we conclude that |Yr+1| > |Yr|; as required.

Corollary 2. For any round r ≥ n−2f+2, it holds that Ur = ∅ and |Yr| = n−f .



Proof. Apply Lemma 21 during the first n − 2f rounds, then apply Lemma 20
for round n− 2f + 1.

Lemma 22. For any round r > n − 2f + 2, any non-faulty node q considers
Yr ∈ I during atomic steps of round r.

Proof. By Corollary 2, |Yr−1| = n − f and Ur−1 = ∅, leading to q ∈ Yr−1. By
Lemma 17 and Lemma 16 Yr is comparable, and is viewed as comparable by q
during any atomic step of round r. Thus, when q performs an atomic step during
round r, q adds Yr to I at Line 06.

Corollary 3. For any round r > n − 2f + 2, no non-faulty node passes the
condition of Line 09.

Proof. By Lemma 22, a non-faulty node q performing an atomic step during
round r > n− 2f + 2 has I 6= ∅. Thus, the condition of Line 09 does not hold.

Lemma 23. Let r be any round, r > n − 2f + 2. During round r at least 2f
non-faulty nodes perform update.

Proof. Let r > n − 2f + 2 be any round. Consider the set W = {timeq|q ∈ Yr}
before the first atomic step of round r. Denote by Z = {p ∈ W |W#(p) ≥ n−3f},
that is, Z contains all nodes that are at most n− 3f highest in W . Since |W | =
n− f it holds that |Z| = 2f .

For each node q ∈ Z, consider q’s first atomic step in round r. By the proof
of Lemma 17, since q did not perform an update since the beginning of round
r, when it performs its first atomic step, it holds that W#(q) ≥ n − 3f and q
will pass the condition in Line 07 and perform an update (and “act”) in Line 08.
This holds for all q ∈ Z, that is, for at least 2f nodes.

Lemma 24. Starting from round n − 2f + 3, every non-faulty node p performs
an update at least once every n

2f rounds.

Proof. By the proof of Lemma 23, every round the lowest 2f nodes perform an
update. Thus, if p does not perform an update during round r, there are at least
2f nodes higher than it. Consider round r + i, if p does not perform an update
there are 2f · i nodes higher than p. Therefore, after at most n

2f rounds p will
perform an update.

Lemma 25. Consider a non-faulty node p performing an update twice, then
there are at least n− 4f other nodes that have performed update in between.

Proof. Consider the comparable set Yr after p’s first update. By the way p does an
update, Yr#(p) = 1. When p performs its second update, it has some comparable
set I ∈ I, such that I#(p) ≥ n− 3f . Therefore, at least n− 4f non-faulty nodes
have become larger than p. Thus, they all must have performed an update.



Theorem 2. Starting from round n − 2f + 3, between any non-faulty node’s
two consecutive “act”s, there are n − 4f non-faulty nodes that perform “act”.
Moreover, every non-faulty node performs an “act” at least once every n

2f rounds.

Proof. By Corollary 3, non-faulty nodes perform update only if they also perform
an “act”. By Lemma 25, between a non-faulty node’s two consecutive updates
there are n− 4f non-faulty nodes that perform an update. By Lemma 24 every
non-faulty node performs an update at least once every n

2f rounds. Combining
these two claims yields the required result.

Theorem 2 states that using EnMasse one can ensure that nodes executing
Async-Clock will have the following properties: 1) every non-faulty node p
executes an atomic step of Async-Clock once every n

2f rounds; 2) if non-faulty
p executes 2 atomic steps of Async-Clock, then at least n − 4f non-faulty
nodes execute atomic steps of Async-Clock in between. By setting n > 12f ,
these properties ensure that a fair run T is an en-masse run T ′ with respect to
Async-Clock, s.t. each round of T ′ consists of at most n

2f rounds of T .

7 Discussion

7.1 Solving the 1-Clock-Synchronization Problem

First, the 5-clock-synchronization problem was solved using Async-Clock while
assuming en masse runs. Second, the assumption of en masse runs was removed
in Section 6. In this subsection we complete the paper’s result by showing how
to transform a 5-clock-synchronization algorithm to a 1-clock-synchronization
algorithm.

Given any algorithm A that solves the ℓ-clock-synchronization problem, one
can construct an algorithm A′ that solves the 1-clock-synchronization problem.
Denote by kA′ the desired wraparound value of A′, and let kA = kA′ · ℓ be the
wraparound value for A.

The construction is simple: each time A′ is executed, it runs A and returns
the clock value of A divided by ℓ (that is, ⌊FA

ℓ
⌋). The intuition behind this

construction is straightforward: A solves the ℓ-clock-synchronization problem,
thus, the values it returns are at most ℓ apart. Therefore, the values that A′

returns are at most 1 apart from each other.

7.2 Future Work

The current paper has a few drawbacks, each of which is interesting to resolve.

First, is it possible to reduce the atomicity requirements; that is, can an
atomic step be defined as a single read or a single write (and not as “read all
registers and write all registers”)?



Second, can the current algorithm be transported into a message passing
model?

Third, can different coin-flipping algorithms that operate in the asynchronous
setting (i.e., [6]) be used to reduce the exponential convergence time to something
more reasonable? Perhaps even expected constant time?

Fourth, can the ratio between Byzantine and non-Byzantine nodes be re-
duced? I.e., can n > 3f be achieved?

Fifth, can the problem of asynchronous Byzantine agreement be reduced to
the problem of clock synchronization presented in the current work? (This will
show that the expected exponential convergence time is as good as is currently
known).

Lastly, the building block EnMasse is interesting by itself. It would be in-
teresting to find a polynomial solution to EnMasse.
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