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Abstract. In contrast to their relational counterparts, object databa-
ses are more heterogeneous in terms of their architecture, data model
and functionality. To this day, this heterogeneity poses substantial dif-
ficulties when it comes to benchmark or interoperate object databases.
While standardisation proposals have been made in the past, they have
had limited impact as neither industry nor research has fully adopted
them. We believe that one reason for this lack of adoption is that these
standards were too restrictive and thus not capable of dealing with the
heterogeneity of object databases. In this paper, we propose a uniform
interface for access to object databases that is based on a flexible object
model and algebra.

1 Introduction

Since their emergence in the 1980s, object databases have always been hetero-
geneous to an extent far greater than their relational siblings. One reason for
heterogeneity is the fact that object databases are situated at the intersection
of database management and object-oriented systems [1]. As a consequence, dif-
ferent object databases provide different sets of capabilities depending on their
origin. On a very general level, the two approaches can be characterised in terms
of whether they aim at supporting the compile-time or the run-time of an object
data management system. Typically, object-oriented systems focus on aspects
related to the design and development, whereas database management systems
also address issues related to operation and evolution.

This difference is most pronounced in the object data models on which these
systems are based. Models originating from object-oriented systems emphasise
aspects such as encapsulation and language integration [2] and, since their main
goal is to persist the objects of a programming language, these data models are
usually very similar to, or even tied in with, the one of the language. In contrast,
models that emerged from database management are designed to support tradi-
tional database features such as concurrency and recovery through transactions
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and to efficiently query large object graphs. Additionally, these models tend to
address issues related to the longevity of data and, therefore, provide features
to support object and schema evolution such as roles and dynamic typing.

While the different origins have led to a diverse palette of systems that are
all uniquely suited to address specific application requirements, they have also
hindered interoperability, data exchange, performance evaluation and, as argued
by Greene [3], ultimately market adoption. Early on, efforts to rectify this sit-
uation have been undertaken in terms of defining [1], benchmarking [4,5] and
standardising [6] object databases. And even though these attempts have all
made important contributions, they have failed to fully deliver on the hopes in-
vested in them. Successful object databases have become so by occupying niche
markets and expanding from there, rather than by following definitions and im-
plementing standards. We believe that one reason for this lack of adoption is
that the proposals were too restrictive in the sense that the trade-off between a
common core and individual strengths was not well balanced.

Nevertheless, as object databases have recently gained importance in both
academia and industry, it is critical to also resume these standardisation ef-
forts. This requirement has also been identified by the Object Management
Group (OMG) which recently formed a working group to develop the next-
generation object database standard [7]. We believe that the current proposal is
far too generic and, in this paper, propose an alternative object model and alge-
bra that offers a better trade-off between diversity and specificity. In the context
of this model, we have also defined an algebra that supports both unordered and
ordered collections with or without duplicates. Based on this model and algebra,
we propose an interface to provide uniform access to object databases.

We begin in Sect. 2 with the background and discussion of related work. The
object data model and corresponding algebra are presented in Sect. 3 and Sect. 4,
respectively. In Sect. 5, we discuss a prototype implementation of the proposed
interface that serves as a proof-of-concept. The contributions of this work as well
as open issues are discussed in Sect. 6 and we conclude in Sect. 7.

2 Background

Several efforts to standardise object databases in terms of object data models and
algebras have been made in the past or are still ongoing. We start by summarising
the most influential approaches, before introducing the background of the object
representation used in our proposal.

The best-known object database standard was defined by the Object Data
Management Group (ODMG) [6]. Its object data model is based on the OMG
object model and distinguishes between modelling primitives with and without
unique identifier, called objects and literals, respectively. An object has a state
comprised by its attributes and relationships as well as behaviour given by its
methods. Objects are defined by types that consist of a specification and an im-
plementation part. The former defines the abstract state and behaviour, while
the latter furnishes a concrete realisation of the specification through a language
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binding. Abstract types are specified in terms of interfaces that define abstract
behaviour and classes that define abstract state and behaviour. For classes, the
model supports only single inheritance, whereas for interfaces multiple inheri-
tance is allowed. Finally, predefined collection types such as set, bag, list, array
and dictionary are available both as objects and as literals.

