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Abstract. We present a symbolic definition that captures some cases
of election verifiability for electronic voting protocols. Our definition is
given in terms of reachability assertions in the applied pi calculus and
is amenable to automated reasoning using the software tool ProVerif.
The definition distinguishes three aspects of verifiability, which we call
individual, universal, and eligibility verifiability. We demonstrate the ap-
plicability of our formalism by analysing the protocols due to Fujioka,
Okamoto & Ohta and a variant of the one by Juels, Catalano & Jakob-
sson (implemented as Civitas by Clarkson, Chong & Myers).
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1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries
to provide more efficient voting procedures with an increased level of security.
However, current deployment has shown that the security benefits are very hard
to realise [10, 20, 9, 24]. Those systems rely on the trustworthiness of the servers
and software that is used to collect, tally, and count the votes, and on the
individuals that manage those servers. In practice, it is very hard to establish
the required level of trust.

The concept of election verifiability that has emerged in the academic litera-
ture [16, 19, 22] aims to address this problem. It significantly reduces the necessity
to trust electronic systems, by allowing voters and election observers to verify
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independently that votes have been recorded, tallied and counted correctly. To
emphasise a voter’s ability to verify the results of the entire election process, it
is sometimes called end-to-end verifiability [21].

We present a preliminary definition of election verifiability in a formal and
general setting, and we analyse voting protocols from the literature. We work
in the applied pi calculus [2], and we use the ProVerif software tool [8] to au-
tomate verification. (The calculus and the tool have already been successful in
analysing other properties of electronic voting systems [14, 4].) Our approach
puts significant emphasis on the automatic analysis of the verifiability property,
using ProVerif. To that end, we introduce a number of encodings that make
ProVerif work more efficiently, which are of independent interest.

Election verifiability allows voters and observers to verify that the election
outcome corresponds to the votes legitimately cast. We distinguish three aspects
of verifiability:

Individual verifiability: a voter can check that her own ballot is included in
the bulletin board.

Universal verifiability: anyone can check that the election outcome corre-
sponds to the ballots.

Eligibility verifiability: anyone can check that each vote in the election out-
come was cast by a registered voter and there is at most one vote per voter.

(Note that some authors use the term “universal verifiability” to refer to the
conjunction of what we call “universal verifiability” and “eligibility verifiabil-
ity.” This distinction is made for compatibility with protocols which do not
offer eligibility verifiability.) These three aspects of verifiability are related to
the following correctness properties [4], defined with respect to honest protocol
executions:

Inalterability: no one can change a voter’s vote.
Declared result: the election outcome is the correct sum of the votes cast.
Eligibility: only registered voters can vote and at most once.

Election verifiability properties are different from correctness properties, since
they assert that voters and observers can check that the correctness properties
hold, even when administrators deviate from the protocol (that is, do not perform
an honest execution).

We define election verifiability as a family of three tests, corresponding to
the three aspects identified above. The individual verifiability test is performed
by each voter. The other two tests can be conducted by any observer.

1.1 Contribution

We present a definition of election verifiability which captures the three desired
aspects: individual verifiability, universal verifiability and eligibility verifiability.
The definition is a sufficient condition for election verifiability, but it is not be
necessary; that is, there are some protocols which offer verifiability but are not
captured by our definition.
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We formalise our definition as reachability assertions in the applied pi cal-
culus. This makes the definition amenable to automated reasoning. In order
to make ProVerif work better with our definitions, we introduce a number of
encodings and optimisations.

We demonstrate the applicability of our definition by analysing three pro-
tocols. The first protocol is a simple illustrative protocol which is trivially ver-
ifiable because voters digitally sign their ballot. (Note that this protocol does
not achieve other properties such as privacy). We then analyse the protocol by
Fujioka et al. [16], and a variant of the one by Juels et al. [19]; the latter has
been implemented as Civitas [13, 12].

1.2 Related work

Juels, Catalano & Jakobson [18, 19] present the first definition of universal verifi-
ability in the provable security model. Their definition assumes voting protocols
produce signature proofs of knowledge demonstrating the correctness of tallying.
Automated analysis is not discussed.

Universal verifiability was also studied by Chevallier-Mames et al. [11] with
the aim of showing an incompatibility result: protocols satisfying their defini-
tion are incompatible with vote-privacy (also called ballot secrecy), and hence
coercion-resistance. To see this, note that they require functions f and f ′ such
that for any bulletin board BB and list of eligible voters L the function f(BB,L)
returns the list of actual voters and f ′(BB,L) returns the election outcome (see
Definition 1 of [11]). From these functions one could consider any single bulletin
board entry b and compute f({b}, L), f ′({b}, L) to reveal a voter and her vote.
Our definitions do not reflect such an incompatibility with vote-privacy and per-
mit a large class of electronic voting protocols claiming to provide verifiability
to be considered.

Baskar, Ramanujan & Suresh [7] and subsequently Talbi et al. [23] have
formalised individual and universal verifiability with respect to the FOO [16]
electronic voting protocol. Their definitions are tightly coupled to that particular
protocol and cannot easily be generalised. Moreover, their definitions characterise
individual executions as verifiable or not; whereas such properties should be
considered with respect to every execution (that is, the entire protocol).

