A graph-based aspect interference detection
approach for UML-based aspect-oriented models

Selim Ciraci, Wilke Havinga, Mehmet Aksit, Christoph Bockisch and Pim van
den Broek

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
{s.ciraci, w.havinga, m.aksit, c.m.bockisch,
p.m.vandenbroek}@ewi.utwente.nl

Abstract. Aspect Oriented Modeling (AOM) techniques facilitate sep-
arate modeling of concerns and allow for a more flexible composition of
the resulting models than traditional techniques. While this improves
the understandability of each submodel, in order to reason about the be-
havior of the composed system and to detect conflicts among submodels,
automated tool support is required.

We propose a technique and tool support for fully automatic detection
of conflicts between aspects at the model level; more specifically, our ap-
proach works on models defined in UML with an extension for modeling
pointcuts and advice. As back-end we use a graph-based model checker,
for which we have defined an operational semantics of UML diagrams,
pointcuts and advice. In order to simulate the system, we automatically
derive a graph model from the diagrams. The simulation result is another
graph, which represents all possible program executions, and which can
be verified against a declarative specification of invariants.

To demonstrate our approach, we discuss a UML-based AOM model
of the “Crisis Management System” (CMS) and a possible design and
evolution scenario. The complexity of the system makes conflicts among
composed aspects hard to detect: already in the case of five simulated
aspects, the state space contains 9991 different states and 99 different
execution paths. Nevertheless, by using appropriate pruning methods
the state space only grows polynomially with the number of aspects. In
practical cases, the order of the polynomial is very small, e.g., 2 in the
case of the simulated CMS; therefore, the automatic analysis scales.

1 Introduction

The goal of Aspect Oriented Modeling (AOM) [37,8] is to improve the mod-
ularity of software designs, and this is commonly supported by allowing the
specification of different (partial) views on the same system, which may overlap
after composition. This improves the potential for separate views of the system
to evolve in isolation, i.e., without affecting multiple models in several places.
Consequently, AOM bears the potential to increase the global understandabil-
ity of a model, as smaller submodels — the partial views — can be inspected
separately.

One downside of the flexible composition mechanisms in AOM is that local
understandability is reduced. Detailed understanding of single facets of the be-
havior in the composed system is difficult because the details of the composition
are, on purpose, hidden from the beholder. Therefore, it is difficult to ensure
the absence of conflicts' in the composed system by manual inspection. This
downside reduces the benefit of an improved modular structure facilitated by
AOM, which is a common theme among comments from industry, e.g., in [13].
This disadvantage is especially important when considering that each separate
view of the model may evolve in isolation, and each may be maintained by dif-
ferent engineers. Through the separation it becomes harder to ensure that the
composed system works together as intended.

For these reasons, we believe that it is important to support the AOM de-
velopment process by means of tools that detect conflicts in situations when
aspects semantically interact with each other. L.e., it must be possible to detect
semantic interference among aspects. Several techniques exist for automatically
detecting conflicts between aspects at the implementation level [3,24], but de-
tecting conflicts early at the model level has a number of advantages:

— Models are more abstract than code. Therefore, fixing errors in the design

prospectively is cheaper then fixing errors in the code.

When errors are recognized and fixed at the model level, one source of the

code’s deviation from the model is eliminated. Thus, model versioning and

consistency enforcement activities can be avoided.

— In the case of model-based code generation, aspect-interference detection at
the code level may even become unnecessary.

— As the AOM model is independent of the technique and language later used
to implement the system, model-based conflict detection is also independent
of these concerns.

Conflict-detection approaches require an abstract semantic model of the over-
all system. Only a few approaches have been proposed in the past to provide
such an abstract model in the design phase and for systems containing aspects.
In their case, the abstract model has to be defined separately, i.e., in addition
to the design model, for each new system [33,32] in a specific, limited AOM
approach.

To achieve the itemized benefits of model-level conflict detection in an AOM
approach without additional efforts for the designer, we propose a technique for
automatic, tool-supported detection of semantic interference among aspects at
the model level that is independent of the AOM approach used in the design
phase. This paper provides tool support that is applicable to any AOM approach
extending the UML, which is the majority. Different AOM approaches differ in
the way how the UML is extended and in the crosscutting concerns they can
successfully modularize.

! In the context of this paper, conflicts are understood as undesired execution se-
quences. This occurs either because methods are wrongly executed or not executed,
or because the order of method executions is wrong.

To achieve such tool support, we specialize the graph-based model checker
GROOVE [23] to simulate UML-based aspect-oriented models and verify that
the execution orders conform with the desired behavior of the software system.
The simulation is a foundation of the verification as it generates all the execution
sequences supported by the input UML-based aspect-oriented models.

To facilitate the simulation, an operational semantics of the UML is modeled
as graph transformations; triggering the relevant transformations allows us to
simulate the runtime behavior of the model. To account for aspect-oriented ex-
tensions of the UML, we furthermore include graph transformations that allow
the implicit inclusion of advice at join points. This mechanism makes our ap-
proach independent of the actual pointcut and pointcut-advice bindings whose
expressiveness is determined by the used AOM approach.

The output of the simulation is a state-space, which is a tree with some
merged branches, explicitly showing which software artifacts have executed in
which execution sequence. In terms of temporal logic formulas, the user can
define requirements for the order of method executions that must always be
satisfied in the execution, i.e., invariants of the system. The model checker,
which we are using, evaluates these formulas for each execution sequence in the
state-space in order to identify execution sequences that violate the constraint.
Le., our model checker allows us not only to detect that conflicts are possible,
but it also shows under which conditions the conflicts take effect.

Conflict detection is mission-critical in large software systems like a “Crisis
Management System” (CMS) which cannot afford to expose unanticipated be-
havior. Thus, in this paper, we will demonstrate how to apply our verification
approach to the aspect-oriented modeling of the CMS case study. Therefore, we
had to concretize the model provided in the common case study; specifically,
we have modeled the concerns that relate to the crisiss-managing scenarios as
aspects.

With our graph-based model checker, we have been able to detect semantic
interference among two independently developed scenarios. The size of the simu-
lated state space, namely 9991 states, 10234 transitions and 99 execution paths,
shows that tool support is crucial to verify the behavior of a system like the
CMS. The size of the state space of our simulation grows polynomially with the
number of aspects. In practical cases, the order of the polynomial is even very
small, for example in the simulation of the CMS, the number of states is of the
order O(n?). Therefore, the simulation also scales to reasonably large systems.

The contributions of this paper are threefold:

1. For a graph-based model checker, we have defined graph-transformation rules
that constitute an operational semantics for aspect-oriented models. The
semantics is an accurate representation of the core runtime behavior of the
models. It requires to resolve pointcuts and advice according to the semantics
of the actually used AOM approach, and is, thus, applicable to all such
approaches.

2. Applying this operational semantics with a model checker, we can auto-
matically detect violations of invariants at the modeling level. In an AOM

design, this can be used to detect semantic interferences among aspects. As
input, our tool only requires a declarative description of invariants and a
graph-based representation of the AOM model, which can be derived in an
automated way from UML models; different aspect-oriented extensions to
UML can be mapped to this graph-based representation.

3. We show that our approach is applicable to large-scale software by the ex-
ample of the “Crisis Management System”. Therefore, we discuss a possible
design and evolution scenario of this system where aspects conflict in non-
obvious ways. With our approach, it is possible to detect these interferences
at the model level.

The structure of this paper is as follows. We outline our approach at a very
high level in Section 2. In Section 3 we discuss an AOM model for the “Cri-
sis Management System”, including an overview of AOM in general and The-
me/UML in particular, which we use to show AOM models throughout this
paper. Our approach is discussed in detail in Section 4; we start by presenting
a motivating example in Section 4.1, followed by a presentation of the graph
model used in the simulation and its relation to UML diagrams in Section 4.2;
in Section 4.3 we present the means by which our model supports aspect-oriented
models. In Sections 4.4 and 4.5 we discuss the operational semantics of our model
and the verification of invariants in the simulated state space. We discuss the
application of our approach to the CMS case study and present performance
figures in Section 5. In Section 6 we present related work before we reflect on
our approach and conclude in Section 7.

2 An Approach for Graph-Based Model Checking of
AOM for Aspect Interference Detection

In this section, we explain how our approach works from the perspective of an
application designer, e.g. the engineers designing the Crisis Management System
that is the subject of this special issue.

Figure 1 shows the activities involved in using our tooling. The first step
relevant to our approach (marked ‘1’ in the diagram) is that the designer creates
UML-based models of the system. In this paper, we focus especially on class-
and sequence diagrams, which model the structure and (partially) the order in
which interactions with and within the system should occur. It is important to
verify these models in particular, because, as we will show, interference may
already occur at this level. Especially in the presence of aspects this may not
be straightforward to “detect” manually. Of course, additional models may also
be created in (or before) the design phase, but we do not focus on those in
this paper. As shown in figure 1, the class- and sequence diagrams may use
AOM-specific extensions; in this paper we have used Theme/UML [12], which is
an existing AOM approach (not developed by the authors of this paper). Other
AOM extensions may also be used, as long as these can be mapped to the Design
Configuration Modeling Language (DCML) model that is used in second step —

UML-based models
Class | <using> AOM-specific
diagrams 9 extensions
-
<using> /
Sequence |~ //
diagrams <using>
/
/
Theme/UML
7 \
\
4 \
Al
1 2 3 4
Write UML models Convert UML to ouate Model-check
and constraints DCML model - state-space
using Groove
Application
designer ' -7

\ Tool-supported T

Conflict rule specifications | _

Application
constraints/
invariants (CTL)

Fig. 1. An overview of our verification approach.

this will of course involve some effort from the designer of the respective AOM
approach. Our design of the Crisis Management System, focusing particularly
on class- and sequence diagrams, is discussed in detail in section 3.

The next step, marked ‘2’ in the diagram, is to convert the UML-based
diagrams to DCML, an existing modeling approach that defines an operational
semantics for UML-based models. The conversion of “standard” UML class- and
sequence models is described in prior work [9]; to support an AOM extension
to UML, it is necessary to augment the conversion step with conversion rules
that interpret the aspect-related extensions. This is discussed in subsection 4.3,
taking the Theme/UML-based models as an example of how such a mapping
can be defined.

Once the UML/AOM models have been converted to DCML, step 3 is to use
an existing tool-chain to simulate the execution semantics of these models; this
is discussed in subsection 4.5. Using the results from the simulation step, the last
step (marked ‘4’ in the diagram) is to model check the simulation results with
regard to the constraints that have been specified by the application designer
in step 1. Section 5 discusses how our entire approach is applied to the Crisis
Management System case study.

3 Designing the Crisis Management System using AOM

3.1 A brief overview of AOM approaches

To date, a substantial number of AOM approaches have been proposed [37, 8].
Many of these modeling approaches define UML extensions that support the
modular expression of crosscutting elements [17,12,5]. Although each modeling
approach facilitates the expression of crosscutting behavior in different ways,
these approaches share many common characteristics. Typically, a user first
identifies crosscutting concerns in the system under design. This can be done
manually or supported by tools, such as EA-miner [36]. Then, the system is
designed using a mix of regular UML-based models (such as class diagrams,
sequence diagrams, etc.) and aspect-specific extensions that model crosscutting
(structural or behavioral) elements. In this paper, we focus on the use of such
UML-based approaches.

3.2 On the use of Theme/UML

For the purpose of designing the Crisis Management System we chose to use
Theme/UML [12], a representative member of the UML-based approaches men-
tioned above. The use of specific AOM approaches is however not the focus of
this paper, as the problem of semantic interference among aspects is inherent
to all AOM approaches. In section 4 we discuss the requirements under which
AOM-specific UML extensions can be mapped to our approach in general, and
the mapping for Theme/UML in specific. Since the mapping typically appears
to affect only a small part of the modeling approach (e.g. mapping the specific
ways in which pointcuts and advice are modeled), we expect this to be possible
with reasonable effort.

For a detailed description, please refer to publications about Theme/UML [12,
6, 11]. Here, we only discuss the main principles of using Theme/UML, as needed
to follow the discussion in this paper. Seen from a user perspective, Theme/UML
adds two important features to UML models: it allows (1) the separation of
structural concerns, and (2) the expression of crosscutting behavior.

Structural elements (such as — potentially partial — class definitions) can be
separated into “themes”, which can then be composed into a coherent system
by means of a composition specification. For example, a simple composition
specification might simply merge the partial classes (defined in several themes)
based on their names. This way, Theme/UML supports the modular expression
of crosscutting structure.

Crosscutting behavior can be expressed by allowing the use of “template
parameters”, such as class parameters or method parameters in various mod-
els — most importantly, in sequence diagrams. A “template parameter” may be
bound by a composition specification to zero or more actual classes or methods,
for example indicating that a particular sequence of events should be initiated
whenever one of the bound parameter methods is invoked. In this sense, such

composition (“parameter binding”) specifications can be considered a “point-

cut”, whereas a sequence of events that is specified (using a sequence diagram)

to follow the invocation of such a bound parameter can be considered an “ad-
7 7

vice”.

3.3 Concern identification

There are many alternative ways to define a modular structure for the Crisis
Management System described in the case study. Typically, the choice for partic-
ular design alternatives would be driven by evaluating relevant trade-offs against
the characteristics that are deemed most important by the various stakeholders.
For example, the convenience of a given design may be judged with respect to
optimized performance, ease of configuration or use, enforcement of security, etc.
In this subsection, we describe one possible design, which will be used as an ex-
ample throughout this paper. As the design as such is not our main focus, we
do not describe all the trade-offs made to reach this design in detail, however.
Several concerns that are relevant to the CMS are:

— Coordination. To facilitate dealing with crisis situations in an efficient man-
ner, an automated system should actively support the coordination of mission-
and resource assignment. By coordination, we mean the support for standard-
ized scenarios — which may vary based on the type and severity of a crisis —
for requesting resources, defining missions, dealing with reports and requests
for assistance from workers, etc.

— Resource allocation. To support the handling of crises with a limited amount
of resources, the system should support means to optimally allocate available
resources. Since optimal strategies may depend on (e.g. national) policies
as well as circumstances (number of concurrent crises, scarcity of certain
resources), the system should support multiple allocation strategies, as well
as pre-emption of resources in low-resource situations, if appropriate.

— Real-time monitoring. To satisfy the requirement of real-time status reports
on the availability of resources, mission progress etc., it is necessary to keep
the necessary statistical information up-to-date while the system is running.
This way, it is ready to be used at any time without significant delays, such
as would be involved in querying a complex data-structure of substantial size
for various relevant information. To keep such information readily available,
real-time monitoring is thus an important concern.

In this paper, we focus especially on the concern of coordination support, as
“supporting coordination of crises resolution processes” is a primary requirement
for this system (as defined in the case study, section 2). For the CMS to properly
facilitate this, it should support standardized scenarios that deal with recurring
types of crises, such as the Car Crash Scenario described in the case study. This
way, a scenario prescribes the actions that should be taken to remedy a specific
crisis.

Since the definition of such reusable scenarios is likely to be the most unstable
part of the CMS, it makes sense to explicitly modularize scenarios. For example,

scenarios will be subject to change based on national policies. In addition, new
scenarios may be introduced at a later stage, and scenarios may also be extended
in an incremental way to incorporate knowledge acquired in its previous appli-
cations. Later in this section, we give examples of various incremental evolution
steps.