Following the renewed interest in object databases, OMG recently resumed
standardisation efforts and formed the object database technology working group.
The proposal in the current white paper [7] is based on a Stack-Based Architec-
ture (SBA) [8] that features a storage model and a query language. The storage
model uses 〈subject, predicate, object〉 triples to represent objects. The formalisa-
tion of this model is straightforward and therefore its main advantage. However,
we believe that the fact that it is not specific to object databases and hence does
not capture their essential features makes it unsuitable as a standard. It has been
shown that storages based on triples are generic to the point of being able to
represent any data model [9]. As a consequence, the current proposal has to be
considered a step backwards as its low level of granularity cannot compete with
earlier and semantically richer models, such as OEM [10] that uses quadruples
to represent objects or the previously discussed ODMG data model.

In order to interact with object data, algebras and query languages have been
defined in addition to data models. The Object Query Language (OQL) [6] was
defined within the ODMG standard. OQL is a declarative query language with
a syntax similar to SQL. The semantics, however, is quite different as OQL op-
erates on sets of objects and is capable of handling path expressions. Unlike
the ODMG data model that is supported by some vendors, OQL has not seen
widespread adoption. Today, the Versant Query Language (VQL) [11] represents
the most complete implementation, even though it only supports a very limited
subset of OQL. The Stack-Based Query Language (SBQL) [8] is based on an
algebra that complements the stack-based architecture introduced above. SBQL
queries can be expressed using its proprietary syntax or through SBQL4J, a
language-integrated query interface for the Java programming language. The
latter is again confirmation of the fact that there is a trend in object databases
to integrate the query language with the programming language. This approach
has been pioneered by Microsoft’s Language-Integrated Query (LINQ) [12,13]
which is capable of accessing object, relational and XML data uniformly. Other
approaches that fall into this category are db4o’s programmatic query inter-
faces [14], namely Native Query (NQ) and Simple Object Data Access (SODA).
Acknowledging this development, we are convinced that a future object database
standard should specify a programmatic or language-integrated query interface,
rather than a stand-alone query language.

The object model and algebra that we propose as the theoretical foundation
for building a standardised interface to object databases is based on object-
slicing [15]. An object representation that uses the object-slicing technique is a
suitable basis for a standard as it is flexible enough to capture the diversity of
object databases while, at the same time, specific enough to address their unique
requirements. For example, it can uniformly represent object models regardless
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of whether they use single or multiple inheritance and whether multiple instan-
tiation is possible or not [16]. In the past, object-slicing has, therefore, been
proposed as an implementation technique to support features such as views,
schema evolution, versions and roles. MultiView [17,18] is an implementation of
object-slicing on top of GemStone and has been applied both to object-oriented
views and schema evolution. While MultiView implements object-slicing based
on an object database, Iris [19] follows the same approach but uses a relational
back-end to store its objects. This approach is similar to more recent Object-
Relational Mapping (ORM) tools that also persist objects in relational databases
using model mapping [20]. However, while MultiView and Iris assume a fixed
mapping between classes and so-called implementation objects, Hibernate [21],
for example, offers several mapping strategies to define how objects are stored.

In summary, previous work has focused on object-slicing at the implementa-
tion level to support advanced features and to store objects flexibly. In contrast,
our proposal is to leverage object-slicing at the conceptual level to unify the dif-
ferent approaches that exist. Unlike earlier standards, our approach recognises
the importance of having diverse object databases. Therefore, our main goal is
not to limit these systems by forcing them to adopt a restrictive interface. On
the contrary, we propose a uniform and consistent interface to object databases
that could easily be implemented by existing systems. As a consequence, the
focus of our interface is more on data exchange and benchmarking, rather than
application development and portability.

3 Object Data Model

In this section, we present an object data model based on object-slicing [15].
Figure 1 introduces the example used to illustrate our approach. The left shows
a class hierarchy, rooted at class Contact with subclasses Organisation, Person
and Private. The graphical representation of two objects based on object-slicing
is given on the right. Object id1 is an instance of class Person, whereas object id2

is an instance of class Organisation. As can be seen, both objects consist of two
so-called object slices which we refer to as information units. Each information
unit corresponds to exactly one class and stores the attribute values for the
fields declared by that class. Object instantiation in our model is captured by
the dress and strip primitives that add or remove information units, respectively.
As shown in the figure, object id1 can be instantiated with class Private using
a dress operation, whereas object id1 could be reclassified as an instance of
Contact using a strip operation. Based on this representation, we now present
the formal definition of the object data model.