1.3 Outline

Section 2 recalls the applied pi calculus. In Section 3 we introduce a generic def-
inition of verifiability which is independent of any particular formal framework.
In Section 4 our definition is formalised as reachability assertions in the con-
text of the applied pi calculus. The three case studies are analysed in Section 5.
Finally, we conclude and give directions for future work (Section 6).
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2 Applied pi calculus

The applied pi calculus [2] is a language for modelling concurrent systems and
their interactions. It is an extension of the pi calculus which was explicitly de-
signed for modelling cryptographic protocols. For this purpose, the applied pi
calculus allows terms to be constructed over a signature rather than just names.
This term algebra can be used to model cryptographic primitives.

2.1 Syntax

The calculus assumes an infinite set of names a, b, c, k,m, n, s, t, r, . . ., an infi-
nite set of variables v, x, y, z, . . . and a finite signature Σ, that is, a finite set
of function symbols each with an associated arity. A function symbol of ar-
ity 0 is a constant. We use metavariables u,w to range over both names and
variables. Terms F,L,M,N, T, U, V are built by applying function symbols to
names, variables and other terms. Tuples u1, . . . , ul and M1, . . . ,Ml are occa-
sionally abbreviated ũ and M̃ . We write {M1/x1, . . . ,Ml/xl} for substitutions
that replace x1, . . . , xl with M1, . . . ,Ml. The applied pi calculus relies on a sim-
ple type system. Terms can be of sort Channel for channel names or Base for
the payload sent out on these channels. Function symbols can only be applied
to, and return, terms of sort Base. A term is ground when it does not contain
variables. The grammar for processes is shown in Figure 1 where u is either
a name or variable of channel sort. Plain processes are standard. As usual we

P, Q, R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q conditional

A, B, C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction

{M/x} active substitution

Fig. 1. Applied pi calculus grammar

abbreviate conditionals as if M = N then P , when Q is the null process; and
similarly we may omit the process P in message input and output when P is 0.
Extended processes introduce active substitutions which generalise the classical
let construct: the process ν x.({M/x} | P ) corresponds exactly to the process
let x = M in P . As usual names and variables have scopes which are delimited
by restrictions and by inputs. All substitutions are assumed to be cycle-free.

The sets of free and bound names, respectively variables, in process A are
denoted by fn(A), bn(A), fv(A), bv(A). We also write fn(M), fv(M) for the
names, respectively variables, in term M . An extended process A is closed if
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it has no free variables. A context C[ ] is an extended process with a hole. We
obtain C[A] as the result of filling C[ ]’s hole with A. An evaluation context is
a context whose hole is not under a replication, a conditional, an input, or an
output.

The signature Σ is equipped with an equational theory E, that is a finite
set of equations of the form M = N . We define =E as the smallest equivalence
relation on terms, that contains E and is closed under application of function
symbols, substitution of terms for variables and bijective renaming of names.

We introduce linear processes as a subset of plain processes generated by the
grammar

P ::= 0 | ν n.P | c(x).P | c〈M〉.P
| if M = N then P else 0 (P 6= 0)
| if M = N then 0 else P (P 6= 0)

Linear processes can be sequentially composed in a natural way. Let P be a
linear processes and Q a plain process. We define the plain process P ◦Q to be
Q if P = 0 and otherwise by replacing the unique occurrence of “.0” in P by
“.Q”. (Note that “.0” does not occur in “else 0”. ) Moreover, we note that if P
and Q are both linear processes then P ◦Q is also a linear process.

2.2 Semantics

We now define the operational semantics of the applied pi calculus by the means
of two relations: structural equivalence and internal reductions. Structural equiv-
alence (≡) is the smallest equivalence relation closed under α-conversion of both
bound names and variables and application of evaluation contexts such that:

Par-0 A | 0 ≡ A
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
New-0 νn.0 ≡ 0
New-C νu.νw.A ≡ νw.νu.A

Repl !P ≡ P |!P
Rewrite {M/x} ≡ {N/x}

if M =E N
Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}

New-Par A | νu.B ≡ νu.(A | B) if u 6∈ fn(A) ∪ fv(A)

Internal reduction (−→) is the smallest relation closed under structural equiva-
lence, application of evaluation contexts and such that

COMM c〈x〉.P | c(x).Q −→ P | Q
THEN if M = M then P else Q −→ P
ELSE if M = N then P else Q −→ Q if M,N ground and M 6=E N

2.3 Notational conventions

By convention we assume a signature contains: the binary function pair; the
unary functions fst, snd; and the constant ε. Moreover, the associated equa-
tional theory includes the equations fst(pair(x, y)) = x and snd(pair(x, y)) = y.
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Arbitrary length tuples can be constructed as pair(x1, pair(x2, . . . , pair(xn, ε)));
which, for convenience, we abbreviate (x1, . . . , xn). We also write Mj for fst(
snd(snd(. . . snd(M)))) where j ≥ 1 and there are j − 1 occurrences of snd.
We also write sometimes c(x1, . . . , xn) (or c(x̃)) for the sequence of inputs
c(x1). . . . .c(xn).