Within the context of the CMS, a scenario can be seen as a reactive control-
ling process, because it gathers all kinds of information from its environment and
reacts to these “events”. As to how such a system should be designed, several
publications state that it is best to separate the coordination of behavior from
the behavior itself [20, 2].

In this sense, the coordination of a scenario can be seen as a crosscutting con-
cern: several scenarios may need to react to the same event, while conversely, one
scenario may depend on multiple information-gathering (and event-generating)
modules. In the context of reactive systems, the notion that coordination of be-
havior can be seen as a crosscutting concern has been identified before [4]. Since
this is the case, the coordination of a scenario can be modeled as an aspect
that intercepts events that are of importance to the scenario, and invokes the
intended actions prescribed by the scenario. This way, the coordination of be-
havior is properly separated from the behavior itself, as well as decoupled from
the different information-gathering and event-generating modules. In the next
subsection, we show how the Car Crash scenario can be modeled following this
principle.

3.4 Crisis Management System Main Class Diagram

Figure 2 shows the important structural elements of our design. The structure
at the top of the diagram shows a collection of classes modeling a hierarchy
of states. Potentially reusable actions are modeled as states, each of which im-
plements a specific part of desired system behavior. For example, an instance
of class ResourceAllocate defines behavior that checks whether a requested
resource is available, and if so, allocates it to a scenario. ResourceDispatch
implements instructing a specific resource (i.e., assigning it a mission to carry
out). Note that this part of the structure does not implement a complete state
machine; the coordination of these states, i.e. defining transitions between them
as the result of particular events, is implemented by aspects that model specific
scenarios.

The bottom half of figure 2 shows the structure of other relevant system
components. The class Server has an interface to receive external as well as
internal events. External events originate from the environment and are gener-
ated by a client (not modeled here) through a user interface. Internal events are
signaled by the system itself, for example, if it runs low on resources of a specific
kind. Furthermore, the server keeps track of resource allocations through a class
ResourceManager, as well as a list of common data for each crisis scenario,
as found in the domain model specified in the case study.

States::State

+executeSateAction()

tates::

tates::

States::AssistanceRequested

States::

:FinalReport

+InitialReportReceived()

+ResourceAllocate()

+AsistanceRequested()

+FinalReport()

States::ScenarioAccepted

States::ResourceDispatch

+ScenarioAccepted()

+ResourceDispatch()

Server

+externalEvent
+internalEvent _‘

4

-scenarioBcast

States::RequestFailed

Scenario::ScenariolnternalEvent

+firePreEmpt()
+fireRequestDeallocate()

1 11 -scenari

atas
-resManager

J

V/

-scenarioOutSideEvent:

Scenario::ScenarioOutSideEvent

Scenario::ScenarioData

Crisis

Resource::ResourceManager

+allocateResource(
+deallocateResourcel

1 -resources

Resource::Resource

+ [|-startTime : long
-endTime : long

—|-currentState : State

-type : int

-requestedResources : Vector

-workerReports : Vector

+startScenario()
+requestResource()
+failureReported()

+arrivalReported()

+completionReported()

+requestAssistance()

+ScenarioData()
#setBeginTime()
#setEndTime()
#addWorkerReport()

+scenarioStart()
+getLocation()

+addRequestedResource()
+addAllocatedResource()

-type : ResourceTypes
+dispatch() : bool

-allocatedResources

%A

CMSEmployee

-name

CrisisManager

SuperObserver

|

ExternalResource

-location

+getLocation()

AN

Gover

PoliceRS

FireDeptRS

Fig. 2. Class diagram of the Crisis Management System.

3.5 Modeling gathering of statistical information as an aspect

The real-time gathering of statistical information about the system is a cross-
cutting concern, as it needs to track state changes all over the system, e.g. to
facilitate real-time reporting on mission status. Figure 3 shows the design of such
a monitoring aspect using Theme/UML. The pattern class MonitorStatus de-
fines the monitoring interface; it is possible to implement different styles of mon-
itoring, such as logging to a file or database (implemented by classes FileLog
and DataBaseLog). The sequence diagram shown in Figure 3(c¢) shows an im-
plementation that logs to a file. After any bound mission-state-changing oper-
ation is invoked, this sequence diagram specifies that the relevant state infor-
mation should be written to a log file. The binding specification shows how this
theme is bound to all the classes in the main package, i.e. all the State imple-
mentations shown in the class diagram in figure 2.

«pattern class»
MonitorStatus

log : Log

ioData : ScenarioData) : void
ioData : ScenarioData) : void

+
[+afterlnvoke() : void

FileLog

Log

+openLog() : void
+writeLog(in logData : string) : void

~openLog() - void +closeLog() : void ! i
+writeLog(in logData - string) : void 2t Main [State,executeStateAction]
+closeLog() : void DataBaseLog

FopenLog() : void

+closeLog() : void MonitorStatus
[+writeLog(in logData : string) : void

(&) | (b)

«pattern class»monitor : MonitorStatus

<<templateParameter>>

H
'
'
Data) !
'
'
'

R

afterinvoke()

writeLog(statelnformation)

Fig. 3. Monitoring of states using different storing mediums realized through Theme
MonitorState: a) The classes of this theme. b) The binding specification. c) The se-
quence diagram for template parameter _executeStateAction().

10

3.6 Modeling the Car Crash scenario as an aspect

«pattern class»CarCrashScenario

it i0OutSi fireStart]

+adviceFireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

- - " i - Main
+allocationStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void W

[fireRequest(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void
p (in scenarioType : ScenarioO , in scenarioData : ScenarioData) : void
quest(in scenarioType : ScenarioO ,in scenarioData : ScenarioData) : void CarCrashScenario

+beforelnvoke()

CcarC iom fi Type:int, sD: ioData))
«pattern class»
cos : CarC i
«templateParameter» | sData : ScenarioData
fireStart(sType, !
sData) i 1
' i
-
'
i
beforelnvoke() |
i
'
i
adviceFireStart(sType,
sData) |
i
i
T
opt :
i
[sType=CarCrashScenario] !
scenarioStart() i
'
0! stete ScenarioAcceted
ScenarioAccepted() !
i
i
T
i
i
i
i
i
i
i
i
i
i
i
i
:
_fireStart(scenarioType,
scenarioData)
i
i
i
'
i
«-mee- '

()

Fig. 4. Car Crash Scenario expressed using Theme/UML: a) The pattern class Car-
CrashScenario. b) The binding specification for the theme Car Crash Scenario. ¢) The
sequence diagram of for the template parameter _fireStart().

We realize the Car Crash scenario as exemplified in the case study, as a
distinct aspect shown in figure 4. This figure, which defines the Car Crash
“theme”, consists of two parts. The first part (Figure 4-(a)) is the definition of
the pattern class CarCrashScenario, which keeps track of the current state
the system is in and which may also define behavior that is specific to the low-
level implementation of this scenario. The second part is a sequence diagram,
that defines how to react to selected events.

Some Theme/UML-specific extensions are visible in this sequence diagram:
the sequence diagram is parameterized: it refers to a template parameter and
the template class CarCrashScenario, both of which should be bound with

11

other “themes” by means of a composition specification. The meaning of the
template parameter in the sequence diagram is that the actions specified by the
sequence diagram will be executed whenever a method bound to that parameter
is invoked. Figure 4-(c) shows the binding specification for the theme Car Crash
Scenario, where the pattern class CarCrashScenario is bound to the class Sce-
narioOutSide Event and the template pattern _fireStart() is bound to the actual
operation fireStart().

The meaning of the sequence diagram is that it responds (only) to events that
indicate a scenario should be started, specified by the invocation of fireStart.
The remainder of the sequence diagram forms the advice, which is executed at
each fireStart join point (invocation): if the scenario-type specified by the
event is indeed a CarCrash scenario (indicated by the guard condition “scenari-
oType=CarCrashScenario”, in the diagram), it changes the state of the scenario
to “scenario accepted”, and invokes the actions defined by that state. Of course,
each event has exactly one scenario-type, and in that sense the guard condition
based on the scenario-type can be considered to be mutually exclusive with such
guard conditions that may be defined by other scenarios.

CarCi fireRequest (sTypezint,

) CarCi o, fi Typezint, sD; ioData, resource:

sData
ScenarioData

sData : ScenarioData

«pattern class»
ces : CarCrashScenario

«pattern class»]
ccs : CarCi

: ResourceManager

«emplateParameter» |
fireDeallocate(sType, |
sData, resource) |

-

«templateParameters
fireRequest(sType,
sData)

7 beforelnvoke()
r

beforelnvoke(

opt

allocationStart(sType, sData)

[scenarioType=CarCrashScenario]
IR

alt I deallocation$tart(sType,
Data) sData, rdsource)

[scenarioType==CarCrashScenario]

[rest=null]

resource

3

moveAllocatedResource(resource)

deallocateResdurce(resource)

[res==null] scenarioFailed() ..-----------M

scenarioFailed() |

L)
RequestFailed) ™ gyrentState |
T ResourceFailed q I

T i
executeStateAction(sData
executeStateAction(sData) (

)?egues(Fa\Ied

1]

_fireRequest(scenarioType,

_fireRequest(sType, scenarioData)

? sData)
[

(a) (b)

Fig. 5. Sequence diagrams showing the resource allocation (a) and deallocation (b) of
car crash scenario.

12

Figure 5 shows the handling of allocation and deallocation as implemented by
the car crash scenario. As shown in figure 5(a), the scenario attempts to allocate
resources, and if this fails (the result of allocation is a null-object), it simply
switches to state RequestFailed. Figure 5(b) shows that resources can also
be deallocated, which is only allowed after they have been allocated but not been
dispatched yet. In this case, the scenario also moves to state RequestFailed.

3.7 Incremental evolution: adding new scenarios

It is to be expected that, over time, new scenarios will be added to the CMS, and
existing ones might evolve as well. Here, we briefly discuss an additional scenario:
suppose that there is an accident that involves the president of the nation. In
such a case, since the number of resources is limited and may already be assigned
to other crises, it may be required to pre-empt resources assigned to low-priority
crises. Diagram 6 defines such a scenario. In principle, the crisis is handled in a
similar way as discussed in section 3.6. However, if insufficient resources are avail-
able, an internal system event is generated, asking all running crises to pre-empt
necessary resources, if appropriate. The higher-priority scenario should then be
able to allocate those resources. For the pattern class PresidentialEmergencySce-
nario, the request for pre-emption is shown in Figure 6-(b) with the call to the
operation Server.ScenarioBroadCastEvent().

The sequence diagram in Figure 7 shows how the pattern class Presiden-
tialEmergencyScenario allocates resources. This is very similar to the way the
resource allocation of the car crash scenario; however, the major difference is
that here failures during resource allocation are not handled. There should al-
ways be resources available for an resource allocation request by the presidential
emergency scenario due to the request for resource pre-emption. Thus, there is
no need for failure handling in resource allocation for this scenario.

3.8 Incremental Evolution: Resource Allocation Based on Location

Resources are allocated by calling the method allocateResource in class
ResourceManager, shown in the class diagram of the Crisis Management Sys-
tem 2. The default implementation of this method simply looks for the first
available resource of the correct type, and allocates that. This resource alloca-
tion strategy is of course very naive. To address this, as an incremental evolution
step various resource allocation strategies would be modeled as a “pluggable”
aspect that intercepts calls to this method, and implements various different
strategies for the allocation of resources. For example, the default implementa-
tion just searches for the first unallocated resource of the correct type that is
available, and allocates that. More elaborate management schemes might take
resource location, employee scheduling constraints, costs etc. into account. Fig-
ure 8 shows the implementation of a resource allocation strategy that takes the
location (proximity to the place of the crisis) of resources into account. It does
this by attempting to allocate a resource found within a given maximum dis-
tance. If no such resource can be found (i.e., after attempting the allocation,

13

«pattern

+adviceFireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void
+allocationStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

#_fireRequest(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void
templateParameter +fireStart(in scenarioType : ScenarioOutSideEvent, in scenarioData : ScenarioData) : void

+beforelnvoke()

q scenarioType : ScenarioO , in scenarioData : ScenarioData) : void

Main

(a)

woata)]

ypetint,
«pattern class» s ast
ccs : PresidentialEmergencyScenario ~Setver -

«templateParameter» |

[scenarioType = PresidentialEmergency] |
Type, eventData)
|

firePreEmpt(sType, sData)

7 7

fireStart(spType, | 1 |
spData) | B || spData : ScenarioData

i 1 1

1 |

beforelnvoke() | !

1 |

1 1

adviceFireStart| !

(spType, 1 !

spData) | !

i i

T T

o J[]] : :

1 1

1

1

1

1

1

1

_fireStart
(scenarioType,
scenarioData)

()

<<theme>>
PresidentEmergency
Scenario

Fig. 6. Presidential Emergency scenario expressed using Theme/UML: a) The pat-
tern class PresidentialEmergencyScenario. b) The binding specification for the theme
Presidential Emergency Scenario. ¢) The sequence diagram for the template parameter

fireStart().

14

ypesint, ioata)

«pattern class»
ccs : PresidentialEmergencyScenario

«templateParameter» |
fireRequest(spType,

resource

spData)
‘ ResourceManager || spData : ScenarioData
)
adviceFireStart:=
allocationStart(spType,
spData)
opt ‘
[spType=PresidentialEmergencyScenario]
gotResource:=allocateResource(type)

gotResource:=allocateResource(type)
resource
koo
addAllocatedResource(gotResource)
s ,

ResourceAllocate() _currentState
+ ResourceAllocate

executeSateAction(sData) |

_fireRequest(scenarioType,
scenarioData)

Fig. 7. The sequence diagram from theme Presidential Emergency Scenario showing

the resource allocation of the pattern class.

15

the resource still refers to a “null”-object), an optional part of the sequence di-
agram in figure 8(c) is executed, which will attempt to obtain resources by first
deallocating them from lower priority tasks.

«patter class»
LocationAllocationStrategy

Main

+beforelnvoke()

+adviceAllocateResource(in resourceType : int, in scenarioData : ScenarioData) : void
_allocateResource(in resourceType : int, in scenarioData : ScenarioData) : Resource

in resourceType : int, in scenarioData : ScenarioData) : Resource
|-findResource(in scenarioData : ScenarioData, in resourceType : int) : Resource

(a)

[ResrouceManager,
allocateResource]

MonitorStatus

(b)

Typetint,

«pattern class»
Lra :LocationAllocationStrategy

resource : Resource

: Server

«templateParameter» |

resource:=allocateResource !

(Type, sData)

beforelnvoke()

resource:=_allof
(rType,

resoul

? findResource(

cateResource
Data)

fee:=
SData, Type)

opt

[res!=null]

alloc:=isAllocated()

result

w)

Type, eventData)
.

]

fireDeallocate(sType, sData, resource)
:

resource

~~__resource

~~__resource

S—

()

Fig. 8. Location based resource allocation strategy design using Theme/UML: a) The
pattern class LocationAllocationStrategy. b) The binding specification. ¢) The sequence
diagram for the template parameter allocateResource().