The type system of our object data model distinguishes four different kinds
of types—base, object, structured and extent types—that describe the domain
T of all possible values V. Let T

∗ = {Tbase, Tobj , Tstruct, Text}, then ∀ Ti, Tj ∈
T
∗ : Ti �= Tj : Ti ∩ Tj = ∅ and T =

⋃
Ti∈T∗ Ti. We will describe each of these

types in more detail.
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name: String
phones: Set<String>

Contact

address: Address

Organisation

title: String

Person

birthdate: Date

Private
street: String
number: Integer

«literal»
Address

employees

id1
name: "Fred Bloggs"
phones: { "555-123456" }

title: "Mr"

id2
name: "ACME"
phones: { "555-234567" }

employees: { id1 }
address: (street: "Main St.", number: 9)

birthdate: 01-02-1993

Contact

Person

Private

Contact

Organisation

dress
strip

Fig. 1. Overview of our approach

Base Types. A base type Tbase ∈ Tbase defines the, possibly infinite, domain of
a basic type that is predefined by the object database. As a consequence, Tbase

can change from one system to another. For the scope of this paper, we assume
the following definition.

Tbase = {boolean, integer,real,date, string}
We use the names of the base type as a short-hand to denote their value domains.
For example, boolean is used to denote Tboolean = {true, false}.

A base value, vbase ∈ Vbase, has no identity and is said to be an instance of
a base type Tbase ∈ Tbase, denoted as vbase 	 Tbase, iff vbase ∈ Tbase. Generally,
base types and their instances cannot be explicitly created, modified or deleted
as their existence is taken for granted.

Object Types. An object type Tobj ∈ Tobj describes the properties of a class of
objects.1 It is defined as a set of field names {F1, F2, . . . , Fn} each of which is
associated with a type Ti ∈ T, where 1 ≤ i ≤ n.

An object type Tsub can be a subtype of one or more object types Tsuper ,
denoted as Tsub � Tsuper . The relation � is transitive, i.e. T1 � T2 ∧ T2 � T3 ⇒
T1 � T3 and reflexive, i.e. Tobj � Tobj. Based on these properties, we define

T ∗
obj =

⋃
∀ Ti∈Tobj : Tobj�Ti

Ti

to be the set of all defined and inherited field names of an object type Tobj.2

An object, vobj ∈ Vobj , is defined as the structure 〈id, Ω〉, where id is the
object’s unique and immutable identifier and Ω = {μ | μ : Tobj → V} is a set

1 Due to space limitations, we omit the discussion of methods in this paper.
2 Note that the precise definition of the set T ∗

obj depends on the model of inheritance
used by the object database. Since our object model does not preclude any inheri-
tance model, different systems may return different sets.
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of mappings. Each mapping μ : (F1 = v1, F2 = v2, . . . , Fn = vn) is a function
relating field names Fi ∈ Tobj to values vi ∈ V with the restriction that μ(Fi) 	
Ti. We say a mapping μ satisfies Tobj , denoted by μ |= Tobj, iff ∀Fi ∈ Tobj , ∃ v ∈
V : μ(Fi) = v. An object vobj = 〈id, Ω〉 is said to be an instance of Tobj , denoted
as vobj 	 Tobj, iff ∀ Ti ∈ Tobj : Tobj � Ti, ∃ μ ∈ Ω : μ |= Ti. Mappings correspond
to the information units introduced earlier.

Both object types and objects can be created, modified and deleted. Due
to space limitations, we limit our presentation to the dress, strip and browse
operations that are specific to our object data model. A more comprehensive
discussion can be found in [22]. The dress and strip operations are used respec-
tively to add or remove information units to or from an object, while the browse
operation computes a mapping that represents the object in the context of the
given type.

dress(〈id, Ω〉, Tobj) : if � ∃ μ ∈ Ω : μ |= Tobj then Ω := Ω ∪ {μnew} end

strip(〈id, Ω〉, Tobj) : if ∃ μ ∈ Ω : μ |= Tobj then Ω := Ω\{μ} end

browse(〈id, Ω〉, Tobj) : return μ : μ |= T ∗
obj

Structured Types. A structured type Tstruct ∈ Tstruct describes the structure
of literals. Similar to object types, structured types are defined as a set of field
names {F1, F2, . . . , Fn} where each Fi is associated with a type Ti ∈ T, where
1 ≤ i ≤ n. In contrast to object types, structured types cannot define methods
and there is no notion of subtyping or inheritance.