To aid readability, we also allow boolean combinations of M = N in condi-
tionals in the “if-then-else” process, and in the output of terms. If φ is such a
combination, then the output c〈φ〉.P is an abbreviation for “if φ then c〈true〉.P”.
Boolean combinations of conditionals in “if” statements are handled as follows.
First, the boolean combination is written using only the boolean connectives
∧ and ¬. Then ∧ is encoded using nested “if” processes; and negation (¬) is
encoded by swapping “then” and “else” branches.

2.4 Events and reachability assertions

For the purpose of protocol analysis processes are annotated with events which
mark important actions performed by the protocol which do not otherwise affect
behaviour. We adopt the formalism presented by Abadi, Blanchet & Fournet [1]
to capture events. Events are modelled as outputs f〈M〉 where f ∈ F is an
“event channel”: a name in a particular set F disjoint from the set of ordinary
channels a, b, c. Message input on event channels must use “event variables” e, e′.

We assume that protocols should be executed in the presence of a so-called
Dolev-Yao adversary [15]. The adversary is permitted to input f(e) on event
channels but is forbidden from using the bound event variable e in any other
manner. The former condition prevents processes blocking, whereas the latter
ensures the adversary’s knowledge cannot be extended by the occurrence of
events.

Definition 1 (Adversary). An adversary is a closed process such that, any
event channel f ∈ F and event variable e, only occur in inputs of the form f(e).

A reachability assertion is specified as an event f〈X̃〉 where X̃ is a tuple
of variables and constants. A process satisfies reachability if there exists an
adversary who is able to expose the event (Definition 2). When such an adversary
does not exist, we say the process satisfies the unreachability assertion f〈X̃〉.

Definition 2 (Reachability). The closed process P satisfies the reachability
assertion f〈X̃〉 where X̃ is a tuple of variables and constants if there exists an
adversary Q such that P | Q −→∗ C[f〈X̃〉.P ′] for some evaluation context C and
process P ′.

3 Election verifiability

Election verifiability can be formalised with respect to tests ΦIV , ΦUV , ΦEV

corresponding to the three aspects of our formalisation. A protocol is said to
be election-verifiable if three such tests exist that satisfy some conditions that
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we detail below. Each of the tests ΦIV , ΦUV , ΦEV is a predicate which after
substitutions from the bulletin board and elsewhere evaluates to true or false.
The designers of electronic voting protocols need not explicitly specify these
cryptographic tests since our definition considers the existence of tests (perhaps
devised after design) which satisfy our conditions. This extends the applicability
of our methodology whilst also permitting the scrutiny of tests specified by
protocol designers.

3.1 Overview

Individual verifiability. The test ΦIV takes parameters v (a vote), x̃ (a voter’s
knowledge), y (a voter’s public credential) and z (a bulletin board entry). For
ΦIV to be a suitable test it must allow a voter to identify her bulletin board
entry. Formally we require for all votes s, if the voter with public credential
D votes for candidate s, then there exists an execution of the protocol which
produces M̃ such that some bulletin board entry B satisfies:

ΦIV {s/v, M̃/x̃,D/y,B/z} (1)

Moreover, the bulletin board entry should determine the vote; that is, for all
bulletin board entries B, public credentials D,D′ votes s, s′ and tuples M̃, M̃ ′

we have:

ΦIV {s/v, M̃/x̃,D/y,B/z} ∧ ΦIV {s′
/v, M̃

′
/x̃,D

′
/y,B/z} ⇒ (s = s′) (2)

This ensures the test will hold for at most one vote. Additionally, individual
verifiability requires voters to accept distinct bulletin board entries:

Bulletin board entries are distinct (3)

This condition requires protocol executions to introduce some freshness (e.g.
randomness).

Universal verifiability. This property is encapsulated by the test ΦUV which
takes parameters v (a vote) and z (a bulletin board entry). Given ΦIV , the test
ΦUV is suitable if every bulletin board entry which is accepted by a voter is also
accepted by an observer; and the entry is counted by the observer in the correct
way. The property requires that for all executions of the protocol producing M̃
with respect to the voter’s vote s, if there exists a bulletin board entry B and
public credential D such that the voter accepts the bulletin board entry as hers,
then the observer also accepts the entry:

ΦIV {s/v, M̃/x̃,D/y,B/z} ⇒ ΦUV {s/v,B/z} (4)

Moreover, the observer counts the vote correctly. That is, for all bulletin board
entries B and votes s, s′ if the test succeeds for s and s′ then they must be votes
for the same candidate:

ΦUV {s/v,B/z} ∧ ΦUV {s′
/v,B/z} ⇒ (s = s′) (5)
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This ensures that an observer may only count a vote in one way.
We remark that the implication in property (4) is only one way because

the adversary is able to construct ballots which would be accepted by an ob-
server; however, such a ballot should not be accepted by a voter. This malicious
behaviour can be detected by eligibility verifiability. We also note that this for-
malization is stronger than what is actually required: here a voter needs to be
able to identify the bulletin board entry corresponding to her vote. This is not
the case in all protocols, e.g. in the protocol by Juels et al. described in Section 5.
However, this formalization has the advantage of being amenable to automated
verification.