3.9 Aspect Interference in the crisis management system

In the sections above, we have defined a system that allows the modular specifi-
cation and evolution of multiple scenarios and separates the coordination spec-
ification from modules that implement low-level behavior. However, since these
scenarios may be developed independently of each other, by different actors,
and since scenarios may also evolve over time, it could easily occur that multiple

scenarios interfere with each other.

16

In the example above, the Presidential Crisis scenario sends an event that
asks other scenarios to pre-empt non-critical (to them) resources. However, the
Car Crash scenario as defined earlier does not take this into account correctly,
because it simply moves to a failure state that violates application constraints, as
will be shown in the following sections.While the small size of our example case
makes this conflict relatively easy to discover, interactions among scenarios are
more complex and less obvious when more realistically sized projects are consid-
ered. Furthermore, the potential for inconsistencies or unintended interactions
increases as the system evolves.

Since multiple scenarios may need to react to one event, and each scenario is
interested in multiple kinds of events, it becomes very hard to keep track of all
potential interactions manually. For this reason, the help of automated tools that
can detect (potential) interference is necessary. In the next section, we discuss
an approach that facilitates this.

4 A graph-based approach to conflict detection on
UML-based AOMs

UML-based AOM allows the software system to be decomposed into partial
views. However, understanding the behavior of the composed system is difficult.
Once the structure of the software is designed and the behavior is expressed
in terms of execution sequences, the understanding of the overall execution se-
quences become even harder as one needs to trace (combine) through many
sequence diagrams due to pointcuts, polymorphism and conditional executions.
For example, one needs to ensure that the composed models do not violate an
invariant of the software system and execute in the right sequence. We use graph-
based model-checking to automate the trace and verification process, in terms
of the GROOVE graph production system.

In graph-based model checking, the behavior of the system is modeled as
graph transformation rules and runtime states of a system are modeled as graphs.
Here, applying a transformation rule results in one or more graphs that repre-
sent different states of the system [23]. The graph-production tool automatically
applies the transformation rules, which simulates the behavior of the modeled
system. The simulation generates a state-space (with transitions) showing the
possible states the system can reach. The requirements of the system are ex-
pressed as temporal logic formulas which are verified over the generated state-
space. In our case, the state-space contains all the execution sequences supported
by the input UML sequence diagrams. The verification is realized by expressing
the desired execution sequence as a CTL formula.

Aspects, polymorphism and conditional execution are the main factors alter-
ing the execution sequences. The UML diagrams should be simulated as close
to the actual execution of an OO software system in order to fully capture the
effects of these on the execution. Therefore, we defined a language, called the
Design Configuration Modeling Language (DCML), of graph-based models that
is an OO-like runtime representation of UML class and sequence diagrams. We

17

modeled graph transformation rules that add OO-like execution semantics to
the UML sequence diagrams so that the runtime relation can be simulated with
graph-based model checking. Similarly, we also modeled the effects of aspect
weaving as performed by an aspect-oriented runtime system.

This section details the application of graph-based model checking to seman-
tic interference detection. In the next subsection, a motivating example from the
CMS software system is presented. The DCML model is detailed. Subsection 4.3
details how aspects are modeled in DCML. In subsection 4.4 examples of graph
transformation rules modeling object- and aspect-oriented execution semantics
are presented. Finally, subsection 4.5 explains how execution sequences can be
expressed with temporal logic formulas and how these are verified.

4.1 Motivating Example: Ensuring the state constraints of scenarios

The design of the CMS follows a state pattern so that each scenario can track
its status as detailed in Section 3. The CMS system has the constraint (or in-
variant) that the crisis scenarios are responsible for executing the state corre-
sponding to the event they received. For example, a scenario receiving the start
event fireStart() should execute the actions implemented in the method Scenar-
i0Accepted. exzecuteStateAction().

The addition of the presidential emergency scenario and the location based
resource allocation strategy caused the events firePreEmpt() and fireDellocate()
to be used. The old scenarios in the system, like the car crash scenario, did not
handle these events; these scenarios may not execute the right state actions,
which in turn may cause the software to crash. The designers need to trace
through the sequence diagrams and ensure that the old scenarios make the call
to the right subclass of the class State to prevent such errors. However, the error
about the state changes may occur under different compositions of the software
system which may be missed by the designer. For example, first presidential
emergency scenario resource allocation, then executing the car crash scenario
may not cause problem but the reverse order may cause a problem. Because of
this, all possible compositions in all possible execution orders should be gener-
ated. In our approach, the simulation generates the state-space containing all
possible execution orders and compositions the design models support and the
constraints of the software system in terms of execution orders are verified over
this state-space.

4.2 Design Configuration Modeling Language

Figure 9 shows the meta-model of DCML. In this figure Var stands for variable,
Decl stands for declaration, Impl stands for implementation and Oper stands for
operation (DCML uses the term “operation”; one could also read “method”).
The DCML meta-model has two parts, the structure part and the dynamic part.
Both parts and their elements are quickly presented in the following. For a more
detailed discussion with additional examples, we refer to the appendix, which
describes the DCML elements in detail.

18

instanceValue
-Type

-paramValue, assignedValue _returnVal Type

/\

VarDecl

-attributes

-parameter

-signature OperDecl

PrimitiveType

-final : bool

ObjectType
-static : bool -operations ! L

-final : bool

-instance

-referenceVar

g -referenceType -abstract : bool 3
T -interface : bool §
I @
By c
17} .T
E -superType
®
] Value
Operimpl ListType
/N

[Object

-encapsulates

-executes

ListLookup

-elementLookup

all

Supercal [LoopFrame |
CreateAction ThisCall

Fig. 9. The DCML meta-model.

-previousE. tion

-executingType

-self

Structure part of DCML. The structure part covers the elements of the meta-
model for modeling the classes, the interfaces and the relations between these.
This part is generated from the class diagram. Because classes and interfaces are
types at runtime, they are represented by nodes labeled Object Type (object-type
nodes). If the object-type node is representing an interface, then the attribute
interface is set to true. The equivalent of the generalization relation is the edge
labeled super-type. Figure 10-(a) shows a class diagram where the class State
is generalized by the class ResourceAllocate. Figure 10-(b) shows the DCML
representation of this class diagram; here, the two object-type nodes represent
the classes in the class diagram.

ObJeCtTyEE ObjectType
State abstract = true (€—name——| . o Rasourceallocate”

name = "State"

= — - - - p ‘ VarDedl
+t Action(in gScenarioData : ScenarioData) : void . .
operations | name = "executingScenarioData
operations
OperDec
pararneter
signature
OperDed
signature Operlmpl

ResourceAllocate

Signature
name = "executeStateAction”

+executeStateAction(in executingScenarioData : ScenarioData) : void

(a) (b)

Fig. 10. a) An example UML class diagram. b) The DCML model of the class diagram
shown in (a).

Further kinds of nodes, edges, and specializations in the structure part are:

Node VarDecl — a variable declaration.
Edge Type — connects a variable declaration node with a type node to model
the variable’s type.

19

Edge attributes — connects an object-type node with variable-declaration nodes
which represent the type’s attributes.

Node OperDecl — an operation declaration.

Specialization OperImpl — added to OperDeclnodes for operation with imple-
mentation.

Edge operations — connects an object-type node with operation-declaration nodes
which represent the type’s operations.

Node Signature — a unique operation signature.

Edge parameter — connects a signature with the variable declarations that rep-
resent the signature’s parameters.

Edge returnType — connects a signature with a type node that represent the
signature’s return type, if it has one.

Dynamic Part of DCML. The dynamic part, which is generated from the se-
quence diagrams, covers the elements for modeling the objects, the values and
the life-line’s of the operations. A life-line in a sequence diagram shows the
actions the object executes when it receives a call. In the DCML meta-model
(Figure 9), the specializations of the abstract element Action represent the ac-
tions of sequence diagrams. An action node can be connected to another action
node by an edge labeled next; in this way, the order between the actions of a
life-line is represented in DCML. The first action of a life-line is connected to an
operation implementation node by an edge labeled body in DCML to show that
these actions are executed when this operation receives a call.

The sequence diagram presented in Figure 11-(a) shows that in the life-line
of the operation addAllocatedResource() first a call the operation ResourceAl-
locate. executeStateAction() and then a return action is executed. Figure 11-(b)
shows the lifeline of the operation addAllocatedResource() in DCML. Here, the
emphasized node represents the call action of this life-line; it is the first action of
this lifeline because it is connected to the operation implementation node with
an edge labeled body. The outgoing edge labeled calledSignature from this node
shows that the call action is to the signature exrecuteStateAction. Following the
outgoing edge labeled next from the call action node, it can be seen that the call
action is succeeded by a return action.

The frame of an executing operation is represented by nodes labeled Oper-
Frame in DCML. These nodes are used to identify, during simulation, the object
that is currently executing, the scope of the executing object, the type that
contains the called operation and the statement that is being executed. When
UML diagrams are converted to DCML models, the conversion algorithm au-
tomatically adds the operation frame node which marks the first action of the
sequence diagram as the action that is being executed. Thus, the simulation
starts executing from that action.

Further kinds of nodes, edges, and specializations in the dynamic part are:

Specialization InstanceCall, CreateOper, SuperCall, ThisCall, StaticCall — added
to CallAction nodes to distinguish between calls to instances, object creation,
calls to the super implementation, self calls and calls to static operations.

20

s : Scenario::ScenarioData currentState : States::ResourceAllocate

addAIIocatedResource:=addAIlocatedResource(res) i

1
executt Action:=executeSateAction(executingScenarioData)

ObjectType T VarDed
name = "ScenarioData” i name = "executingScenarioData"

ObjectType
Type name = "ResourceAllocate” |y erations:

Call

S——— Ty
operations \
ot

body

parameter

VarDed
referencelar [2 = nCyrrentstate”

calledSignature
OperDed Signature Sar
Opermp! | —signature-| name = "addallocatedResource” | | name = "executeStateAction”

signature

Fig.11. a) A sequence diagram showing the actions executed by the operation Sce-
narioData.addAllocatedResource(). b) These actions represented in DCML.

Edge referenceVar — connects a call-action node with a variable declaration
node to show that the operation is invoked on this value.

Node ConditionalFrame represents alternative and optional frames.

Node LoopFrame represents loop frames.

Edge possible_next connects a conditional frame to an action node to represent
the frame fragment.

Node Value — represents a value.

Specialization Object added to Value nodes to specify that the value is an
object.

Edge instance Value — connects a variable-declaration node with a value node
which represents the variable’s value.

Edge self — connects an operation-frame node with object node representing
the active object during the execution of the frame.

A DCML model can be generated from more than one sequence diagram and,
thus, a variable can have more than one instance value. During simulation, the
values of the variables at the executing frame are resolved with the encapsulated
edges.

4.3 Aspects in the Design Configuration Modeling Language

DCML treats aspects as a specialization of the object-types called aspect-types
which are shown as nodes labeled AspectType (aspect-type nodes). Because of
this specialization, it is possible to specify attributes and operations for aspect-
types. Figure 12 shows elements used for representing aspects in DCML models.
It is possible to give precedence to aspect-types in DCML; if a precedence value
is given to an aspect, then the integer attribute precedence is set to the given

21

ObjectType

AN

-pointcuts

Pointcut AspectType

-toMethod : string
-toObjectType : string * 1

| Bofore | | Aftor -advice 1
I avos || i
1 1 -next

1

-precedence : int

Fig. 12. The meta-model containing elements for representing aspects in DCML mod-
els.

precedence value. The pointcuts of aspects are represented with nodes connected
to aspect-type nodes with edges labeled pointcuts. Depending on the advice ex-
ecution, these nodes are labeled Before, for before advices, and After, for after
advices. Note that a pointcut node can have only one before or after advice.
Thus, two pointcut nodes are required to define before and after advices for the
same method. UMIL-based AOM approaches extend the UML class and sequence
diagrams, thus, in order to use our approach for conflict detection in an AOM
model, a mapping from these extensions to the DCML elements must be pro-
vided. For Theme/UML, which we choose to model the design of the CMS, the
mapping to DCML is realized as shown in the itemization below:

— The pattern classes are represented as aspect-types. Currently, the execution
semantics we modeled do not support aspect instances; thus, the operations
and the attributes declared in template classes are converted to static oper-
ations and attributes of the aspect-types.

— The operation beforelnvoke() of the template operations is represented as
before pointcut. Similarly, the operation afterInvoke() is represented as after
pointcut. These pointcuts are connected to the aspect-type node representing
the template class by the edge labeled pointcuts.

— The life-line of the operations beforeInvoke() and afterInvoke() is represented
as the advice of a before or after pointcut.

— The names in the binding specification are converted to the values of the
attributes toMethod and toClass of a pointcut node. We also support to
match names against patterns rather than just comparing them for equality.

Figure 13 shows the DCML model of the “theme” CarCrashScenario,
_fireAdviceStart; the Theme/UML diagrams of this “theme” are shown in Fig-
ure 4. Here, the pattern class CarCrashScenario is represented by the aspect-type
node that has the same name. Looking at the sequence diagram of this theme,
it can be seen that the operation beforelnvoke() is called after the invocation
of the template method _fireAdviceStart(); so, a before pointcut is added to the
aspect-type CarCrashScenario. In the life-line of the operation beforelnvoke()
first a call action is executed, then the operation returns. In the DCML model
of this theme, the call action node and the return action node (labeled return)
represent these actions. Because the call action is executed first in the life-line,

22

the before pointcut node is connected to the call action node by the edge la-
beled advice. The specification presented in Figure 4-(c) states that the “theme”
CarCrashScenario should be bound to the class ScenarioOutSideEvent and to
the method fireStart(). Following this, the attribute toObject Type of the before
pointcut node is set to ScenarioOutSide Event and the attribute toMethod of the
same node is set to fireStart.

AspectType operation gp&’?ec:
name = "CarCrashScenario” ’;]/ perimp

static

pointcuts signature

next

bee Signature
toMethod = "fireStart” L advice call calledSignature nagme - "adviceFireStart"
toObjectType = "ScenarioOutSideEvent” =

Fig. 13. The DCML model of the “theme” CarCrashScenario.

4.4 Execution Semantics via Graph Transformations

A DCM is simulated by automatically triggering the appropriate graph trans-
formation rules that represent the OO and aspect-oriented execution seman-
tics of the UML models. We formed a graph-production system (a collection of
graph transformation rules [23]), consisting of 57 graph transformation rules that
model the OO-like execution semantics for UML sequence diagrams. In addition
to these, we modeled execution semantics for before and after pointcuts with
8 transformation rules. For brevity, we summarize how these execution seman-
tics work and detail the transformation rules modeling the semantics for before
pointcuts in this section (interested readers can download the graph production
system [1] and find detailed explanation of these semantics in [9]).

Before the discussion on the execution semantics, we introduce graph trans-
formations and how they are modeled in GROOVE. A graph transformation
rule has a left-hand side, L, a right-hand side, R and a set of negative appli-
cation conditions N. The rule transforms a source graph G to a target graph
H by searching for an occurrence of L in G where none of the elements in N
occurs. In order to say L occurs in G all the nodes and edges in L should also
be found in G [14]. When L of a transformation rule occurs in G where none of
the elements in N occurs then the transformation rule is said to match; a rule
can have multiple matches. For each match, L is replaced by R which results in
the transformed graph H.