Since a structured value or struct, vstruct ∈ Vstruct, has no identity, it is simply
defined as a mapping μ : Tstruct → V, denoted as (F1 = v1, F2 = v2, . . . , Fn =
vn), where μ(Fi) 	 Ti. We say a structured value vstruct = μ is an instance of
Tstruct, denoted as vstruct 	 Tstruct, iff μ |= Tstruct, where μ |= Tstruct ⇔ ∀ Fi ∈
Tstruct, ∃ v ∈ V : μ(Fi) = v.

Extent Types. An extent type Text ∈ Text describes a collection of values in terms
of its bulk behaviour and the type of its members. Accordingly, it is defined as
a structure 〈bulk, T 〉, where bulk ∈ {set, bag, ranking, sequence} and T ∈ T.

An extent value or extent, vext ∈ Vext, for an extent type Text = 〈bulk, T 〉 is
a finite collection of values, denoted as vext = 〈〈v1, v2, . . . , vn〉〉. Corresponding
to the four bulk behaviours introduced above, we distinguish set, bag, ranking
and sequence extent values, depending on whether they are ordered and allow
duplicates. We denote a set (unordered, no duplicates) as vset = {v1, v2, . . . , vn},
a bag (unordered, duplicates) as vbag = �v1, v2, . . . , vn�, a ranking (ordered, no
duplicates) as vrnk = �v1, v2, . . . , vn�, and a sequence (ordered, duplicates) as
vseq = [v1, v2, . . . , vn]. An extent value vext is an instance of an extent type
Text = 〈bulk, T 〉, denoted as vext 	 Text, iff its behaviour matches bulk and
∀ v ∈ vext : v 	 T . We will discuss the operations defined over collections of
values in the next section.

Example. For the example introduced in Fig. 1, the representation of a database
containing objects id1 and id2 based on the formal object data model is given
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by
V = {〈id1, {μcontact

1 , μperson
1 }〉, 〈id2, {μcontact

2 , μorganisation
2 }〉},

where

μcontact
1 : (name = "Fred Bloggs", phones = {"555-123456"})

μperson
1 : (title = "Mr")

μcontact
2 : (name = "ACME", phones = {"555-234567"})

μorganisation
2 : (address = (street = "Main St.",number = 9), employees={id1}).

4 Collection Algebra

We now present the algebra associated with our model. Since, for the most part,
its operators apply to collections of values, i.e. extent values, we refer to it as a
collection algebra. Our algebra is an extension of traditional set algebra as it in-
troduces functionality specific to object data management and provides support
for collections other than sets. However, in order to define how these operators
manipulate collections of values, we first need to specify their behaviour in terms
of the type system of our object data model.

Table 1. Most-specific types

(a) Base types⊔
boolean integer real date string

boolean boolean ⊥ ⊥ ⊥ string
integer integer real ⊥ string

real real ⊥ string
date date string

string string

(b) Extent types⊔
set bag ranking sequence

set set set set set
bag bag set bag

ranking ranking ranking
sequence sequence

Most-specific Type. We define the most-specific type of two types T1 and T2,
denoted as T̂ = T1 � T2, where T1, T2 ∈ Ti and Ti ∈ T

∗. In the case that
Ti = Tbase, the most-specific type of two base types is defined by Tab. 1(a), where
⊥ stands for undefined. The most-specific type of two object types T1, T2 ∈ Tobj

is defined as

T̂ = T1 � T2 ⇔ T1 � T̂ ∧ T2 � T̂ ∧ (� ∃ Ti �= T̂ : T1 � Ti � T̂ ∧ T2 � Ti � T̂ ).

