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Abstract. In response to a 1997 problem of M. Vidyasagar, we state asnece
sary and sfficient condition for distribution-free PAC learnability afconcept
class% under the family of all non-atomic (fluse) measures on the domain
Q. Clearly, finiteness of the classical Vapnik—Chervonemkimension of% is

a suficient, but no longer necessary, condition. Besides, |&dlityaof 4" un-
der non-atomic measures does not imply the uniform Glive@lanmtelli property
with regard to non-atomic measures. Our learnability doteis stated in terms
of a combinatorial parameter V&(modw;) which we call the VC dimension
of ¥ modulo countable sets. The new parameter is obtained bgk&hing up”
single points in the definition of VC dimension to uncounéatdlusters”. Equiv-
alently, VC(¢ modw,) < d if and only if every countable subclass @éfhas VC
dimension< d outside a countable subset@f The new parameter can be also
expressed as the classical VC dimensiofrafalculated on a suitable subset of
a compactification of2. We do not make any measurability assumptionggn
assuming instead the validity of Martin’s Axiom (MA).

1 Introduction

A fundamental result of statistical learning theory sayat flor a concept clasg’ the
three conditions are equivalent: @)is distribution-free PAC learnable over the family
P(Q) of all probability measures on the domam(2) ¢ is a uniform Glivenko—Cantelli
class with regard t®(Q), and (3) the Vapnik—Chervonenkis dimensiordfs finite
[VCIBEHW]. In this paper we are interested in the problenscdssed by Vidyasagar
in both editions of his book [V1,V2] as problem 12.8, of gigia similar combinatorial
description of concept class@&which are PAC learnable under the famiy,(Q) of
all non-atomic probability measures @h (A measureu is hon-atomic or diffuse,if
every setA of strictly positive measure contains a sulbBetith 0 < u(B) < u(A).)

The condition VC¥) < o, while of course sfiicient for% to be learnable under
Pna(Q), is not necessary. Let a concept cl&sconsist of all finite and all cofinite
subsets of a standard Borel spaeThen VC({) = o, and moreovefs is clearly
not a uniform Glivenko-Cantelli classith regard to non-atomic measurést the same
time, ¢ is PAC learnable under non-atomic measures: any learniegZuconsistent
with the subclas$d, Q} will learn €. Notice that# is notconsistentljfearnable under
non-atomic measures: there are consistent learning ridppimg every training sample
to a finite set, and they will not learn any cofinite subse®of
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The point of this example is that PAC learnability of a cortagdpss%” under non-
atomic measures is noffacted by adding t& symmetric diferencesC A N for each
C € ¥ and every countable sbt

A version of VC dimension oblivious to this kind of set-thetic “noise” is obtained
from the classical definition by “thickening up” individupbints and replacing them
with uncountable clusters (Figure 1).

Fig. 1. A family A, A, ..., A, of uncountable sets shattered 8y

Define theVC dimension of a concept clagsmodulo countable setss the supre-
mum of naturah for which there exists a family af uncountable set#y, A, ..., An C
Q, shattered by# in the sense that for eachC {1,2,...,n}, there isC € ¥ which
contains all set#y, i € J, and is disjoint from all seté;, j ¢ J. Denote this parameter
by VC(% modw1). Clearly, for every concept clags

VC(% modw;) < VC(%).

In our example above, one has ViCodw;) = 1, even as VC{) = .
Here is our main result.

Theorem 1. Let(Q, <) be a standard Borel space, and {6tC <7 be a concept class.
Under the Martin’'s Axiom (MA), the following are equivalent

1. ¥ is PAC learnable under the family of all non-atomic measures

2. VQ¥& modw;) = d < oco.

3. Every countable subclasg’ c % has finite VC dimension on the complement to
some countable subset@f(which depends o).

4. There is d such that for every countal#fé C % one has VC4’) < d on the
complement to some countable subse® ¢dlepending org”).

5. Every countable subclag8 C % is a uniform Glivenko—Cantelli class with regard
to the family of non-atomic measures.

6. Same, with sample complexify,) which only depends o& and not orts”.

If € is universally separablé]P], the above are also equivatent

7. VC dimension of is finite outside of a countable subsetaf
8. ¥ is a uniform Glivenko-Cantelli class with respect to the ifgnof non-atomic
probability measures.



Martin’s Axiom (MA) [E] is one of the most often used and betsidied additional
set-theoretic assumptions beyond the standard ZermelwkEkset theory with the Ax-
iom of Choice (ZFC). In particular, Martin’s Axiom followsdm the Continuum Hy-
pothesis (CH), but it is also compatible with the negatiof B, and in fact it is namely
the combination MA—-CH that is really interesting.