In GROOVE, both the left-hand and the right-hand side of a graph trans-
formation rule are represented in the same graph. The modifications the rule
applies to the host graph are specified using keywords. The keyword new (or the

23

color green and solid bold lines) is used for the edges/nodes that are added. The
keyword del (or the color blue and dashed thin lines) is used for the edges/nodes
that are deleted. The keyword not (or the color red and dashed bold lines) is
used for negative application conditions [18].

00-like execution Semantics for UML sequence diagrams We modeled
to the following execution semantics for the simulation of the UML sequence
diagrams:

Program Counter: When the simulation of an action is complete, the trans-
formation rule modeling the semantics of the program counter advances the
simulation to the next action.

Operation Call: The operation call involves finding the receiver object of the
call and, then, traversing the inheritance hierarchy to find the latest im-
plementation of the operation. For example, if the object receiving the call
implements the called operation, then the inheritance hierarchy is not tra-
versed. If, on the other hand, this object does not implement the operation,
the super-type of this object is traversed. The semantics of the operation call
are implemented with 5 graph transformation rules (these transformation
rules are detailed in the appendix). These rules match when the simulation
reaches an instance call action node (i.e. the executes edge of the current
operation frame is pointing to a node with the label InstanceCall)

This-Call: Because in a this-call the receiver object is the same as the object
from which the call is originated, the semantics search for the operation
implementation in the object-type of the currently executing object. If the
operation is not implemented there, the traversal in the inheritance hierarchy
starts. This-calls are also implemented with 5 transformation rules and they
match to the host graph when the simulation reaches a node representing
the self-calls.

Super-Call: Similar to the execution semantics of the this-calls, the receiver
object and the object the call is originated from do not change in super-calls.
However, the implementation of the operation is searched in the super-type
of the currently executing object. If the operation implementation cannot
be located at the super-type then the traversal in the inheritance hierar-
chy starts. The semantics of the super-calls are also implemented with 5
transformation rules. These rules match when the simulation reaches a node
representing super-calls.

Static Operation Call: 3 transformation rules are implemented for static op-
eration calls, which match when the simulation reaches an action node repre-
senting a static-call. These rules locate the static operation implementation
in the class referred by the call.

Parameter Pass: Parameter passing is simulated after the object-type imple-
menting the called operation is located for all kinds of calls. The semantics
for parameter pass iterate the list of parameters and copy the values/refer-
ences to the frame of the called object. Parameter passing is implemented
with 3 transformation rules.

24

Return Value Pass and Assignment: When the simulation reaches a node
representing a return action, the semantics of the operation return are exe-
cuted. These semantics are implemented with 4 transformation rules, where
2 are used for copying the value/reference of the return value to the frame
the call is originated from, 1 is used for deleting the operation frame of the
returning frame and 1 is used for assigning the return value to the variable
specified in the call.

Object Creation: Object creations are simulated with 3 transformation rules,
which match to the host graph when the simulation reaches a node repre-
senting the create actions. The first transformation rules adds the created
object to the frame of the currently executing object and the remaining two
are responsible for calling the constructor.

Conditional Execution: The transformation modeling the semantics of con-
ditional execution, picks the first action of one of the frame fragments of
alternative frames and advances the program counter to that action, when
the simulation reaches an conditional frame node. For optional frames, the
rule either advances the program counter such that actions within the frame
fragment are simulated or the transformation rule for the program counter
advances the simulation to the next action (skipping the actions within the
frame fragment).

Loops: Loops are realized with 2 transformation rules, which match when the
simulation reaches a loop frame node. One of these transformation rules
arranges the program counter so that the simulation loops over the actions
within the frame fragment. The second transformation rule tests whether
the loop is repeated by the user-specified amount and, if so, it terminates
to loop. This rule is a generated rule. The user specifies the iteration count
for the loop in the sequence diagram (this done within the guard of the
loop). During the conversion from UML to DCML, the conversion algorithm
generates a copy of this rule for each loop frame in the sequence diagram.

Polymorphism: When an instance call can be received by more than one ob-
ject, the rule modeling the semantics of polymorphism matches. This rule
changes the value of the reference variable to an object that is an instance
of one of the type compatible classes. A typical scenario for polymorphism
occurs when there are two or more sequence diagrams showing the same call
received by different objects.

Execution Semantics of Pointcuts and Before Advices The design of
the CMS requires the scenarios to intercept the entry and exit points of the
event methods. Because of this, we modeled the semantics for pointcuts and
before/after advices. In this section, we detail the semantics of the pointcuts
and before advices; the semantics of the after advices are similar. As discussed
before, the pointcuts in DCML specify the name of the operation that is going
to be intercepted. The execution semantics of a pointcut evaluate whether the
simulation is at the entry point of the operation specified in the pointcut. If this
evaluation yields true, then the advice code of the pointcut is executed before

25

the operation. Similarly, the semantics for the after pointcut evaluate whether
the simulation has finished executing the operation specified by the pointcut.
The advice code of these pointcuts is executed just after the return action of the
intercepted operation.

executing Type executes, -
ObJECtType o M
%
8

!
name nutprevluusFrame ‘.\i"

narme
nE newtobdethod
1z nuttUMethDd -
& nevnplr
a -
ngd ! argiml

nemeannt @
stringieq
newstoPointCut
bool/true
booltrue

argiml
abdethod ’é@

ni 2

5
S
un

g

arge 'r(l

ni 5‘\
£ nof
H o f»,, X
“"'a.. pointcuts
notitoPointCut

stringieq argml)

Imng

ni2
" executingType executes
ObjectType OperFrame

o
W harne
name nat prewnusFrame o
m

o tolethod yiohtethod
E nottobdethod
- o

'i' i o
argml " = news
g o o))
@ Ens " P ‘
= not 2o,)
T, :
Hiry, As pectType
: argy nottoPothut newstoPointCut .
argim

n,,' pointcuts
n,,

@‘ 00bjectTyp
(b)

Fig. 14. The transformation rules modeling the semantics of before pointcut.

r
iy, ey

Figure 14 shows the two transformation rules that identify the join points
for before pointcuts. At the entry point of an operation, the transformation rule
shown in Figure 14-(a) evaluates whether there is a before pointcut that can
intercept this operation. If there is, then it marks the intercepted operation and
intercepting pointcut with a node labeled Joinpoint (joint point node), node
n8. To evaluate whether a before pointcut can intercept the operation, the rule
checks for two conditions: 1) the execution should be at an entry point of an
operation 2) The name of this operation and the name of the object-type should
match the names specified in the pointcut. These conditions are realized by the
transformation rule as follows:

— The entry point of an operation, in DCML, is the point where the program
counter, the edge labeled executes, connects the operation frame node to

26

an operation implementation node. The left-hand side of the transformation
rule shown in Figure 14-(a) matches when the simulation is at an entry point
of an operation identified with the node n8 representing the operation frame
that is currently executing and the edge labeled ezecutes connecting this
operation frame to the operation implementation node n15.

— The transformation rule uses attribute operations to evaluate the pointcut
at an entry point of an operation. In the transformation rule, the nodes x27/
and x276 represent the name of the operation and the value of the attribute
toMethod respectively. These nodes are generic value nodes and they can
match to any value of the attribute. The node p272 is a production node;
this is the node where the attribute operation is specified. The outgoing
edge labeled string:eq specifies the attribute operation is string comparison.
This edge is connected to the attribute node holding the value bool:true; this
states that the two string arguments of the operation should be equal for the
rule to match. The outgoing edges from a production node whose labels start
with arg are used for specifying the arguments of the attribute operation.
The arguments of the production node p277 are specified as the name of
the operation (node x27/) and the value of the attribute toMethod (node
x276) in Figure 14-(a). In this way, the rule evaluates whether the name
of the operation to be executed is the same as the name in the pointcut
specification. The evaluation of the name of the object-type is also realized
using the string comparison attribute operation (this attribute operation is
specified in the production node p277). Thus, the transformation rule only
matches when the string values of the pointcut specification are equal to the
object-type and operation that is to be executed.

The transformation rule shown in Figure 14-(b) evaluates whether there are
other aspects that can intercept the same operation as the aspect identified
by the rule presented in Figure 14-(a). This rule also uses attribute operations
to evaluate the pointcut. The main difference between this rule and the rule
presented in Figure 14-(a) is that this rule forms a list of join points. Assume
that there are two aspects that can intercept the currently executing operation.
The transformation rule shown in Figure 14-(a) identifies one of these aspects
and marks it by adding a join point node. Then, the transformation rule shown
in Figure 14-(b) identifies the second aspect and adds another join point node
(node n12). However, this join point node is connected to another join point
node (node n13) by an edge labeled next. In this way, a list with two join points
is formed. The beginning of the join point list is always the join point added
by the transformation rule of Figure 14-(a). This rule extends the join point list
by adding items to the end of the list. The edge labeled ptr is used for marking
the last item in the join point list. The rule connects the edge labeled next to
a join point node that has the self-edge labeled ptr. Since the newly added join
point is now the last item on the pointcut list, the rule adds the self-edge labeled
ptr to the new join point node (node n12 and deletes it from the previous join
point node (node n13). Note that the transformation rules shown in Figure 14
work on aspects that do not specify a precedence. The execution semantics for

27

aspects with precedence are handled by another two transformation rules. These
two rules also use attribute operations to compare the precedence value of the
aspect-type nodes.

nemtexecutinghdethod

executingType
— "

ns
. - - - delexecutes- - - -
ObjectType . PrOperframe gjb . executingType— 2
L notpreviousFrame 2 jectiype Operframe
. / body
eniadviceParameters

St newexecutes
= previousFrame

2
toMethod ninotpreviousFrame e i H
sighature OperFrame snotz
Tunnr
,
e del:executed newERECULES
S

£ not : newpreviousFrame
TP

p Y . advice ¥
T GRS = ' po E-dellainPaint 5
lnnt:nextllll) -: [B delinaxt—— - — - 2
toPointCut pointeuts T AspactType 1del; JoinPoint
(a) ()
L R - A R deltaMethod - - -»{
ObjectType OperImpl
delitoPointCut signature N
executingType .
S m nd del:JoinPaint _E
n2 K Signature . ' notipreviousFrame =
. pointcuts 4 Wy delOper
ZEETEE . newiesecuted newsadviceParameters il] f dE\‘OpErFI’BmE
deliexecutes ' »(--da\:axecuted---.ﬁz’. R

: no i delt
- advice L !

AspectType

previousFrame ¢ K
P delipreviousFrame

newOperFram e\ cUtingType copn |

i newpreviousFramme . i no
OperFrame et execuUtes n7 Operframe
(b) (d)

Fig. 15. a) Transformation rule for starting the execution of the join point list. b) The
transformation rule that starts the execution of the advice code for a pointcut. ¢) The
transformation rule that advances to the next join point in the join point list. d) The
transformation rule that resumes the execution of the intercepted operation.

After the join points are identified and the join point list is formed, the
join point list is traversed and the advice code of the pointcuts is executed.
The execution semantics of these are modeled in the 4 transformation rules
shown in figure 15. The transformation rule shown in Figure 15-(a) adds a new
operation frame, node n2, for traversing the join point list. This operation frame
is connected to the first join point of the join point list, node n4, with edge
labeled executes; thus, the dispatching of the advices starts form this join point.
The operation frame node n8 is the frame of the operation that is intercepted by
the aspects. The edge labeled previousFrame connects the new operation frame
to this node so that when the traversal of the join point list is finished the
intercepted operation can resume its execution.

The transformation rule shown Figure 15-(b) dispatches the advice code for
the current join point. This is the join point node connected to the operation
frame node n3 with the edge labeled executes. The dispatching is realized by

28

adding an operation frame node, node n6. The self of this new operation frame
node is the aspect-type node, node n0, where the pointcut is declared. The node
n7 represents the first action of the advice. The new operation frame is connected
to this node with the edge labeled executes; thus, the execution of the advice code
starts from this action. The edge labeled previousFrame is connected to frame
where the join point dispatched the advice. When the advice code returns, the
execution is given back to this operation frame; so the traversal of the join point
list resumes.

When the advice code returns, the transformation rule shown in Figure 15-
(¢) matches. This rule advances to the next join point in the list. When there
are no more items to be traversed in the join point list, the transformation rule
in Figure 15-(d) matches. This rule deletes the operation frame in which the join
point list is traversed and resumes the execution of the intercepted operation.

The graph formalism is expressive enough to define more complex pointcuts
such as pointcuts based on stack frames. One can extend the approach with
a new pointcut model by adding a node type for specifically identifying the
pointcut (possibly a sub-class of the node PointCut) to the DCML meta-model
with the matching criteria. Then, the semantics of the interception condition are
modeled with transformation rules similar to the transformation rules presented
in Figure 14.

4.5 State-Space generated from simulation

In graph based model, the simulation of a model generates a state-space called
graph transformation system (GTS) [23]. A GTS is, again, a graph, where the
nodes represent distinct runtime states and the directed edges represent graph
transformation rules that were applied to transit from one state to another.
When multiple rules can be applied at a certain state, one edge is created for
each rule.

To remind the reader, the state-space generated from the simulation of the
DCM shows all the execution sequences supported by the input sequence dia-
grams. Figure 16 shows an excerpt from a GTS demonstrating the simulation
of UML models of the CMS with the aspects CarCrashScenario and Presiden-
tialAccidentScenario. The execution starts in the state labeled start. The labels
of the transitions are the names of the applied graph transformation rules. It
is important to note that some of the labels are parameterized, like the trans-
formation rule executeMethod(operation name, object-type name). A rule with a
parameterized name specifies a set of node attributes whose values should be out-
put in the transition labeled instead of the parameters. When applied, GROOVE
extracts the values from the target graph and replaces the parameters with the
extracted value. We designed special transformation rules, called the informative
transformation rules, that use this mechanism to display information about the
operations/aspects that have executed during simulation. For example, the edge
between nodes start and S2, labeled executeMethod(“fireStart”, “ScenarioOut-
SideEvent”), shows that the simulation is at the entry point of the operation

29

ScenarioOutSideFEvent. fireStart(). Other informative transformation rules are
as follows:

— executes(t): shows that class t has received a call.

— returnframe(m, t): the return point of the method m of the class ¢.

— PolymorphicReconfiguration(f, t): A receiver of the call has been changed
from the instance of class f to an instance of the class t. This informative
transformation rule matches right before the call is simulated.

— conditionalExecutes(g): shows that the conditional execution has selected the
frame fragment with guard g.

In the sample GTS shown in Figure 16, we see that after state S2 the sim-
ulation continues in two branches. Each of these branches starts with a tran-
sition labeled beforePointCutStart. This label is the name of the transforma-
tion rule shown in Figure 14-(a). The theme CarCrashScenario and the theme
PresidentialEmergencyScenario both specify a before pointcut to the operation
fireStart(). So the transformation rule beforePointCutStart can match at two
different places; one for aspect CarCrashScenario and the other one for aspect
PresidentialEmergencyScenario. Application of this rule to one of these aspects
adds a join point node specific for that aspect. This in turn causes the branch-
ing in the GTS. In fact, when more than one aspect specifies a pointcut to the
same operation, each application of the rule before PointCutStart to one of these
aspects adds a branch to the GTS.