If Ti = Tstruct, the most-specific type of two structured types T1 and T2 is defined
as follows. Let T1 = {F 1

1 , F 1
2 , . . . , F 1

n} with associated types T 1
i , where 1 ≤ i ≤ n

and T2 = {F 2
1 , F 2

2 , . . . , F 2
m} with associated types T 2

j , where 1 ≤ j ≤ m. If n = m

and ∀1≤k≤n F 1
k , F 2

k : F 1
k = F 2

k , then T̂ = T1�T2 is given as the set of field names
{F1 = F 1

1 , F2 = F 1
2 , . . . , Fn = F 1

n} with associated types Ti = T 1
i �T 2

i , 1 ≤ i ≤ n.
Finally, in the case that T1 = 〈bulk1, T

′
1〉 and T2 = 〈bulk2, T

′
2〉 ∈ Text, the most-

specific type of two extent types is given by the structure T̂ = 〈bulk, T ′〉, where
bulk = bulk1�bulk2, according to Tab. 1(b) and T ′ = T ′

1�T ′
2. In all other cases,

the most-specific type of two types is undefined (⊥).
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Type Compatibility. Two types Ti and Tj are said to be compatible, denoted as
Ti ∼ Tj, iff Ti � Tj �= ⊥.

Support Operations. Finally, we introduce the following operations to support
the definition of operators over ordered collections. For an ordered collection
C = 〈〈x|C′〉〉, the | operator decomposes C into its first element x and the
ordered collection of the remaining elements C′. The operation append(C, x) :
(coll[T ], T ) → coll[T ] inserts an element x at the end of an ordered collection C.
The operation remove(C, x) : (coll[T ], T ) → coll[T ] removes the element x with
the smallest index from the ordered collection C.

Note that we will use the set representation of bags in some of the following
definitions, where �1, 1, 1, 2, 2, 3� ≡ {(1, 3), (2, 2), (3, 1)}. Then we use x ∈bag B
to denote the membership of x in a bag B and (x, n) ∈set B to denote the
membership of (x, n) in the set representation of B where n is an integer giving
the number of occurrences of x. The full definition of collection membership
∈ : (T, coll[T ]) → boolean, is given below.

x ∈set S = x ∈ S x ∈bag B = ∃n : (x, n) ∈set B ∧ n > 0
x ∈rnk R = ∃i : R[i] = x x ∈seq Q = ∃i : Q[i] = x

Finally, we also include a definition of bag addition here, which will be used to
define other operators over bags that are part of the collection algebra.

B1 � B2 = {(x, y) | ∃n1, n2 : (x, n1) ∈set B1 ∧ (x, n2) ∈set B2 ∧ n = n1 + n2)}
Collection Operations. The extent operation, ⊗ : T → coll[T ], where T ∈ Tobj ,
returns all objects vobj in the databases, such that vobj 	 T .

The union, ∪ : (coll[t1], coll[t2]) → coll[t1 � t2], of two collections is defined as
follows.

S1 ∪set S2 = {x | x ∈set S1 ∨ x ∈set S2}
B1 ∪bag B2 = {(x, n) | ∃n1, n2 : (x, n1) ∈set B1∧(x, n2) ∈set B2∧n=max(n1, n2)}
R1 ∪rnk R2 =

{
R1 if R2 = ∅
append(R1, x) ∪rnk R′

2, where R2 = �x|R′
2� otherwise

Q1 ∪seq Q2 =
{

Q1 if Q2 = ∅
append(Q1, x) ∪seq Q′

2, where Q2 = [x|Q′
2] otherwise

The definition of the intersection, ∩ : (coll[t1], coll[t2]) → coll[t1 � t2], of two
collections is given below.

S1 ∩set S2 = {x | x ∈set S1 ∧ x ∈set S2}
B1 ∩bag B2 = {(x, n) | ∃n1, n2 : (x, n1) ∈bag B1∧(x, n2) ∈bag B2∧n=min(n1, n2)}

R1 ∩rnk R2 =

⎧⎨
⎩

∅ if R1 = ∅
�x|(R′

1 ∩rnk R2)�, where R1 = �x|R′
1� if x ∈rnk R2

R′
1 ∩rnk R2, where R1 = �x|R′

1� otherwise

Q1 ∩seq Q2 =

⎧⎨
⎩

∅ if Q1 = ∅
[x|(Q′

1 ∩seq remove(Q2, x))], where Q1 = [x|Q′
1] if x ∈seq Q2

Q′
1 ∩seq Q2, where Q1 = [x|Q′

1] otherwise
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The following definition specifies the difference, − : (coll[t1], coll[t2]) → coll[t1],
of two collections.