Eligibility verifiability. The property is encoded by the test ΦEV which takes
parameters y (a voter’s public credential) and z (a bulletin board entry). Given
ΦIV , the test ΦEV is considered suitable if it ensures: 1) an observer can attribute
a bulletin board entry to a public credential if and only if the corresponding voter
would accept that entry as hers; and 2) a bulletin board entry can be attributed
to at most one voter. Formally the property requires for all bulletin board entries
B and executions of the protocol producing M̃ , with respect to the voter’s vote s
and public voter credential D, the voter accepts B as hers iff the bulletin board
entry can be attributed to her public credential:

ΦIV {s/v, M̃/x̃,D/y,B/z} ⇔ ΦEV {D/y,B/z} (6)

This ensures that if ΦIV succeeds for a voter then she is assured that her vote
is considered eligible by an observer; and if ΦEV succeeds for a public credential
then the corresponding voter must have constructed that bulletin board entry.
The condition relies upon a relationship between the voter’s knowledge M̃ and
the voter’s public credential D . As for universal verifiability this condition may
be too strong as some verifiable protocols do not allow a voter to link a bulletin
board entry to her credentials.

The second condition requires that the test must uniquely determine who
cast a bulletin board entry (hence we can ensure that at most one ballot per
registered credential may appear on the bulletin board); that is, for all bulletin
board entries B and public voter credentials D,D′ if the test succeeds for D and
D′ then the credentials are equivalent:

ΦEV {D/y,B/z} ∧ ΦEV {D′
/y,B/z} ⇒ (D = D′) (7)

This property enables re-vote elimination. The concept of re-voting is particu-
larly useful since it is used by some protocols to provide coercion resistance. In
such protocols re-vote elimination is performed with respect to a publicly de-
fined policy to ensure voters vote at most once. Finally, eligibility verifiability
also requires that voters must have unique public credentials:

Public voter credentials are distinct (8)
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3.2 Verifying an election

Voters and observers check the outcome of the election by performing the tests
ΦIV , ΦUV and ΦEV on the bulletin board and data derived from elsewhere (for
example, learnt by the voter during an execution of the protocol). For individual
verifiability, each voter should be in possession of her vote s, public credential D
and M̃ representing the knowledge learnt during an execution of the protocol,
such that there exists j ∈ [1, |B̃|] satisfying the test ΦIV {s/v, M̃/x̃,D/y,Bj/z}.
For universal verifiability, the bulletin board must be such that the observer can
map the ballots to the votes appearing in the election outcome. That is, there
exists a bijective function f : {1, . . . , |B̃|} → {1, . . . , |B̃|}, such that for all j ∈
[1, |B̃|], the test ΦUV {sj/v,Bf(j)/z} holds. Similarly, for eligibility verifiability to
hold an observer must be able to map each public credential to a bulletin board
entry. That is, there exists a bijective function g : {1, . . . , |B̃|} → {1, . . . , |B̃|}
such that for all j ∈ [1, |B̃|] the test ΦEV {Dj/y,Bg(j)/z} holds.

Compatibility with privacy. Some electronic voting protocols utilise mixnets to
obtain privacy. For simplicity we omit formalising the security of mixnets and
hence omit modelling the mix. This clearly violates privacy properties. However,
since mixnets are verifiable, privacy and election verifiability properties may
coexist in practice.

4 Election verifiability in the applied pi calculus

A voting protocol is captured by a voter process V and a process K modelling
administrators whom are required to be honest for the purpose of election verifi-
ability. Dishonest administrators need not be explicitly modelled since they are
part of the adversarial environment. The process K is assumed to publish public
voter credentials; and is commonly responsible for the distribution of voter keys.
Channels ã are assumed to be private and appear in both V,K. In addition, we
consider a context A which performs setup duties; for example, the instantiation
of keys for honest administrators. Dishonest administrator keys are modelled as
free names. Definition 3 formalises a voting process specification accordingly. The
definition allows us to analyse election verifiability with respect to an unbounded
number of voters and arbitrarily many candidates.

Definition 3 (Voting process specification). A voting process specification
is a tuple 〈A, V,K[c〈D〉], ã〉 where V is a linear process, A and K are contexts
such that V,A,K do not contain any occurrence of event channels and event
variables. The term D models public voter credentials. The variable v ∈ fv(V )
refers to the value of the vote, v 6∈ (bv(A) ∪ bv(V )), c 6∈ (ã ∪ bn(A[V | K])) and
(fv(V )\{v} ∪ fv(K)) ⊆ bv(A).