Because there are two aspects with a pointcut to the same operation, the
transition labeled beforePointCutStart is followed by the transition labeled be-
forePointCutNext once in each branch. The label beforePointCutNext is the name
of the transformation rule shown in Figure 14-(b) and, as discussed before, it
adds join points to the end of the join point list. Here, this rule matches once in
each branch because after the application of the transformation rule beforePoint-
CutStart there is another aspect that has a pointcut to the operation fireStart().

It can be seen from the transition between state S15 and S17 that at the left
branch first the advice of the aspect PresidentialEmergencyScenario is executed.
Thus, the transformation rule beforePointCutStart has matched to this aspect in
this branch and the join point node marking this aspect is the first item in the join
point list. Following this, the next item in the join point list should be the join
point of the aspect CarCrashScenario. This can be confirmed at the sample GTS
where after the advice code of the aspect PresidentialEmergencyScenario returns
(i.e. after the transition labeled returnframe(”adviceFireStart”, ”PresidentialE-
mergencyScenario”)) there is a transition labeled executeMethod(”fireStart”, ” Car-
CrashScenario”) between the states 543 and 547 in the left branch.

The left branch is further divided into two branches after the state S17 be-
cause of the optional frame in operation adviceFireStart of PresidentEmergen-
cyScenario (Figure 6-(c)). The semantics of the conditional execution (alterna-
tive and optional frames) is modeled with a transformation rule named Condi-
tionalAdapt and each application of this rule adds a branch to the GTS that
executes one of the frame fragments. In the sample GTS, it can be seen that
after state S20 the actions within the frame fragment are executed because the

30

executebethod("fire Start”,"ScenarioDutSideEvent™)

-(’_/beforepointCutStartO beForePointCutStartOﬂ

befareP ointCutMesxt) beforePointCuthext()
* ﬁ
startlointPointd) start)ointPaint))
executelointPoint() executelointPoint(
executeMethod("adviceFireStart”,"PresidentialEmergencyScenaria”) executeMethod("adviceFire Start”,"CarCrashScenario”)
Conditional&dapt() Conditional&dapt() Conditional&dapt) ConditionalAdapt)

521 522

el
o

IteratelnstanceOperBeging

!

52
528 §25 o
returnframe("adviceFireStart","Presidential®ccidentScenario®) returnframe("adviceFire Start"," CarCrashScenario”)
executeMethod("ScenarioStart”,"ScenarioData™) findDecl}
S31 S30
-SEZ 529 . 1
nextlointPointd next/ointPoint()
calllnstanceOper()
534
835
536
X 533 executelaintPaint(
exfeutelolitioint() executeMethodi"Scenariofccepted","Scenariofccepted") calllOperD <38
539 <40 e)
537 executes("PresidentialEmergencyScenarin™)
returnframe (" Scenarinfccepted”," Scenariofccepted")
executes("ScenarioData") 542
543 Py
541
executeMethod("adwviceFireStant","CarCrashScenario™
executehdethod("ScenarioStart”,"ScenarioData")
547
545
ConditionalConditionalAdapt)
8ol 552 554

executeMethod("adviceFireStart”," PresidentialEmergencyScenario™)

859

Fig. 16. Excerpt from a graph transition system showing advice execution and a con-
ditional execution in the advice.

31

operation ScenarioData.ScenarioStart() is executed in this branch. The branch
after the state S19 constitutes to the execution path where the parameter sce-
nario Type is not equal to PresidentEmergencyScenario.

4.6 Conflict detection using CTL

In order to identify the conflicts or requirement violations the requirement is
expressed as a temporal logic formula. Because the state-space generated by the
simulation contains all possible behaviors of the system, the verification of the
temporal logic formula finds all the states that do not satisfy it. In our case, we
are interested in searching for execution sequences that are paths in the state-
space. Computation Tree Logic (CTL) is a suitable formalism to search for paths
in the GTS. A CTL formula is formed with atomic propositions that are ordered
with temporal and logical operators (such as and (A), or (V) and not!). There
are two types of temporal operators in CTL:

1. Quantifiers over all paths (i.e. branches of the tree): Operator A(z) used for
quantifying over all paths and operator E(z) used for quantifying on at least
one path.

2. Quantifiers specific to a path (i.e. a branch of the tree): these operators are
used to express orders in a path:

(a) F(z): means that eventually in the subsequent path x has to hold.
(b) G(z): in the entire subsequent path x has to hold.

(¢) N(z): at the next state = has to hold.

(d) (z U y): = has to hold until at some state y holds.

There are two approaches to detect a constraint (invariant) violation of the
software system in the state-space generated: 1) using the quantifiers over all
paths express the constraint execution sequence, 2) using the quantifier over a
path express the violation of the constraint execution sequence. For the simula-
tion of the UML-based AOMs the second approach is more suitable for finding
the execution sequence that causes a problem in the system as the verification
would mark the states after which the violation has occurred. A violation of the
constraint can be expressed using the negation. For example, if the constraint
requires that after method a() eventually the method b() should execute, a vi-
olation of this constraint is an execution sequence where after method a() the
method b() does not execute; this is expressed in CTL as EF(a()A(EF(b()))).
Similarly, if the constraint states that after method a() method b() never exe-
cutes, a violation of this constraint is an execution sequence where after a() even-
tually the method b() executes, which is expressed in CTL as EF (a()A(EF(5()))).

In Section 4.1 the execution constraint of the scenarios on the state pattern is
described. One such example of the constraint on the states is that the car crash
scenario should go to the scenario accept state, by executing the method Sce-
narioAccepted. executeStateAction() when it receives a start event fireStart. The
violation of this constraint is the execution sequence where the method Car-
CrashScenario. fireStart() executes and, before it returns, the method Scenar-

32

i0Accepted. exzecuteStateAction() does not execute. Using the informative trans-
formation rules presented in Section 4.5, this execution sequence can be expressed
as a CTL formula as follows:

EF(executeMethod(” advice FireStart”,” CarCrashScenario”) A

(EF(conditional Executes(” scenarioT'ype = Presidential EmergencyScenario”) A
I(EF(executeMethod(” executeState Action”,” ScenarioAccepted”)
(EF(returnframe(” advice FireStart”,” CarCrashScenarioScenario”)))))
)

(EF (returnframe(” adviceFireStart”,” CarCrashScenarioScenario”))))))

A
A

5 Application of the approach to the case study

In this section, we describe two evolutions of the CMS that introduce semanti-
cally interfering aspects. These new aspects depend on a functionality that was
not used in the initial version of the CMS software. Thus, it is important to
verify that the old aspects (that are interfering with the new ones) obey the
invariants of this functionality.

5.1 Evolution of CMS

While adding a new scenario, it is important that the modified parts do not
violate the invariants of the software system. In order to prevent resulting errors,
whether the invariants are violated or not must be verified. Especially, great
attention should be paid to verifying invariants of mission-critical systems like
a CMS because errors could have catastrophic effects.

The CMS software can be deployed at different crisis domains. Not every type
of crisis in a domain can be known when the software is deployed. Due to this,
CMS software is designed to be extendable such that new crisis management
scenarios and resource allocation strategies can easily be incorporated into the
system. However, before incorporating these into the system, the validity of the
following two conditions should be ensured: 1) the new scenario and the new
allocation strategy do not violate the invariants of the CMS software 2) the old
scenarios respect the invariants of the CMS so that they do not cause problems
with the new scenario. For verifying the second condition one has to consider all
possible interactions between different crisis scenarios.

Assume that initially the stakeholders wanted to deploy the CMS software
to manage only car accidents. To fulfill this deployment, the pattern class Car-
CrashScenario was designed, implemented as an aspect with the same name and
shipped with the CMS software to the stakeholders. As the stakeholders gained
experience with car accidents, they noticed that some car accidents have a high
priority and the crisis resources should be first allocated to these accidents. One
such accident is the presidential accident, which always dispatches an ambu-
lance to the crisis scene. Thus, if all the ambulances are allocated by other car

33

scenarioOutsideEvents

ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData) !

>
> i
fireStart:=fireStart(scenarioType1, scenarioData)
>

ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData)

> 1 \]
fireStart:=fireRequest(scenarioType1, scenarioData)

e "
|

I
L] i

1 I
ScenarioEvent:=ScenarioEvent(eventType, scenarioData, evetData) !

Nl B
fireStart:=fireRequest(scenarioType2, scenarioData)
|

A Tl

Fig.17. The class Server receiving 4 events from the user.

crash scenarios, one of the crash scenarios should pre-empt the resources it has
allocated.

To manage presidential accidents, a new pattern class called PresidentialE-
mergencyScenario is added to the design of the CMS. The CMS already supports
prioritization of the crisis scenarios and pre-emption of resources: by calling the
operation ScenarioBroadcastEvent.firePreEmpt() a scenario may request other
scenarios to release the resources. This feature is used by the newly added sce-
nario. In an environment where pre-emption is required, the pattern classes of
the scenarios are required to implement a “before invoke” operation for the oper-
ation firePreEmpt(). The “before invoke” operation realizes how the pre-emption
is realized in the crisis scenario.

The initial version of the CMS allocated the first available resource to a
crisis (Figure 5). The efficiency can be improved if a resource that is closer
to the crisis can be dispatched, even if the resource is already dispatched to
another crisis. To address this requirement, the designers introduced a new
pattern called LocationAllocationStrategy that implements the resource alloca-
tion according to the location of the resources (Figure 8). This pattern class
makes use of the resource deallocate broadcast event operation ScenarioBroad-
castEvent. fireRequestDeallocate() to notify a scenario about deallocation. The
scenarios are required to implement a “before invoke” operation to listen to

34

this broadcast event. This before invoke operation should re-request deallocated
resources.

As shown in Section 3, the newly added strategy and crisis scenario are mod-
eled as new “themes” without modifying the UML diagrams of the initial version
of the CMS. These newly added “themes”, however, semantically interfere with
the car crash scenario because they depend on the old scenarios to handle re-
quests correctly. In the remaining parts of this section, we will show how these
interferences can be simulated and how possible system invariant violations can
be captured.

5.2 Simulation of the UML models of the CMS

The sequence diagram in Figure 17 shows the class Server receiving 4 events from
the users. Two of these events request a new crisis scenario to be initialized and
the other two require the newly initialized scenarios to allocate the resources.
To apply graph-based model checking, we used this sequence diagram, the class
diagram of the CMS software (these two diagrams constitute the “theme” main),
the UML diagrams of the “theme”, Monitoring, Car Crash Scenario, Presidential
Emergency Scenario and the Location based allocation strategy.

The generated DCML model from these diagrams contains 715 graph ele-
ments (nodes and edges). In this DCML model, the pattern classes are mapped
to the aspect-types CarCrashScenario, PresidentialEmergencyScenario, Moni-
toring and LocationAllocationStrategy. The simulation of this model generated a
state-space consisting of 47015 states, 47681 transitions; the simulation took 2.38
minutes2. Since every possible order of the aspects is a different branch, each
invoke of the operations fireStart and fireResourceAllocate adds two branches
to the GTS. In addition to this, the conditional paths also add two branches
for each advice invocation. Furthermore, the GTS contains one node for each
simulation step of the non-aspect-oriented semantics.

5.3 Verification of the Constraints of the CMS after Evolution

Using the state-space generated by the simulation of the UML diagrams, we
evaluate the following invariants of the presidential emergency scenario so that
introduction of this aspect does not introduce errors:

— The states of the presidential emergency scenario should match
to the outside events it responds to: The subclasses of the class State
reflect the states of a crisis scenario. Each subclass is responsible for cre-
ating a report about the scenario (e.g. the time the change in the state
occurs), which are then logged for statistical purposes. Thus, it is very im-
portant for a scenario to instantiate the right subclass of the class State for
the outside events. For example, the advice operation PresidentEmergency.

2 The simulation was executed on a laptop with Core 2 Duo 2.4 GHz CPU 4GB Ram
running Windows 7 Ultimate 64-bit and JDK 1.6 Update 6.

35

36

adviceFireStart() for the outside event fireStart() should set its state to an
instance of the class InitialReportReceived. The following CTL formula finds
the states where this advice operation does not set its state to an instance
of the class InitialReportReceived:

2l

EF(executeMethod(” advice FireStart” ,” Presidential EmergencyScenario

(EF(conditional Executes(” scenarioType = Presidential EmergencyScenario”

)A

)A

I(EF(executeMethod(” executeState Action”,” ScenarioAccepted’) N

(EF (returnframe(” adviceFireStart”,” Presidential EmergencyScenario”))))) A
)

(EF(returnframe(” advice FireStart”,” Presidential EmergencyScenario”))))))

This formula evaluates to true for states after which the operation Presi-
dential EmergencyScenario.adviceFireStart() eventually executes and, then,
eventually this operation returns before the constructor of the class Initial-
ReportReceived is called. Note that the state actions are only executed when
the scenario type is executed within the optional frame and with the proposi-
tion conditionalExecutes(”scenario Type = PresidentialEmergencyScenario”)
the formula searches the path where these actions are executed. The veri-
fication did not find any states that satisfy this formula, meaning that the
advice operation adviceFireStart sets the scenario PresidentialEmergency to
the correct state. We verified that all the advice operations of the class Pres-
identialEmergencyScenario set the correct states with the same formula by
changing the advice operation name and its respective state class name.
The states of the presidential emergency scenario should be moni-
tored. The aspect-type Monitoring intercepts the returns from the operation
executeStateAction of all the sub-classes of the class State to log the state in-
formation. This behavior should not be harmed by introduction of the aspect-
type PresidentialEmergencyScenario. If there is an execution sequence where
the operation executeStateAction does not execute after the advice code of
the aspect-type PresidentialEmergencyScenario, then the monitoring of this
aspect does not behave as it should. With the following CTL formula the
execution sequence where the monitoring of the advice PresidentialEmer-
gencyScenario. adviceFireStart() fails can be searched:

2

EF(executeMethod(” advice FireStart” ,” Presidential EmergencyScenario

(EF(conditional Executes(” scenarioType = Presidential EmergencyScenario”

) A
) A
(EF(returnframe(” executeState Action”,” Initial Report Received”) N\

W(EF(executeMethod(” afterInvoke”,” MonitorStatus”))) A
(EF (returnframe(” adviceFireStart”,” Presidential EmergencyScenario”))))))))

This formula looks for an execution sequence where the aspect PresidentialF-
mergencyScenario changes its state to InitialReportReceived by calling the
operation executeStateAction(). However, the aspect MonitorStatus does not
execute. The verification did not find any states that satisfy this formula so

the monitoring of adviceFireStart() works. By changing the operation advice-
FireStart() and the class InitialReportReceived to the other advice operations
and their respective states, we verified that the aspect PresidentialEmergen-
cyScenario is monitored correctly.

The scenario presidential emergency should not release its re-
sources when it receives the request for pre-emption. A scenario re-
leases a resource by calling the operation ResourceManager.deallocate Resource().
Thus, if the operation deallocatedResource() is called from the aspect-type
PresidentialEmergencyScenario within the advice for the operation firePre-
Empt(), then the invariant is violated. This execution sequence can be ex-
pressed with the following CTL formula:

EF(executeMethod(” advice Fire PreEmpt”,” Presidential EmergencyScenario”) A
(EF(executeMethod(” deallocateResource”,” Resource M anager”) A
(EF (returnframe(” adviceFirePreEmpt” ,” Presidential EmergencyScenario”))))))

This formula looks for a path where before the advice code at the aspect
PresidentialEmergencyScenario for the operation firePreEmpt() returns, the
operation the deallocateResource() executes. Here, the labeled returnframe(
YadviceFirePreEmpt”, ” PresidentialEmergencyScenario”) designates the exit
point of an operation. The verification did not find any states that satisfy
this formula. So, we can conclude that the invariant is not violated. This
invariant is not violated because in the “theme” presidential emergency sce-
nario the designers specified a sequence diagram, which shows the “before
invoke” for the operation firePreEmpt() only returns.