S1 −set S2 = {x | x ∈set S1 ∧ x /∈set S2}
B1 −bag B2 = {(x, n) | ∃n1 : (x, n1) ∈set B1 ∧

((x /∈bag B2 ∧ n = n1) ∨ ∃n2 : (x, n2) ∈set B2 ∧ n = n1 − n2)}

R1 −rnk R2 =

⎧⎨
⎩

R1 if R2 = ∅
remove(R1, x) −rnk R′

2, where R2 = �x|R′
2� if x ∈rnk R1

R1 −rnk R′
2, where R2 = �x|R′

2� otherwise

Q1 −seq Q2 =

⎧⎨
⎩

Q1 if Q2 = ∅
remove(Q1, x) −seq Q′

2, where Q2 = [x|Q′
2] if x ∈seq Q1

Q1 −seq Q′
2, where Q2 = [x|Q′

2] otherwise

Selection. The selection operation, σ : (coll[t], t → boolean) → coll[t], forms a
subcollection of a given collection C that only contains elements that satisfy a
predicate p. Using the reduce operation (�), which will be introduced later, it
is defined as follows.

σset p S = {x | x ∈set S ∧ p(x) = true}
σbag p B = {(x, n) | (x, n) ∈set B ∧ p(x) = true}
σrnk p R = �rnk λ(x, R′).(if p(x) then �x� ∪rnk R′ else R′) ∅ R

σseq p Q = �seq λ(x, Q′).(if p(x) then [x] ∪seq Q′ else Q′) ∅ Q

Map Operations. Our algebra also supports map operations that apply a given
function f to all members of a collection C and return a new collection con-
taining the results of this function application. The general map operator, � :
(coll[t1], t1 → t2) → coll[t2], is given as follows.

�set f S = {f(x) | x ∈set S}
�bag f B = �bag λ((x, n), B′).({(f(x), n)} � B′) ∅ B

�rnk f R = �rnk λ(x, R′).(�f(x)� ∪rnk R′) ∅ R

�seq f Q = �seq λ(x, Q′).([f(x)] ∪seq Q′) ∅ Q

The navigation operation, · : (coll[T ], Fi) → coll[Ti], where T ∈ Tobj , Fi ∈ T
and μ(Fi) 	 Ti, is a special case of a map operation that substitutes each object
x = 〈id, Ω〉 with the value of its field Fi, denoted as x.Fi = μ(Fi), where μ ∈ Ω.

S ·set F = �set λx.(x.F ) S B ·bag F = �bag λx.(x.F ) S
R ·rnk F = �rnk λx.(x.F ) S Q ·seq F = �seq λx.(x.F ) S

Reduce Operations. The last group of operators provided in our algebra are
reduce operations which, given an aggregation function f and a default value v,
compute one or more aggregated values over a collection C. The general reduce
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operator, � : (coll[t1], ((t1, t2) → t2), t2) → t2 is defined as follows.

�set f v S = if S = ∅ then v else f(x, �set f v S′), where S = S′ ∪set {x}
�bag f v B = if B = ∅ then v else f(x, �bag f v B′), where B = B′ � {(x, 1)}
�rnk f v R = if R = ∅ then v else f(x, �rnk f v R′), where R = �x� ∪rnk R′

�seq f v Q = if Q = ∅ then v else f(x, �seq f v Q′), where Q = [x] ∪rnk Q′

Examples. Based on the example given in Fig. 1, assume we want to find the
names of all employees working for the "ACME" company. Then this query could
be expressed as follows.

(σname="ACME"(⊗organisation)) · employees · name

Another example is the following query to retrieve the names of the organisations
for which "Fred Bloggs" works. Note that we have split it into two steps purely
for the sake of legibility.

fred := σname="Fred Bloggs"(⊗person)

σfred⊆employees(⊗organisation) · name

Apart from the operators presented in this section, our algebra provides fur-
ther functionality that had to be omitted due to space limitations. A complete
overview of our collection algebra can be found in [22].

5 Implementation

Based on the formal definitions given in the previous sections, we have speci-
fied an application programming interface (API) and realised a proof-of-concept
implementation. The aim of the proposed API is to serve as a standard for
uniform access to object databases, rather than as a standard for application
development. As a consequence, our API is quite low-level and procedural. Its
main concepts are two interface classes that respectively define the methods to
manage and query data according to the object data model and algebra. The
signatures of the most commonly used methods of the first interface class are
outlined in Tab. 2. These methods allow types to be created and instantiated,
and their instances to be read, manipulated and deleted.