We also suppose that the votes are generated by a special vote generation
process G which “chooses” the vote for a given voter and sends it to the voter
on a channel name b. A typical vote generation process would be

G =̂ !ν s.((!b〈s〉) | c〈s〉)
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This process models the generation of all possible votes. Intuitively, the channel
b allows the voter to select her vote v and the nested replication allows several
voters to choose the same vote s, while other voters may vote differently. Each
vote s is also made available to the environment by publishing it on the channel
c. Unless specified differently we suppose in the remaining that G is defined as
above. Given a voting process specification 〈A, V,K[c〈D〉], ã〉 and a vote gener-
ation process G we can build the process modelling the voting protocol VP as
follows:

VP =̂ ν b.(A[!ν ã.((b(v).V ) | K[c〈D〉])] | G)

where b 6∈ (ã ∪ fn(A[V | K]) ∪ bn(A)). Observe that since the key generation
process is under replication it is possible to construct unique credentials for each
voter.

The formalisation of election verifiability (Definition 5) can naturally be ex-
pressed as reachability assertions [25, 8] associated with the properties 1-8 of §3.1
which relate to tests ΦIV , ΦUV , ΦEV . First the tests must be incorporated into
an augmented voting process (Definition 4).

Definition 4 (Augmented voting process). Given a voting process specifi-
cation 〈A, V,K[c〈D〉], ã〉, a vote generation process G and tests ΦIV , ΦUV , ΦEV

the augmented voting process is defined as VP+ = ν b.(A[!ν ã, b′.(V̂ | K̂)] | G |
P ) | Q | R where

V̂ = b(v).V ◦ c(z).b′(y).(pass〈(ΦIV , z)〉 | fail〈ψ〉)
K̂ = K[b′〈D〉 | cred〈D〉 | c〈D〉]
P = b(v′).b(v′′).c(x̃′).c(x̃′′).c(y′).c(y′′).c(z′).fail〈φ′ ∨ φ′′ ∨ φ′′′〉
Q = pass(e).pass(e′).fail〈e1 ∧ e′1 ∧ (e2 = e′2)〉
R = cred(e).cred(e′).fail〈e = e′〉

ψ = (ΦIV ∧ ¬ΦUV ) ∨ (ΦIV ∧ ¬ΦEV ) ∨ (¬ΦIV ∧ ΦEV )
φ′ = ΦIV {v′

/v, x̃
′
/x̃, y

′
/y, z

′
/z} ∧ ΦIV {v′′

/v, x̃
′′
/x̃, y

′′
/y, z

′
/z} ∧ ¬(v′ = v′′)

φ′′ = ΦUV {v′
/v, z

′
/z} ∧ ΦUV {v′′

/v, z
′
/z} ∧ ¬(v′ = v′′)

φ′′′ = ΦEV {y′
/y, z

′
/z} ∧ ΦEV {y′′

/y, z
′
/z} ∧ ¬(y′ =E y′′)

such that fail, pass, cred are event channels, x̃ = (bv(V )∩ (fv(Riv)\{z})), and
b, b′ are fresh, that is, b, b′ 6∈ (ã ∪ fn(A[V | K]) ∪ bn(A[V | K])).

The augmented voting process extends V to bind the voter’s intended vote
v, assigns the voter’s public credential to y and introduces a claimed bulletin
board entry z. As in the non-augmented process, the process !ν s.((!b〈s〉) | c〈s〉)
produces candidates for whom the voters are allowed to vote. The number of
candidates and for whom each voter casts her vote is controlled by the adversar-
ial environment. The events capture the desired reachability assertions. That is,
reachability of pass〈(ΦIV , z)〉 captures propositional property 1 of §3.1; unreach-
ability of fail〈ψ〉 models propositional properties 4 and 6 of §3.1; and unreach-
ability of fail〈φ′∨φ′′∨φ′′′〉 denotes properties 2, 5 and 7 of §3.1. The universal
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quantifiers of the propositional properties 2,4-7 are captured by allowing the ad-
versary to input the required parameters. Process Q exploits communication on
event channel pass to detect the scenario in which two voters accept the same
bulletin board entry, hence capturing property 3 of §3.1, by the unreachability
of the event fail〈e1 ∧ e′1 ∧ (e2 = e′2)〉 where e1 and e′1 capture whether two
distinct voters accept the bulletin boards e2 and e′2. Similarly, communication
on the event channel cred is used to detect the situation in which two voters
are assigned the same public credential, thus modelling property 8 of §3.1 by the
unreachability of fail〈e = e′〉.

Definition 5 (Election verifiability). A voting process specification 〈A, V,
K[c〈D〉], ã〉 satisfies election verifiability if there exists tests ΦIV , ΦUV , ΦEV such
that the augmented voting process VP+ and tests satisfy the following conditions:

1. VP+ satisfies the unreachability assertion: fail〈true〉.
2. VP+ satisfies the reachability assertion: pass〈(true, x)〉.
3. The tests ΦIV , ΦUV , ΦEV satisfy the following constraints:

– fv(ΦIV ) ⊆ bv(V ) ∪ {v, y, z}
– fv(ΦUV ) ⊆ {v, z}
– fv(ΦEV ) ⊆ {y, z}
– (fn(ΦIV ) ∪ fn(ΦUV ) ∪ fn(ΦEV )) ∩ bn(VP+) = ∅

We remark that the restriction fn(ΦIV ) ∩ bn(VP+) = ∅ does not lose gen-
erality, since restricted names “ν n” can be referenced by variables as follows:
“ν n.let x n = n in”.