The resource allocation for the scenario presidential emergency
should always complete. This invariant is violated if the advice for the
method fireResourceAllocate() of the aspect-type PresidentialEmergencySce-
nario does not complete successfully. The transitions labeled returnframe
(operation name, object-type) only occur when the operation successfully re-
turns. Thus, with the following CTL formula we can search an execution
sequence where the advice starts executing but does not return:

EF(executeMethod(” allocationStart” ,” Presidential EmergencyScenario”) A

W(EF(returnframe(” allocationStart”,” Presidential EmergencyScenario”)))

Note that here allocationStart() is an operation called by the advice for the
operation fireRequest() as shown in Figure 7. The verification was able to find
states that satisfied this formula; thus, the invariant was violated. The advice
can fail when the resource manager runs out of resources. When there is not
any resource to allocate the operation allocateResource() returns null. The
sequence diagram shown in Figure 7 does not specify any frame fragments
that are executed when resource allocation fails (i.e. when null is returned).
Thus, the execution of the advice did not complete successfully because it
threw a null pointer exception. We can confirm this because after receiving

37

the resources the advice calls ScenarioData to log the resources. With a null
resource, the call to Resource.getType() fails. We used the following CTL
formula to confirm that the call to the operation getType() fails:

EF(executeMethod(” allocationStart”,” Presidential EmergencyScenario”) A
(EF(executeMethod(” getType”,” Resource”) A
(EF(returnframe(” getType”,” Resource”))))))

— The scenario car crash should deallocate its resources if the re-

source is not already dispatched. In any of the paths. if the aspect-type
CarCrashScenario does not execute after the operation firePreEmpt(), then
this invariant is violated. We can express this path as follows:

EF (executeMethod(” firePreEmpt”,” Scenariolnternalevent”) A
I(EF (executes(” CarCrashScenario”) A
(EF(returnframe(” firePreEmpt”,” Scenariolnternalevent”))))))

The verification found states that satisfy this formula, which means that
pre-emption is not handled by the aspect-type CarCrashScenario. The UML
diagrams for the “theme” CarCrashScenario do not specify a sequence dia-
gram with a before or after invocation of the operation firePreEmpt() because
pre-emption was not a requirement of the initial version of the crisis man-
agement system. As a result, there is no pointcut for this operation in the
aspect-type CarCrashScenario.

— The scenario car crash should deallocate its resources if it receives

38

a request to deallocate. The location based resource allocation strategy
allocates resources according to their location. Thus, a previously allocated
resource may be allocated to another crisis. The deallocation request is sent
to the scenarios using the method ScenariolnternalEvent.fireDeallocate().
The scenarios should intercept this call and deallocate the resource by calling
the method ResourceManager.deallocateResource(). The car crash scenario
violates this constraint if it does not intercept the event fireDeallocate() or
does not call the method deallocateResource() after intercepting the event,
which can be expressed with the following CTL formula:

EF(executeMethod(” fireDeallocate”,” Scenariolnternalevent”
(EF(executeMethod(” fireDeallocate”,” CarCrashScenario”))
I(EF (executeMethod(” fireDeallocate” ,” CarCrashScenario”

(EF(executeMethod(” deallocate Resource” ,” Resource M anager”)

) A
)V
) A
)))
(EF(returnframe(” fireDeallocate”,” ScenarioInternalevent”))))

The verification did not find any states that satisfy this formula, so the car
crash scenario does not violate this constraint. The UML diagrams of the
“theme” CarCrashScenario in Figure 5-(b) show that this scenario intercepts

the call to the method fireDeallocate() and calls the method ResourceMan-
ager.deallocateResource().

After receiving the deallocation resource the car crash scenario
should request a new resource. If in any path the aspect-type CarCrash-
Scenario does not make a call to the method ResourceManager.allocate Resource()
within the advice for the method fireDeallocate(), this invariant is violated.
This violation can be expressed in CTL as:

EF(executeMethod(” fireDeallocate”,” Scenariolnternalevent”)

(EF(executeMethod(” fireDeallocate” ,” CarCrashScenario”)
(EF(executeMethod(” allocateResource”,” Resource Manager”)
)
)

)

A
A
A
(EF (returnframe(” fireDeallocate” ,” CarCrashScenario”) A
(EF(returnframe(” fireDeallocate” ,” Scenariolnternalevent”))))))))))

The verification was able to find states that satisfy this formula, meaning
that the invariant is violated. A closer look at the design of the car crash
scenario shows that after receiving the deallocation request, it goes to the
request failed state. The deallocation request in the initial version of the
crisis management system was only used to cancel the scenario. However,
with the introduction of the location-based resource allocation strategy, the
constraint on the deallocation request is changed.

The verification shows that with the evolution 3 constraints of the crisis man-

agement system are violated. The main reason for this failure is the incremental
evolution: the “theme”s allowed the crisis management system to be evolved
without modifying the existing UML models. However, the evolutions do re-
quire the UML models of the initial version of the crisis management system to
be modified. A designer not evaluating the composed system may clearly miss
these errors and introduce bugs to the implementation.

5.4 State-Space Size and Methods for Pruning the State-Space

The size of the state-space depends on the number of actions in the sequence
diagrams and the number of alternative execution sequences. Because the num-
ber of simulated actions may change in each alternative execution sequence,
the exact size of the state-space may not be calculated. Nonetheless, an upper
bound on the state-space size can be provided as: O(nk x "k x s). Here, n is the
number of aspects, k is the number of operations with shared join points, ¢ is
the maximum number of alternative/optional frames in the aspects and s is the
number of actions in the sequence diagrams. On average, the state-space size is
much less than this upper bound because GROOVE detects isomorphic states
in branches and merges them into one branch. Nevertheless, if there are many
aspects on shared join points, the state-space becomes too large. Therefore, we
offer the use of the following methods for pruning the state-space:

39

— Simulating with reduced number of aspects: By simulating a subset of
the aspects that are important for the verification, the size of the state-space
may be reduced greatly. However, the important aspects for an invariant are
selected manually and, as a result, an aspect that causes interference may
be left out.

— Simulating with reduced number of operations with shared join
points: The operations which are intercepted by more than one aspect are
likely to cause interference problems. However, not all of these methods need
to be simulated to verify an invariant. If one can select a subset of these
operations important to the invariant, then one of the dominating factors in
the size of the generated state-space would be reduced. This method shares
the same disadvantage of the previous method, as manual selection may miss
an operation that violates the invariant.

— Using aspect precedence: For certain invariants, the execution order of
the aspects may not be important. Thus, the state-space can be reduced
by specifying the precedence of the aspects. For example, this is applicable
for scenarios of the CMS because scenarios are mission-critical and extra
attention must be paid in verifying whether they obey the invariants.

— Identifying mutually exclusive conditions: As discussed in Section 4.5,
the transformation rule ConditionalAdapt just picks one of the conditional
paths. When the conditions are mutually exclusive, semantically impossible
executions may be generated due to this. The size of the state-space may
be reduced by specifying which conditional frame fragments are mutually
exclusive in the sequence diagrams. Using the stereotype <<exclusive>>,
the designers can specify this. When the simulation reaches an exclusive
conditional path, it picks one of the execution paths but adds edges describ-
ing the picked execution path to the value of the variable declaration the
condition is taken upon. Thus, exclusive conditional statements that take
conditions upon the same value, are only allowed to pick the path that is
different from the marked path. For example, the conditional paths of the
aspects CarCrashScenario and PresidentialEmergencyScenario are exclusive
in that, when one of them executes the actions within the frame fragment
the other one immediately returns (skips the actions in the frame fragment).
Without mutually exclusive conditional paths, the simulation may generate
a branch where actions within the frame fragment are executed for both as-
pects (i.e. an execution sequence where the parameter scenario Type is equal
to CarCrashScenario and PresidentialScenario). This execution sequence is
omitted when the condition on the parameter scenarioType is specified as
mutually exclusive.

To test the effects of these state-space-reduction mechanisms on the design of
the CMS, we simulated different configurations of the UML models without the
reduction mechanisms and with the reduction mechanisms. Tables 1-3 report
the state-size, the simulation time and the total memory used by the JavaVM
in each configuration of the UML models of CMS. Here, the first column shows

40

the number of aspects in the simulated configurations; below the details of the
configuration are provided:

— 3 Aspects: in this configuration the UML models of the “theme”s Monitoring,
Car Crash Scenario and Presidential Emergency Scenario are simulated

— 4 Aspects: the “theme” Location Based Resource Allocation is added.

— 5 Aspects: the “theme” Fire Scenario is added. This scenarios sequence dia-
grams are very similar to the diagrams of the “theme” Car Crash Scenario.

Table 1. State-space size without reduction mechanism.

of Aspects

of States

of Transitions

Simulation

Memory used

time in min.|in Mb
3 14815 15303 1.1 50
4 111943 113643 6.23 67
5 798600 831499 20.13 134

Table 2. State-space size with Precedence as reduction mechanism.

of Aspects|# of States|# of Transitions|Simulation |Memory used
time in min.|in Mb

3 6993 7251 0.38 46

4 47015 47681 2.38 54

5 106167 108357 7.13 61

Table 3. State-space size with Precedence and Exclusive “ifs” as reduction mechanism.

7 of Aspects|# of States|# of Transitions|Simulation |[Memory used
time in min.|in Mb

3 1633 1697 0.12 43

4 7489 7635 0.46 48

5 9991 10234 0,71 49

When aspect precedence is used, the size of the state-space reduces by a factor
of 9 compared to the size of the state-space without any reduction methods.
Because with precedence, only one execution order for aspects is generated. In
this case, the number of states is bounded above by O(c”k X §).

For the configuration with 5 aspects when exclusive “ifs” are used with as-
pect precedence, in total, the state-space contains 99 branches. This is because
in the sequence diagram given in Figure 17, the subsequent invocations to the

41

operations fireStart() and fireResourceAllocate() used the same value. After the
first invocation of the operation fireStart(), 5 branches are generated with ex-
clusive “ifs” (in 4 of these branches one of the aspects executed the actions
within the frame fragment, and in the fifth none of the aspects has executed this
code). The first invocation of the operation fireResourceAllocate() does not cause
branches because the parameter eventType is the same as the parameter passed
to the operation fireStart(). After this, the second invocation of the operation
fireStart() causes another 5 branches. This time exclusive “ifs” caused branches
because the variable eventType?2 is passed and no path decision is made accord-
ing to the value of this variable (Figure 17). Similar to the first invocation, the
second invocation to the operation fireResourceAllocate() does not generate any
branches because the variable eventType2 is passed to this operation. Thus, the
number of states in the worst case for mutual exclusive “ifs” is bounded above
by O(nk). This worst case happens when all k& operations are invoked with a
distinct value. However, for practical cases the number of states is much less
because not every operation invocation uses a distinct value. For example, in
the CMS four operation invocations are simulated with two distinct values. This
reduced the state-space size to be bounded above by O(n? X ¢pon—mutual X)
where ¢,on—mutual 15 the number of conditions that are not mutually exclusive.

Note that the growth on the state-space size on the configuration with 4
aspects is due to the design of the aspect LocationAllocationStrategy. This as-
pect intercepts all the calls to the methods ResourceManager.allocate Resource()
and ResourceManager.deallocateResource(). The advice code for the method al-
locateResource() has two optional frames as shown in Figure 8-(c); thus, each
interception of this method adds 3 branches to the state-space. In the simulation
there are in total 3 calls to the method allocateResource() which adds 27 branches
to the state-space that were not in the simulation of the configuration with 3
aspects. However, the state-space size does not grow by a factor 27 because some
of these branches are isomorphic and are merged during simulation.

6 Related work

In the following, we discuss the related work from 4 different perspectives:

Representing UML models In the literature, graph-based approaches are
used to formally define the semantics of UML class- and object diagrams [26],
to detect inconsistencies in UML diagrams caused by evolution [31], to for-
malize refactorings [30], to recover design information [35] and to correctly
evolve design patterns [41]. These approaches provide a graph-based model
for object-oriented systems focusing on the static structure; in contrast,
DCML is tailored more to model the dynamic structure of the software.
In our previous studies [10], we used graph transformation rules to correctly
evolve UML models by following the constraints of software structures like
design patterns (e.g. we defined transformation rules to add a strategy using
the strategy pattern). In contrast to DCML, the graph based model used in

42

this study is static, captures the class diagram and one sequence diagram.
It lacks also the model elements that are used for execution semantics.

Execution Semantics for UML models Although the meta-model of UML
is documented and the modeling language is widely known, the lack of formal
semantics makes it hard to reason about the models. In the literature, for-
mal semantics for different types of UML diagrams are proposed. Whittle [39]
provides a formal semantics of use-case charts that enables the specification
of use-case scenarios. Use cases capture the software system’s behavior from
the stakeholders’ view, and use-case charts model them as three-level dia-
grams. The first level is an activity diagram where the nodes are the use
cases; the second level is also an activity diagram where the nodes are sce-
narios of a use case in the previous level; and the third level is constituted
by interaction diagrams of the scenarios of the second level. Because the use-
case charts formally specify the scenarios, they can be simulated. Therefore,
a hierarchical state machine synthesis algorithm is proposed [40] and the
tool UCSIM that executes this algorithm and simulates the generated state
machines has been developed [21].

Graph transformations have been used to specify formal execution semantics
of UML state-charts [27] [29]. For example, Kung et al. [27] generate a graph
grammar that models the execution semantics for a given state-chart. These
semantics, however, work only for providing verification/visualization for a
single state-chart.

Dynamic meta modeling is also proposed as a way to add operational se-
mantics to the UML diagrams [15]. In this approach, the meta model of the
UML class diagram is extended with a dynamic meta model that uses the
collaboration diagram notations. The state-chart diagrams specify the be-
havior of the system; for example, in order to trigger a transition, a method
has to be called which in turn can trigger another event in the state chart of
the called method. Using graph transformations the operational semantics
such as state transitions or method call triggers are modeled. Using a state
space generator such as GROOVE and these graph transformations [16],
it is possible to simulate the behavior of the software system and generate
the state space of the system. Then, the requirements of the system can be
verified in the generated state space.

The main difference between the approaches presented in this section and
our semantics is that we provide semantics that are close to actual aspect-
oriented software execution. Moreover, the semantics we provide are generic
and can be applied to any sequence diagram.

Object-oriented verification Programming languages generally have a well-
defined syntax, but their execution semantics are often informally specified.
To formalize the execution semantics of object-oriented programs, Kasten-
berg et al. model execution semantics of the TAAL language (a simplified
version of Java) as graph transformations [22]. Here, the idea is that a pro-
gram in the TAAL language can be compiled into a graph model and simu-
lated using graph transformation rules. By using graph-based model check-
ing, the properties of the execution can be verified. In our approach, we

43

apply graph-based model checking to UML models by modeling the execu-
tion semantics of UML, in particular of sequence diagrams (which define
valid/desired sequences of actions) in combination with class diagrams. The
semantics defined by Kastenberg et al. are specific for TAAL and cannot suit-
ably be adapted to represent UML-based models, without major effort. As
compared to this, we have defined an (automated) mapping from the UML
meta-model to DCML. In addition, their approach does not support aspect-
based functionality (such as explicit mappings for pointcuts, join points,
etc.).