For example, an object type can be created with the createObjectType
method by providing its name and a list of attribute types. Attributes may
be of base, structured, object or extent types, which are commonly generalised
as Type. An object is created using createObject and dressed with an object
type using the dress method which takes the object to be dressed and an object
type as argument. Given such an object and its type, attribute values may be
read and written with the get/setAttributeValues methods. Finally, an ob-
ject may be deleted with the deleteObject method. All other types and their
instances are managed similarly.
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Table 2. Signatures of API methods

createObjectType(Transaction, String, Type[]): ObjectType
createStructuredType(Transaction, String, Type[]): StructuredType
createExtentType(Transaction, String, BulkType, Type): ExtentType
getType(String): Type

createObject(Transaction): Identifier
dressObject(Transaction, Identifier, ObjectType)
stripObject(Transaction, Identifier, ObjectType)
deleteObject(Transaction, Identifier)
getAttributeValues(Transaction, Identifier, ObjectType): Object[]
setAttributeValues(Transaction, Identifier, ObjectType, Object[])

createExtent(Transaction, ExtentType): ExtentValue
deleteExtent(Transaction, ExtentValue)

The interface of the algebra is based on the iterator model [23] and thus
follows a language-integrated rather than a declarative approach. The signatures
of the algebra operators defined in the previous section are shown in Tab. 3.
Additionally, our interface provides a scan method that, given an ExtentValue,
returns an iterator. Thus, the scan method interfaces between the collection
representation of the object data model and the one used in the algebra. The
signatures of the remaining operator methods closely correspond to the formal
definitions of Sect. 4 and therefore require no further explanation. Note that all
of these methods take one or more iterators as input and return one iterator as
output. Therefore, operators can be arbitrarily nested to form complex queries.

As a proof-of-concept, we show how the API was implemented using Berkeley
DB Java Edition which is a light-weight key-value database providing direct ac-
cess to its data structures. Due to the nature of our interface, we wanted to avoid
the complexity of interacting with a relational or object database system. While
this might sound counter-intuitive, it is motivated by the fact that we do not
propose an interface for application development and, therefore, do not believe it
should be implemented “on top” of an existing database interface. Rather, ven-
dors should offer the proposed interface as an alternative that supports use-cases
such as benchmarking and data exchange.

Table 3. Signatures of algebra operators

scan(ExtentValue): Iterator

map(Iterator, Function): Iterator
reduce(Iterator, Function, Object): Iterator

selection(Iterator, Predicate): Iterator
navigate(Iterator, String): Iterator

union(Iterator, Iterator): Iterator
intersection(Iterator, Iterator): Iterator
difference(Iterator, Iterator): Iterator
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In order to store information about the different types, we use separate data-
bases3 for base, structured, object and extent types. These four databases con-
stitute the metadata over the persistent data and their record layouts are shown
in Fig. 2. As every type is identified by a unique name, we map these names to
UUID values which are used as database keys. For object types shown in Fig. 2(a),
we store a header (grey fields) containing the field and supertype count as well
as the offset for the supertypes within the record. We then have a sequence of
(Position, ^Type) pairs describing the type’s attributes. Position is used for
schema evolution, while ^Type is a type reference represented as the UUID of
the attribute type. A sequence of UUID values referring to a type’s supertypes
forms the end of such records. The numbers in parenthesis show the sizes of
each record part in bytes. Figure 2(b) shows how base types are described by a
Type which encodes the basic type from Tbase. A record describing a structured
type is shown in Fig. 2(c). It consists of a header containing the field count and
a sequence of ^Type containing the UUID values of the field types. As shown
in Fig. 2(d), extent types are stored as an encoded bulk type such as set, bag,
sequence or ranking, and the UUID of the type describing the extent members.