Many protocols in literature do not provide eligibility verifiability. We there-
fore define a weakly augmented voting process and weak election verifiability
to capture only individual and universal verifiability. A weakly augmented vot-
ing process is defined as an augmented voting process but with R = 0, ψ =
(ΦIV ∧ ¬ΦUV ) and replacing fail〈φ′ ∨ φ′′ ∨ φ′′′〉 with fail〈φ′ ∨ φ′′〉. The def-
inition of weak election verifiability is obtained by omitting conditions on ΦEV

from Definition 5.

5 Case studies

We demonstrate the applicability of our methodology by analysing electronic
voting protocols from literature. The ProVerif tool [8] has been used for automa-
tion and our input scripts are available online5. ProVerif’s ability to reason with
reachability assertions is sound (when no trace is found the protocol is guaran-
teed to satisfy the unreachability assertion) but not complete (false reachability
traces may be found). As a consequence reachability traces output by ProVerif
for Condition 2 of Definition 5 must be checked by hand. In this paper all such
traces correspond to valid reachable states.

5 http://www.bensmyth.com/publications/10arspa/
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5.1 Postal ballot protocol

Description. Consider an electronic variant of a “postal ballot” (or “mail-in
ballot”) protocol whereby a voter receives her private signing key skV from
a keying authority, constructs her signed ballot and sends it to the bulletin
board. The keying authority is also responsible for publishing the voter’s public
verification key pk(skV ) which will serve as her public credential. The protocol
does not satisfy all of the desirable electronic voting properties; but it should
certainly provide election verifiability.

Formalisation in applied pi. The corresponding voting process specification is
given by 〈A, V,K[c〈D〉], (a)〉 where

A =̂
V =̂ a(x).c〈(v, sign(v, x))〉

K[c〈D〉] =̂ ν skV .(a〈skV 〉 | c〈D〉)
D =̂ pk(skV )

We model digital signatures (without message recovery) by the equation

checksign(sign(x, y), x, pk(y)) = true

The resulting (non-augmented) voting process is then defined as

VPpostal =̂ νb.
(

!νa. (b(v).a(x).c〈(v, sign(v, x))〉
| ν skV .(a〈skV 〉 | c〈pk(skV )〉))

| !νs.(!b〈s〉 | c〈s〉)
)

Analysis. The augmented voting process VP+ can be derived with respect to
tests:

ΦIV =̂ z =E (sign(v, x), v, pk(x))
ΦUV =̂ checksign(z1, z2, z3) =E true ∧ v =E z2
ΦEV =̂ checksign(z1, z2, z3) =E true ∧ y =E z3

ProVerif is able to automatically verify the protocol satisfies election verifiability.

5.2 Protocol due to Fujioka, Okamoto & Ohta

Description. The FOO protocol [16] involves voters, a registrar and a tallier. The
protocol relies on a commitment scheme and blind signatures which we model
by the following equational theory.

checksign(sign(x, y), x, pk(y)) = true
unblind(sign(blind(x, y), z), y) = sign(x, z)

unblind(blind(x, y), y) = x
open(commit(x, y), y) = x

The voter first computes her ballot as a commitment to her vote m′ =
commit(v, r) and sends the signed blinded ballot sign(blind(m′, r′), skV ) to the
registrar. The registrar checks the signature belongs to an eligible voter and
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returns sign(blind(m′, r′), skR) the blind signed ballot. The voter verifies that
this input (variable bsb in the process V below) corresponds to the registrar’s
signature and unblinds the message to recover her ballot signed by the registrar
m = sign(m′, skR). The voter then posts her signed ballot to the bulletin board.
Once all votes have been cast the tallier verifies all the entries and appends an
identifier l to each valid record6. The voter then checks the bulletin board for her
entry, the triple (l,m′,m), (modelled in V below by the input in variable bbe)
and appends the commitment factor r. Finally, using r the tallier opens all of
the ballots and announces the declared outcome. The protocol claims to provide
individual and universal verifiability but does not consider eligibility verifiability.

Formalisation in applied pi. The voting process specification is 〈 , V,K[c〈pk(x)〉],
(a)〉 where K = c(x).(a〈x〉 | ) and V is defined as follows:

V = ν r.let x r = r in
ν r′.let x r′ = r′ in
a(x).
let m′ = commit(v, r) in
c〈(pk(x), blind(m′, r′), sign(blind(m′, r′), x))〉.
c(bsb).
if checksign(bsb, blind(m′, r′), pk(skR)) = true then
let m = unblind(bsb, r′) in
c〈(m′,m)〉.
c(bbe).
if m′ = bbe2 ∧m = bbe3 then
c〈(bbe1, r)〉

Analysis. Let tests ΦIV , ΦUV be defined as follows:

ΦIV =̂ z =E 〈bbe1, commit(v, x r), unblind(bsb, x r′), x r, v〉
∧ checksign(z3, z2, pk(skR)) =E true

ΦUV =̂ z2 =E commit(z5, z4) ∧ checksign(z3, z2, pk(skR)) =E true ∧ z5 =E v

ProVerif enables automatic verification of election verifiability with respect to
weak election verifiability.