Visser et al. propose to apply model checking to main stream programming
languages, such as Java [38]. They propose a system (Java Path Finder) to
model-check programs expressed in Java Bytecode. Their approach is applied
to programs at the implementation level; this is an explicit design choice. As
compared to this, we want to detect interference at the UML design level,
while also supporting the use of aspects at this level.

Aspect-oriented verification A few approaches exist that aim to prove the

44

correctness (usually with regard to specific properties) of programs or models
in the presence of aspects. For example, Katz et al. propose an approach that
checks whether a given program, which may include crosscutting definitions
(such as pointcut-advice constructs), conforms to one or more scenarios [24].
In this approach, the system and aspects must be specified as a set of sce-
narios in a formal language. The verification is carried out by detecting the
join points of the aspectual scenarios and finding out if there are undesired
interferences at these points. Our approach, on the other hand, does not re-
quire the user to specify anything about the program beyond UML models;
interference is detected based on the operational semantics of these models.

An approach related to the above facilitates the automated derivation of
proof obligations from requirements models that are specified using an aspect-
oriented requirements engineering approach [25]. For example, the approach
generates temporal logic formulas that have to be satisfied (proven) in later
design stages. This allows to check the consistency between early and later
design stages. As compared to this, the approach presented in this paper ver-
ifies the consistency of several models at the same modeling level (i.e. at the
concrete design stage). As such, the approaches could be used to complement
each other.

At the level of aspect-oriented requirements engineering, [7] proposes an
approach that uses semantic annotations to make aspect composition speci-
fications less fragile. The work is related to ours, as these specifications later
drive the generation of models; it is however not aimed at (model-)checking
the correctness of the resulting system with regard to the intended semantics
of the composed system. Rather it supports the user to actually compose the
intended elements in the first place (cf. the fragile pointcut problem [28]).
In this paper we did not focus on addressing problems related to fragile
pointcuts; we do however discuss this issue (at the program level) in other
work [34,19].

The authors of [33,32] aim at detecting the possible semantic interferences
that can occur in models expressed using the Aspect-UML language. To this
aim, the static language elements of Aspect-UML are mapped to the speci-
fication language Alloy. The operational semantics of Aspect-UML models,
however, have to be expressed manually using the dynamic state-based spec-
ification language Alloy. There are at least three differences between our ap-
proach and the one proposed in [33]. Firstly, in our approach, we derive the
formal representation of models based on the static and dynamic semantics
of the UML, and on a graph based generic pointcut model. As such, our
approach is less AOM specific. Secondly, we derive the operational seman-
tics of models from the UML models directly; the modeler does not need to
define the dynamic behavior of models in the specific language of the veri-
fier. Thirdly, Alloy is designed intentionally as a limited model-checker that
mainly adopts the small scope hypothesis; that is, the errors are searched
only within a limited scope. The GROOVE model checker, however, incor-
porates various verification tools including a possibility for a full state-space
exploration.

In [3], Aksit et al. introduce an approach for the detection of interference
between aspects that is also based on graph transformations. There are two
major differences with the work presented in this paper: first, the paper fo-
cuses on modeling the operational semantics of aspect-specific behavior (i.e.,
advice code) within the Composition Filters approach. Thus, the approach
works at the program level and focuses on (only) the aspect-related part of
the program. Second, the paper focuses on detecting interference at shared
join points, i.e., it detects situations where the behavior of the program dif-
fers based on the order in which advices at shared join points are executed.
As compared to this, the work presented in our paper does not focus on
detecting interference at (only) shared join points, and takes the semantics
of the entire (UML-based) model into account.

7 Discussions and Conclusions

In this article, we have analyzed the example CMS case, identified two crisis
scenarios as aspects, defined a model using Theme/UML, and verified its cor-
rectness at the modeling level with respect to a possible semantic interference
among the scenarios. We will now evaluate our approach from the following three
perspectives:

Expressivity: The expressiveness of the tool is determined by the base mod-
eling language UML, and the adopted join point model as described in sec-
tion 4.4. In the current version, our tool supports UML class and sequence
diagrams. A large library of rules is defined for the static and operational
semantics of UML. The join point model currently supports before and after
pointcut specifications. Since our model is based on a general purpose graph-
verification system (GROOVE), further extensions and tailoring should be

45

possible within the limits of the selected approach. Our system is also sup-
ported by UML-to-graph translators, pruning techniques and model check-
ers. The sophistication of the graph model and the operational semantics,
the simulation and the complexity of the model-checking process are hidden
from the user. The user supplies UML-based AOM models to the system,
and has to use CTL formulas to specify the invariants. The user is warned
if the state space becomes too large, so that the available pruning methods
can be investigated. Our system was able to detect the UML-level semantic
errors among the aspects of the CMS model. Of course, the capability of our
approach is by definition limited to the expressiveness of the selected UML
models and the join point model.

Scalability: In the CMS, scenarios are represented as aspects. The space and
time complexity of the detection algorithm depends on the simultaneously
active aspects that interfere with each other. In most aspect-oriented appli-
cations, the number of potentially conflicting aspects is expected to be low.
However, depending on its context of usage, the CMS system should be able
to handle, say, 10-20 scenarios simultaneously. Within the context of the
example case, without taking any measures, the tool is capable of handling
approximately four scenarios. Since this is rather limited, we have decided
to use the available pruning methods. We first applied a precedence order
among the scenarios and investigated if such an ordering caused any artificial
restriction. This did not cause any problem because the invariants that are
used in the verification process as shown in section 4.3 are independent of
the aspect execution order. As shown in Table 3, this pruning method has
reduced the generated states more than a factor 9. To further reduce the
state space, we have identified the critical operations which cause branch-
ing in the state space. As shown in Figure 16, such information is easily
obtainable from the tool. We have then tagged the branches that should be
mutually exclusive. As a result, the state space is reduced with a factor over
300; and the state-space growth with the number of aspects n is bounded
above by O(n?). Concluding, from this practical experience, we observe that
our approach is applicable to verifying models without pruning up to a lim-
ited set of interfering aspects. Nevertheless, as in the case of the CMS, the
pruning process may reduce the complexity of the verification dramatically.
From the perspective of the tool, a model which consists of a high-level of in-
terfering aspects and that cannot be pruned, is considered either ill-designed
and therefore must be re-factored, or is beyond the capability of the tool.
We assume this will be an exception in practice.

Applicability to AOM tools: Our tool is only applicable to UML-based AOM
models, which can be translated to our internal representation. First of all,
this requires mapping UML-specific parts of the AOM to our meta-model.
Secondly, the aspect and pointcut designators of the AOM must be mapped
to our pointcut model as specified in Figure 12.

Based on these evaluations, we can conclude that the tool proves its appli-
cability to the CMS example case. We think that the tool is capable of handling

46

a large category of aspect interference problems that can be experienced in the
current UML-based AOM approaches. As discussed in the article, there may
be certain complex cases to which the tool cannot scale. These, however, are
considered as exceptional cases rather than routine.

References

10.

11.

12.

13.

14.

Gace: Graph-based adaptation, configuration and evolution modeling [online]
http://trese.cs.utwente.nl/willevolve/.

. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting

object interactions using composition filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Object-Based Distributed Processing, volume 791, pages 152—
184. Springer-Verlag Lecture Notes in Computer Science, 1993.

M. Aksit, A. Rensink, and T. Staijen. A Graph-Transformation-Based Simulation
Approach for Analysing Aspect Interference on Shared Join Points. In AOSD ’09:
Proceedings of the 8th ACM International Conference on Aspect-Oriented Software
Development, Charlottesville, Virginia, USA, pages 39-50, New York, 2009. ACM.
K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reac-
tive systems: Larissa, a proposal in the synchronous framework. Science of Com-
puter Programming, 63(3):297-320, 2006.

J. Araijo, J. Whittle, and D.-K. Kim. Modeling and composing scenario-based re-
quirements with aspects. In Proc. 12th Int’l Requirements Engineering Conference,
pages 53—-62. IEEE, Sept. 2004.

E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented analysis and
design. In Proceedings of the 26th International Conference on Software Engineer-
ing, pages 158-167. IEEE Computer Society Washington, DC, USA, 2004.

R. Chitchyan, A. Rashid, P. Rayson, and R. Waters. Semantics-based composi-
tion for aspect-oriented requirements engineering. In Proceedings of the 6th inter-
national conference on Aspect-oriented software development, pages 36—48. ACM
New York, NY, USA, 2007.

R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P. Alarcon, J. Bakker, B. Tekin-
erdogan, S. Clarke, and A. Jackson. Survey of aspect-oriented analysis and de-
sign approaches. Technical Report AOSD-Europe-ULANC-9, AOSD-Europe, May
2005.

S. Ciraci. Graph Based Verification of Software Ewvolution Requirements. PhD
thesis, University of Twente, December 2009.

S. Ciraci, P. van den Broek, and M. Aksit. Framework for computer-aided evolution
of object-oriented designs. COMPSAC, pages 757-764, 2008.

S. Clarke and R. J. Walker. Composition patterns: An approach to designing
reusable aspects. In Proc. 23rd Int’l Conf. Software Engineering (ICSE), pages
5-14, May 2001.

S. Clarke and R. J. Walker. Generic aspect-oriented design with Theme/UML. In
R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, editors, Aspect-Oriented Software
Development, pages 425-458. Addison-Wesley, Boston, 2005.

P. E. A. Diirr. Resource-based Verification for Robust Composition of Aspects. PhD
thesis, University of Twente, Enschede, June 2008.

H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph Grammars and Their Application to
Computer Science and Biology, volume 73 of LNCS, pages 1-69, 1979.

47

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

23.

26.

27.

28.

29.

30.

31.

32.

33.

48

G. Engels, R. Heckel, and S. Sauer. Dynamic Meta Modeling: A Graphical Ap-
proach to Operational Semantics of Behavioral Diagrams in UML. 1999.

G. Engels, C. Soltenborn, and H. Wehrheim. Analysis of UML Activities Using
Dynamic Meta Modeling. In FMOODS’07, volume 4468 of LNCS, pages 76-90.
Springer-Verlag, 2007.

R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented approach to early
design modelling. IEE Proceedings Software, 151(4):173— 185, Aug. 2004.

A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundam. Inf., 26(3-4):287-313, 1996.

W. K. Havinga, I. Nagy, L. M. J. Bergmans, and M. Aksit. A graph-based ap-
proach to modeling and detecting composition conflicts related to introductions.
In O. de Moor, editor, Proceedings of International Conference on Aspect Oriented
Software Development, AOSD 2007, Vancouver, Canada, ACM International Con-
ference Proceedings Series, pages 85—95, New York, March 2007. ACM Press.

R. Helm, I. Holland, and D. Gangopadhyay. Contracts: specifying behavioral com-
positions in object-oriented systems. ACM Sigplan Notices, 25(10):169-180, 1990.
P. K. Jayaraman and J. Whittle. Ucsim: A tool for simulating use case scenarios. In
ICSE COMPANION ’07: Companion to the proceedings of the 29th International
Conference on Software Engineering, pages 43-44, Washington, DC, USA, 2007.
IEEE Computer Society.

H. Kastenberg, A. G. Kleppe, and A. Rensink. Defining OO Execution Semantics
Using Graph Transformations. In 8th IFIP, volume 4037 of LNCS, pages 186201,
2006.

H. Kastenberg and A. Rensink. Model Checking Dynamic States in GROOVE. In
SPIN’06, volume 3925 of LNCS, pages 299-305, Berlin, 2006. Springer-Verlag.

E. Katz and S. Katz. Verifying scenario-based aspect specifications. Lecture notes
in computer science, 3582:432, 2005.

S. Katz and A. Rashid. From aspectual requirements to proof obligations for
aspect-oriented systems. In 12th IEEE International Requirements Engineering
Conference, 2004. Proceedings, pages 48-57, 2004.

A. Kleppe and A. Rensink. On a Graph-Based Semantics for UML Class and
Object Diagrams. In Proceedings of the 7th International Workshop on Graph
Transformation and Visual Modeling Techniques, volume 10 of Electronic Commu-
nications of the EASST, page 16, 2008.

J. Kong, K. Zhang, J. Dong, and D. Xu. Specifying behavioral semantics of UML
diagrams through graph transformations. J. Syst. Softw., 82(2):292-306, 2009.

C. Koppen and M. Storzer. PCDiff: Attacking the fragile pointcut problem. In
K. Gybels, S. Hanenberg, S. Herrmann, and J. Wloka, editors, European Interactive
Workshop on Aspects in Software (EIWAS), Sept. 2004.

S. Kuske. A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In UML’01, pages 241-256, London, UK, 2001. Springer-Verlag.
T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using
graph transformation. Software and Systems Modeling, 6(3):269-285, 2007.

T. Mens, R. van der Straeten, and M. D’Hondt. Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. In Model Driven Eng.
Lang. and Sys., volume 4199/2006, pages 200-214, 2006.

F. Mostefaoui and J. Vachon. Design-level Detection of Interactions in Aspect-
UML models using Alloy. Journal of Object Technology, 6:137-165, 2007.

F. Mostefaoui and J. Vachon. Verification of Aspect-UML models using Alloy. In
Proceedings of the 10th international workshop on Aspect-oriented modeling, pages
41-48. ACM New York, NY, USA, 2007.

34.

35.

36.

37.

38.

39.

40.

41.

I. Nagy, L. Bergmans, W. Havinga, and M. Aksit. Utilizing Design Information
in Aspect-Oriented Programming. In A. P. Robert Hirschfeld, Ryszard Kowal-
czyk and M. Weske, editors, Proceedings of International Conference NetObject-
Days, NODe2005, volume P-69 of Lecture Notes in Informatics, Erfurt, Germany,
September 2005. Gesellschaft fiir Informatik (GI).

C. Rich and L. Wills. Recognizing a program’s design: a graph-parsing approach.
Software, IEEE, 7(1):82-89, Jan 1990.

A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson. EA-Miner: a tool for au-
tomating aspect-oriented requirements identification. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering, pages
352-355. ACM New York, NY, USA, 2005.

A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger, M. Wimmer,
and G. Kappel. A survey on aspect-oriented modeling approaches. Relatorio
tecnico, Vienna University of Technology, 2007.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10(2):203-232, 2003.

J. Whittle. Precise specification of use case scenarios. In FASE’07, volume 4422
of LNCS, pages 170-184. Springer-Verlag, 2007.

J. Whittle and P. K. Jayaraman. Generating hierarchical state machines from use
case charts. In RFE ’06, pages 1625, Washington, DC, USA, 2006. IEEE Computer
Society.

C. Zhao, J. Kong, J. Dong, and K. Zhang. Pattern-based design evolution using
graph transformation. J. Vis. Lang. Comput., 18(4):378-398, 2007.