UUID
(16)

#Fields
(2)

header

#Super
(2)

^Super
(4)

Position
(2)

^Type
(16)

Position
(2)

^Type
(16)

^Type
(16)

^Type
(16)

key value

(a) Object type unit

UUID
(16)

Type
(1)

key value

(b) Base
type unit

UUID
(16)

#Fields
(2)

^Type
(16)

^Type
(16)

key value

(c) Structured type unit

UUID
(16)

Bulk
(1)

^Type
(16)

key value

(d) Extent type unit

Fig. 2. Record layouts in the type metadata databases

In addition to the metadata, a user partition contains the objects, their infor-
mation units and the extent values. For each object type, we create a separate
database containing all of its instances. The entries of such databases start with
the instance object’s identifier encoded as a UUID key, followed by a value part as
shown in Fig. 3. The value part contains the information unit’s attribute values.
Internally, we divide an entry’s value part into a fixed-size and a variable-size
part. For variable-size attributes such as strings, we store their length and a
pointer to the beginning of the variable-size part following the fixed-size part
(light grey). This record layout enables the execution of some schema evolution
operations without having to re-write all instances of the type under change.

The dress types database shown in Fig. 4 is used to keep track of all informa-
tion units that belong to an object. In this database, we map the object’s UUID
3 In Berkeley DB, the term database refers to what would be called a relation or table

in the relational world.
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Fig. 3. Record layout for object information units
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Fig. 4. Record layout for object dress types

to a sequence of UUID values referring to all types an object has been dressed
with. This database duplicates information that could be found by accessing all
type extents, however, we use it as an index to accelerate look-up operations.

Each extent is stored in its own database. Depending on the bulk type, addi-
tional index structures such as Berkeley DB’s secondary databases are employed
for fast access to extent members. The members are UUID values in the case
of objects and extents or the actual values in the case of base and structured
values.

6 Discussion

We now discuss and position our work with respect to the related approaches
that were introduced in Sect. 2. The object data model that we presented in this
paper can be classified as an evolution of the ODMG 3.0 data model. The ODMG
modelling primitives of objects and literals correspond to object and structured
types in our model. The distinction of whether information is modelled as an
identifiable object or an inlined value is present in most object databases. For
example, the Versant Object Database (VOD) introduced the notion of first-class
and second-class objects, while Objectivity/DB uses the concept of embedded
objects to support this feature. As a consequence, we believe that any new
object database standard should also include these capabilities. Finally, we note
that the collection types defined in our model are slightly different from the
ones offered by the ODMG model. Nevertheless, we share the conviction that
different collection types and their associated operations are an essential part of
an object data model.

The approach that is currently proposed as the next-generation object data-
bases standard takes an altogether different stance in this respect. Instead of
defining the characteristics of a standard object data model, their data model
decomposes objects into triples that are used to represent all information. While
this model is very flexible and easily formalised, it is too general and lacks
specificity for the domain of object databases. Our model acknowledges the im-
portance of a formal specification as the foundation of consistent semantics,
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however we position it differently in terms of the trade-off between flexibility
and specificity. Based on object-slicing, our approach supports different models
of inheritance and instantiation. At the same time, its type model and collection
algebra are truly object-oriented.

When defining a standard, there are different objectives that can be taken into
consideration. For example, the ODMG 3.0 standard has been defined to provide
better support for unified application development and portability. The goal of
the interface proposed in this paper is different as it was designed to facilitate
standardised evaluation of object databases in terms of benchmarking or as a
format for data exchange. Consequently, our application programming interface
does not provide transparent persistence that is nowadays the standard for object
database application development. Nevertheless, we believe that the adoption of
our proposal is likely as many vendors already offer lower-level interfaces to their
databases, e.g. Versant’s JVI Fundamental Binding [24].

7 Conclusion

We have presented an object data model that uses object-slicing to support
different styles of inheritance and instantiation. We have defined the model for-
mally and used this specification as the basis for a collection algebra that provides
query facilities in the context of our object data model. Finally, we have proposed
an interface that supports both uniform access and querying of object data that
is represented according to the proposed model. As a proof-of-concept, the inter-
face that is intended for benchmarking and data exchange has been implemented
using Berkeley DB Java Edition.

As future work, we plan to experiment with different object-slicing strategies.
In this paper, we have assumed a one-to-one correspondence between object
classes and information units. However, if an object database does not provide
multiple inheritance nor multiple instantiation, this assumption might be un-
reasonable and lead to increased complexity. To experiment with this, we plan
to implement our interface based on different existing object databases. At the
same time, this will help to demonstrate its value for benchmarking and data
exchange.
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