5.3 Protocol due to Juels, Catalano & Jakobsson and Clarkson,
Chong & Myers

Description. The protocol due to Juels, Catalano & Jakobsson [19], which has
been implemented by Clarkson, Chong & Myers as Civitas [13, 12], involves
voters, registrars and talliers.

The registrars announce the candidate list s̃ = (s1, . . . , sl) and provide an
anonymous credential k to each legitimate voter. For each such credential an
encrypted version penc(k, r′′, pk(skT )) is published on the bulletin board.
6 The value l is used for practical purposes only; it does not affect security.
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Each voter selects her vote s ∈ s̃ and computes the ciphertextsM = penc(s, r,
pk(skT )) and M ′ = penc(k, r′, pk(skT )). The first ciphertext contains her vote
and the second contains her credential. In addition, the voter constructs a sig-
nature proof of knowledge, that is, a non-interactive zero-knowledge proof of
knowledge, demonstrating the correct construction of her ciphertexts and that
she has chosen a valid candidate; that is, s ∈ s̃. The voter posts her ciphertexts
and signature proof of knowledge to the bulletin board.

After some predefined deadline the outcome is computed as follows. First,
the talliers discard any entries for which signature proofs of knowledge do not
hold and eliminate re-votes by performing pairwise plaintext equivalence tests7

on all the ciphertexts containing voting credentials posted by the voter. Re-vote
elimination is performed in a verifiable manner with respect to some publicly
defined policy, e.g. keeping the last vote. Then, the talliers perform a verifiable
re-encryption mix on the votes and credentials, keeping the link between each
such pair. The aim of this mix is that the voter herself cannot trace her vote
anymore which allows the protocol to achieve coercion-resistance. After the mix
all invalid credentials are discarded using plaintext equivalence tests between
the entries posted to the bulletin board by the mix and those published by the
registrar. Finally, the talliers perform a verifiable decryption and publish the
result.

Formalisation in applied pi. We model a simplified version of the protocol
described above which omits the mix. The resulting protocol is not coersion-
resistant, but still provides anonymity. This change is made because our defi-
nition is too strong to hold on the complete protocol. We discuss future work
regarding a more general definition in our conclusion.

The formalisation of signature proofs of knowledge in the applied pi calculus
that we adopt is due to Backes et al. [5, 6]. A signature proof of knowledge is
a term spki,j(Ũ , Ṽ , F ) where Ũ = (U1, . . . , Ui) denotes the witness (or private
component), Ṽ = (V1, . . . , Vj) defines the public parameters and F is a formula
over those terms. More precisely F is a term without names or variables, but
includes distinguished constants αk, βl where k, l ∈ N. The constants αk, βl in
F denote placeholders for the terms Uk ∈ Ũ , Vl ∈ Ṽ used within a signature of
knowledge spki,j(Ũ , Ṽ , F ). For example, the signature proof of knowledge used
by voters in the Juels, Catalano & Jakobsson voting protocol [19] demonstrates
possession of a vote s, credential k and randomisation factors r, r′ such that
M = penc(s, r, pk(skT )), M ′ = penc(k, r′, pk(skT )) and s ∈ s̃; that is, the proof
shows the ciphertexts are correctly formed and s is a valid candidate. This can
be captured by spk4,3+l((s, r, k, r′), (M,M ′, pk(skT ), s1, . . . , sl),F) where F is
defined as β1 = penc(α1, α2, β3) ∧ β2 = penc(α3, α4, β3) ∧ (α1 = β4 ∨ . . . ∨ α1 =
β4+l). A term spki,j(Ũ , Ṽ , F ) represents a valid signature if the term obtained
by substituting Uk, Vl for the corresponding αk, βl evaluates to true. Verification

7 A plaintext equivalence test [17] is a cryptographic predicate which allows the com-
parison of two ciphertexts. The test returns true if the ciphertexts contain the same
plaintext.
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of such a statement is modelled by the function veri,j . The equational theory
includes the following equations over all i, j ∈ N, tuples x̃ = (x1, . . . , xi), ỹ =
(y1, . . . , yj) and formula F which is a ground term over Σ∪{αk, βl | k ≤ i, l ≤ j}
without any names:

publicp(spki,j(x̃, ỹ, F )) = yp where p ∈ [1, j]
formula(spki,j(x̃, ỹ, F )) = F

In addition, we define equations such that veri,j(F, spki,j(Ũ , Ṽ , F ′)) =E true if
F =E F ′ and F{U1/α1, . . . ,Ui/αi, V1/β1, . . . , Vj/βj} holds where i = |Ũ |, j = |Ṽ |
and F, F ′ are ground terms over Σ ∪ {αk, βl | k ≤ i, l ≤ j} without names. We
omit the details of these equations which are similar to [5, 6].