Appendix — DCML elements and execution semantics

In this appendix, all elements of the DCML and the execution semantics for
operation dispatch are discussed in detail. For convenience, we have copied the
figures used in this discussion to the appendix which are already used throughout
the paper. Figure 18 repeats the DCML meta model.

instanceValue
“Type

FparamValue, assignedValue _returnval

AN

PrimitiveType

VarDecl

Signature

-name : string

-signature

|-static : bool

=
parameter [1ame - sing
OperDecl attributes
final - bool L ObjectType

StaticCall

-referenceType

-final : bool
-abstract : bool

-referenceVar

[-interface : bool

AN

-statement

-calledSignature

-bod

“superType

-instance
et

-instance

d bool | Operimpl ListType
{ catiaction NN possiblenet g JAN B
8 2
1 3]
$ = g Object
[Crewm] . :? Y[l
7N ListLookup 5 2
InstanceCall " i E -encapsulates
3l <
L Fi X D
| [Supercan | - [LocpFrame] HE
ThisCall

Fig. 18. The DCML meta-model.

49

Structural Part of DCML

The structure part covers the elements of the meta-model for modeling the
classes, the interfaces and the relations between these. This part is generated
from the class diagram. Because classes and interfaces are types at runtime,
they are represented with nodes labeled ObjectType (object-type nodes). If the
object-type node is representing an interface, then the attribute interface is set
to true. The equivalent of the generalization relation is the edge labeled super-
type. Figure 19-(a) shows a portion of the class diagram from the CMS with
three classes, namely State, ResourceAllocation and ScenarioData. Figure 19-(b)
shows the DCML representation of this class diagram; here, the three object-type
nodes represent the classes in the class diagram. For example, the object-type
node with the attribute name ResourceAllocation (i.e. the name of object-type
node) is the class with the same name represented in DCML. The class Re-
sourceAllocate generalizes the class State in the class diagram. This is shown
in DCML with the edge labeled SuperType connecting the object-type nodes
representing these classes.

State

WarDecl
ObjectType Tvp name = "currentState”
«abstract» +executeSateAction(in executingScenarioData : ScenarioData) : void

name = "State" [*superType Cbjectype
% . name = "Resourceallocate" | *tributes
ResourceAllocate operations
operations ObjectType
+ResourceAllocate(in res : ResourceAllocate) OperDecl ’ name = "ScenarioData"
+executeStateAction(in executingScenarioData : ScenarioData) : void OpEI’Decl
Operlmpl

signature Type

ScenarioData signature |
-currentState : State Signature parameter WarDecl
+addAllocatedResource(in res : Resource) : void name = "executeStateAction” name = "executingScenarioData”

(a) (b)

Fig. 19. a) An example UML class diagram. b) The DCML model of the class diagram
shown in (a).

The nodes labeled VarDecl represent the variable declarations (variable dec-
laration node); the type of the variable is modeled by the edge labeled Type,
connecting the variable declaration node to a type node. An object-type node
connected to a variable declaration node with an edge labeled attributes repre-
sents that the variable is an attribute of the object-type. For example, the class
ScenarioData has the attribute currentState and the type of this attribute is the
class State as shown in Figure 19. In the DCML equivalent of this class diagram
in Figure 19, this is also shown: the object-type node named ScenarioData and
the variable declaration node named currentState are connected by the edge
labeled attributes.

DCML separates the operation signatures from the operation declarations.
The operation declaration nodes (nodes labeled OperDecl) are used for repre-
senting the abstract operations and operations without implementations. The

50

object-type node connected to an operation declaration node with an edge la-
beled operations represents the object-type which declares the operation. The
implemented operations, on the other hand, are represented by nodes labeled
both OperImpl and OperDecl (operation implementation nodes). In Figure 19-
(a), the class State has an abstract operation; thus, the object-type node State
is connected to an operation declaration node in the DCML model of this class
diagram (Figure 19-(b)).

Each unique signature in the class diagram is represented by signature nodes
(nodes labeled Signature). The parameters of a signature are represented by
variable declaration nodes connected to the signature node with an edge labeled
parameter and the return type of the signature is represented by connecting
the signature node to a type node. In Figure 19-(a), there are two operations
with the same signature named ezecuteStateAction that take one parameter of
type ScenarioData and do not return a value. In the DCML model of this class
diagram, this signature is represented by the signature node named ezecuteState-
Action. Note that the operation declaration node of the object-type State and
the operation implementation node of the object-type ResourceAllocate are both
connected to this signature node by an edge labeled signature. This shows that
in the object-type State an operation with a signature named executeStateAction
is declared and in the sub-type ResourceAllocate this operation is implemented.
In this manner, operation overriding is modeled by connecting the operation
implementation node of a sub-type to a signature node to which an operation
implementation node of the super-type is connected.

s : Scenario::ScenarioData currentState : States::ResourceAllocate

addAllocatedResource:=addAllocatedResource(res) }

!
executeSateAction:=executeSateAction(executingScenarioData)

Fig.20. A sequence diagram showing the actions executed by the operation
ScenarioData.addAllocatedResource().

Dynamic Part of DCML

The dynamic part, which is generated from the sequence diagrams, covers the
elements for modeling the objects, the values and the life-lines operations. A
life-line in a sequence diagram shows the actions the object executes when it
receives a call. In the DCML meta-model (Figure 18), the specializations of the
abstract element Action represents the actions of sequence diagrams. For exam-
ple, the nodes labeled CallAction represent call actions and the nodes labeled

51

return represent return actions. An action node can be connected to another ac-
tion node by an edge labeled next; in this way, the order between the actions of a
life-line is represented in DCML. The first action of a life-line is connected to an
operation implementation node by an edge labeled body in DCML to show that
these actions are executed when this operation received a call. The sequence
diagram presented in Figure 20 shows the life-line of the operation addAllo-
catedResource(). The first action executed in this life-line is a call action. This
action is followed by a return action where the operation addAllocatedResource()
returns. Figure 21 shows the DCML model generated from this sequence dia-
gram (and the class diagram in Figure 19). In this figure, the emphasized node
represents the call action belonging to the life-line of the operation addAllocat-
edResource. Because in the sequence diagram this call action is the first action
executed in the life-line of the operation addAllocatedResource(), the emphasized
node is connected to the operation implementation node representing the oper-
ation addAllocatedResource() by an edge labeled body. This call action node is
connected to the signature node named executeStateAction by an edge labeled
calledSignature to show that the call action is to the signature ezecuteStateAc-
tion. Following the outgoing edge labeled next from the call action node, it can
be seen that the call action is succeeded by a return action.

Object

Object ncapsulat | instanc ObjectType
Valﬁl‘\ Value l; name = "ResourceAllocate”

instance instancelalue

ObjectType
self name = "ScenarioData" attributes

superType operations
operations

+ OperDecl
OperFrame OperDecd i
Opermpl
referencet/ar signature
executes body l

et

VarDec!
name = "currentState”

ObjectType
name = "State"

‘ Signature

Callaction lled3ignat
alledaignatur " signature = "executeStateAction”

InstanceCall

Fig. 21. A snapshot from the simulation of the sequence diagram shown in Figure 20.

In DCML, call actions have 5 specializations representing different kinds
calls: the calls to instances (InstanceCall), create actions (CreateOper), super
operation calls (SuperCall), self calls (ThisCall) and static operation calls (Stat-
icCall). The call action to the operation ResourceAllocate.executeStateAction in
the sequence diagram shown in Figure 20 is an instance call because this call
is received by an instance labeled currentState of the class ResourceAllocate.
Because this call action is an instance call, the emphasized node in Figure 21,
which represents it, is also labeled InstanceCall.

92

The classifier names are represented as variables which hold the objects in
DCML because DCML only supports communication between objects through
encapsulation. So, the classifier currentState in the sequence diagram of Figure 20
is represented as a variable declaration node with the same name in the DCML
model of this sequence diagram as shown in Figure 21. The type of this variable is
set the object-type named State because the class ScenarioData has an attribute
named currentState whose type is the class State as shown in Figure 19. If
the class ScenarioData did not contain such an attribute, then the type of the
variable currentState would be set to ResourceAllocate. Note that the emphasized
call action node is connected to this variable declaration node by an edge labeled
reference Var to show that the call references the value of this variable.

The values of the variables are represented by connecting the variable dec-
laration nodes to value nodes (nodes labeled Value with edges labeled instance-
Value). Following the edge labeled instance Value from the variable declaration
node named currentState in Figure 21, it can be seen that the variable is hold-
ing an object. This object is an instance of the class ResourceAllocate; this is
represented by the edge labeled instance Value connecting the object-type node
named ResourceAllocate. The object node representing an instance of the class
ScenarioData is connected to the object node representing an instance of the
class ResourceAllocate by an edge labeled encapsulates. This means that in the
scope of this instance of the class ScenarioData, the variable currentState holds
an instance of the class ResourceAllocate. A DCML model can be generated from
more than one sequence diagram and, thus, a variable can have more then one
instance value. During simulation, the values of the variables at the executing
frame are resolved by the encapsulated edges.

In UML 2.0 sequence diagrams, conditional execution of the actions is repre-
sented by frames whose operators are alt or opt (alt stands for alternative and opt
stands for optional). A frame can have one or more fragments which contain the
actions. A fragment with a guard shows that the actions within the fragment are
executed when the guard is true. In DCML, these frames are represented with
nodes labeled ConditionalFrames (conditional frame node). The first action of
each fragment is connected to the conditional frame node with an edge labeled
possible_next. For example, an optional frame would be modeled in DCML, with
a conditional frame node that is connected two action nodes: the edge labeled
possible_next connects the conditional frame node to the first action within the
frame and the edge labeled nezt connects it to the first action node that comes
after the frame.

The frame of an executing operation is represented by nodes labeled Oper-
Frame in DCML. These nodes are used to identify, during simulation, the object
that is currently executing, the scope of the executing object, the type that con-
tains the called operation and the statement that is being executed. The self of
an operation frame is represented in DCML by connecting the operation frame
node to an object node by an edge labeled self. In figure 21, for example, the
self of the operation frame is an instance of the class ScenarioData. The action
that is currently executing is represented by the edge labeled executes; for the

53

DCML model in Figure 21 the currently executing action is an instance call.
When UML diagrams are converted to DCML models, the conversion algorithm
automatically adds the operation frame node which marks the first action of
the sequence diagram as the action that is being executed. Thus, the simulation

starts executing from that action.

Execution semantics of operation dispatch

winnorecching TypeSart gzbjmwpe
newreceivingTypeStart
H/ newreceiving Typelter instance
new n3
1 nl
superType ObjectType
instancelialue] 2 ObjectType n
Ohje

ct
newreceivingTypelter delireceivingTypelter
annng T

8

u

g
A encapsulates

Snd = -
E H not 2
SnotZ, m Tugur ns
notreceivinglnstanceOperdmp Tuem [ns] "R [=s]
- notpreviousFrame o = H
H p notcalledDeclaration notpreviousFrame
nio n7 H
call [e——executes Operframe n? p
executes
InstanceCall call Operframe
(a) (c)

receivingTypelter Operimpl ObjectType
aperations = > el
ObjectType iy delreceivingTypelter .
notiecehinglnstanceOpermp, 225 delreceningTypeStart
1 : |

signature e
niz
ObjedtType

g ni1
newwrecdvinglnstanceOpedng gooo o

del:calledDecl
notiselected

né
VarDed
calledSignature Object
no

o : instan(e\/a\ue
executes Operframe no | referencear VarDed encapsulates
Call i notreceivingl P e —
; glnstanceOperlmp, executes o
InstanceCall " InstanceCall OperFrame o

(b) (d)

1
netipreviausFrame

T

Fig. 22. Graph transformation rules for finding the newest implementation of the called
operation: (a) Calculates the target reference type and marks it (b) finds the latest dec-
laration of the operation (c¢) moves the mark up one level in the inheritance hierarchy,

(d) checks whether the latest declaration implements the operation.

The execution semantics for operation dispatch consists of finding the latest
implementation of the operation in the inheritance hierarchy and passing the
arguments that are executed in the following manner: 1) calculating the type
of the object the reference variable is holding; that is, the reference type of
the call 2) starting from the reference type traversing the inheritance hierarchy
upwards until an object-type that declares the operation is found 3) passing
the arguments 4) checking that the latest declaration implements the operation.
Figure 22 presents the 4 transformation rules that realize steps 1, 2 and 4 of the
operation dispatch. For brevity, step 3 is not detailed further. Below we describe
how these steps are realized by the four transformation rules of the figure:

54

1.

2.1

2.2

The rule in Figure 22-(a) is used for finding the reference type of the call.
This is done by finding the object-type whose instance the reference variable
of the call action is holding. In this figure, the reference variable is node n3
(i.e. the variable declaration node that is connected to the call node with
an edge labeled reference Var) and the object it is holding is node n9. When
applied, this rule adds two nodes and edges. From these, the edge labeled
receiving TypeStart marks the object-type from which the traversal in the
inheritance hierarchy starts. The edge labeled receiving Typelter marks the
object-type that is traversed.

The rule in Figure 22-(b) marks the latest declaration of the operation.
This declaration is the object-type node with an operation declaration node
that has the same signature as the signature called by the action. In the
depicted transformation rule, the traversed object-type node is node n5 and
the called signature is node n1. The rule matches when the traversed type has
an operation declaration node (n3) that is connected to the same signature
node as the called signature. The rule marks the declaration by adding an
edge labeled calledDeclaration between the call node (n0) and the operation
declaration node.

If the traversed object-type (i.e. the object-type where the edge labeled re-
cetving Typelter is pointing to) does not have the operation declaration then
its super-type should be traversed. The transformation rule in Figure 22-(c)
deletes the edge labeled receiving Typelter and adds another edge with the
same label pointing to the super-type of the traversed object-type. This rule
has a lower priority then the rule presented in the previous step, therefore,
they do not match at the same time.

After finding the operation declaration and preparing the arguments, the
operation can be dispatched. However, before dispatching, we must be sure
that the operation is implemented. The transformation rule in Figure 22-(d)
matches when the operation declaration node marked in step 2 is also an
operation implementation node (i.e. that is also labeled OperImpl). When
this rule matches, it marks the operation implementation to be ready for
dispatch by adding the edge labeled receivinglnstanceOperImpl.

n3 ”a
Operimpl
P i<, o newsexecutingTys
' L newspreviausFrame
I ObjectType
delireceivinglnstanceOpermp /
‘ o
executes Qperframe new:OperFrame
n1 or,
208 Py,
call[®=-. self 2
del:callProgress -
referenceliar e

encapsulates
ns
VarDed

al

Fig. 23. Graph transformation rule that dispatches the operation after the object-type
that implements the operation is discovered by the rules presented in Figure 22.

95

After the object-type that implements the operation is discovered, the oper-
ation can be dispatched as presented by the graph transformation rule in Fig-
ure 23. Here, the dispatching is done by creating a new operation frame node
(n0), that is connected to the dispatched operation implementation (the node
labeled OperImpl) with an edge labeled executes. The self of the new frame is
the object receiving the call; thus, the rule adds the edge labeled self between
the newly added frame (rn0) and the object the reference variable holds (n2). The
frame from which the call is initiated from is connected to the new frame with
an edge labeled previousFrame. With this edge, the frame that will be returned
when the execution of the called operation finishes is marked.

o6