The protocol uses a variant of the ElGamal encryption scheme [19]. In ad-
dition to the standard equation dec(penc(x, y, pk(z)), z) = x, this scheme allows
the construction of a dedicated decryption key for a particular ciphertext which
is modelled by the equation:

dec(penc(x, y, pk(z)), commit(penc(x, y, pk(z)), z)) = x

Verifiable decryption can then be achieved using the signature proof of knowl-
edge spk1,3((α1), (β1, β2),F ′) where F ′ is given by β1 = commit(β2, α1). The
proof shows that if β2 = penc(M,N, pkα1) for some terms M,N , then β1 is a
decryption key for β2. Finally, plaintext equivalence tests are modelled by the
equation

pet(penc(x, y, pk(z)), penc(x, y′, pk(z)),
petkey(penc(x, y, pk(z)), penc(x, y′, pk(z)), z)) = true

The voting process specification can now be defined as 〈A, V,K[c〈D〉], (a)〉
where public credential D = penc(k, r′′, pk(skT )) and A, V,K are specified as
follows:

A = ν skT .(c〈pk(skT )〉 | (!A′) | )
V = ν r.let x r = r in ν r′.let x r′ = r′ in a(x k).

let x s1 = s1 in . . . let x sl = sl in
let x pkT = pk(skT ) in
let M = penc(v, r, pk(skT )) in
let M ′ = penc(x k, r′, pk(skT )) in
let N = spk4,3+l((v, r, x k, r′), (M,M ′, pk(skT ), s1, . . . , sl),F) in
c〈(M,M ′, N)〉

K = ν k.ν r′′.(a〈k〉 | )
A′ = c(y).if ver4,3+l(F , y) = true then

c(z).if pet(z, public2(y), petkey(z, public2(y), skT )) = true then
c〈spk1,2((skT ), (commit(public1(y), skT ), public1(y)),F ′)〉).
c〈petkey(z, public2(y), skT )〉

For simplicity we consider a single registrar K and tallier A′ who are assumed
to be honest. Moreover, we assume the existence of a secure mix protocol and
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hence do not model or verify the shuffle. The registrar process is standard and
is responsible for publishing the public voter credentials. Process A′ captures
the tallier’s responsibility to provide suitable keys for plaintext equivalence tests
used for eligibility checking and performing verifiable decryption of honestly
constructed ballots.

Analysis. The protocol is dependent on the candidate list and therefore cannot
be verified with respect to an arbitrary number of candidates. We must therefore
restrict the adversarial environment to consider a fixed number of candidates. We
therfore define the vote generation process as G =̂ (!b〈s1〉) | . . . | (!b〈sl〉) where
s1, . . . , sl are free names representing the candidates for whom voters may cast
their votes. Let the tests ΦIV , ΦUV , ΦEV be defined as follows:

ΦIV =̂ φ′ ∧ z1 =E spk4,3+l((v, x r, x k, x r′), (M,M ′, x pkT, x s1, . . . , x sl),F)
ΦUV =̂ φ ∧ dec(public2(z2), public1(z2)) =E v
ΦEV =̂ φ′ ∧ ver4,3+l(F , z1) =E true

φ =̂ ver1,2(F ′, z2) =E true ∧ public1(z1) =E public2(z2)
φ′ =̂ φ ∧ pet(y, public2(z1), z3) =E true

where M = penc(v, x r, x pkT ) and M ′ = penc(x k, x r′, x pkT ). The aug-
mented voting process can now be derived with respect to the size of the can-
didate list l. Using ProVerif in association with a PHP script that generates
ProVerif scripts for different values of l, the protocol can be successfully verified
to satisfy election verifiability with respect to l ∈ [1, 100].

6 Conclusion

This paper presents a preliminary formal definition of election verifiability for
electronic voting protocols. The idea of tests for individual, universal and eligi-
bility verifiability (and the associated acceptability conditions) is independent
of any particular formalism. We instantiate this idea in terms of reachability
assertions in the context of the applied pi calculus. The definition is suitable for
automated reasoning using the ProVerif software tool, which we demonstrate by
providing the code used for our analysis of the protocol by Fujioka, Okamoto
& Ohta [16] and a variant of the one by Juels, Catalano & Jakobsson [19] and
Clarkson, Chong & Myers [13, 12].

The definition is work in progress, because it is currently insufficiently gen-
eral to take account of protocols that use homomorphic encryption (such as
Helios 2.0 [3]). Moreover, it is likely that the ‘pointwise’ nature of the tests ΦUV

and ΦEV is too strong for some protocols; more likely, the observer performs a
test on the whole bulletin board at once, rather than a separate test on each of
its entries. In future work, we intend to generalise our definitions of universal
verifiability and eligibility verifiability to work with a greater variety of voting
systems. We also intend to study more carefully the relation between verifiabil-
ity and coercion resistance. Finally, we aim to formalise the security of re-vote
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elimination policies, present in many realistic systems, which we omitted from
our case studies.
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