The concept class in our initial simple example (which isreireage admissible
Souslin [D]) shows that in general (7) and (8) are not eqeivedo the remaining con-
ditions. Notice that for universally separable classek, (@) and (8) are equivalent
without additional set-theoretic assumptions.

The core of the theorem — and the main technical novelty ofpayer — is the
proof of the implication[(B} (D). It is based on a special choice of a consistent learning
rule £ having the property that for every concépte ¥, the image of all learning
samples of the formdf, C N o) underL forms a uniform Glivenko—Cantelli class. It is
for establishing this property of that we need Martin’s Axiom.

Most of the remaining implications are relavely straightfard adaptations of the
standard techniques of statistical learning. NevertiselES=(3) requires a certain
technical dexterity, and we study this implication in th&isg of Boolean algebras.

We begin the paper by reviewing a general formal settindgpviad by a dicussion
of Boolean algebras which seem like a natural frameworkfeproblem at hand, espe-
cially in view of possible generalizations to learning undther intermediate families
of measures.

In particular, we will show that our version of the VC dimemsimodulo count-
able sets, VC§ modw,), is just the usual VC dimension of the classof concepts
extended over a suitable compactificatiorénd restricted to a certain subdomain of
the compactification.

Now the part of Theoref 1 for universally separable conclsses follows easily.
Afterwards, we discuss Martin’s Axiom, prove the existenta learning rule with the
above special property, and deduce Thedrem 1 for arbitargept classes.

2 The setting

We need to fix a precise setting, which is mostly standard diimeain(instance spage
Q = (Q, o) is ameasurable spac¢hat is, a ser2 equipped with a sigma-algebra of
subsetsy. Typically, Q is assumed to bestandard Borel spacéhat is, a complete sep-
arable metric space equipped with the sigma-algebra ofl Batesets. We will clarify
the assumption whenever necessary.

A concept classs a family,¢’, of measurable subsets @f (Equivalently¢ can be
viewed as a family of measurali@ 1}-valued functions o®.)

In the learning model, a sét of probability measures of? is fixed. Usually either
P = P(Q) is the set of all probability measures (distribution-flearning), orP = {u}
is a single measure (learning under fixed distribution).Unarticle, the case of interest
is the family®? = Pna(Q) of all non-atomic measures.

Every probability measurg on 2 defines a distano#, on.«/ as follows:

d,(A.B)=u(AaB).



We will not distinguish between a measyreand its Lebesgue completion, that is,
an extension of: over the larger sigma-algebra of Lebesgue measurable tsubfse
Q. Consequently, we will sometimes use the tameasurabilitymeaningLebesgue
measurability No confusion can arise here.

Often it is convenient to approximate the concepts ff@with elements of théy-
pothesis spacez”, which is, technically, a subfamily af/ whose closure with regard
to each (pseudo)metrid,, u € P, contains%’. However, in our article we make no
distinction betwee?” and¥’.

A learning samplds a pairs = (o, 7) of finite subsets of2, wherer C o. It is
convenient to assume that elemertsx,, ..., X, € o are ordered, and thus the set of
all samplesd, 7) with |o| = n can be identified witlfQ x {0, 1})". A learning rule(for
%) is a mapping

L Jorxon %
n=1
which satisfies the following measurability condition: fareryC € ¢ andu € £, the
function
Q30 u(L(o,Cno)aC)eR (1)

is measurable.
A learning ruleZ is consisten{with ¥) if for everyC € ¥ and eachr € Q" one
has
L(o,Cno)no=Cno.

A learning rule£ is probably approximately corre¢PAC) under® if for everye > 0

supsupp® {oc € Q": u(L(0nCnNo)aC) > el — 0asn — co. (2)
UeP Ce€

Here u®" denotes the (Lebesgue extension of the) product measusf®'.oNow the
origin of the measurability conditiofil(1) on the mappifigs clear: it is implicit in [2).

Equivalently, there is a functios(e, 6) (sample complexitgf L) such that for each
C € ¥ and everyu € ? an i.i.d. sampler with > (e, §) points has the property
u(C A L(o,C N o)) < e with confidence> 1 - 6.

A concept clas® consisting of measurable set$98C learnable undep, if there
exists a PAC learning rule fof under®. A class% is consistently learnabléunder
P) if every learning rule consistent witlf is PAC underP. If £ = P(Q) is the set
of all probability measures, the#i is said to be (distribution-freddAC learnable At
the same time, learnability under intermediate familiemehsures o® has received
considerable attention, cf. Chapter 7(in [V2].

Notice that in this paper, we only talk gfotential PAC learnability, adopting a
purely information-theoretic viewpoint.

A closely related concept is that ofumiform Glivenko—Cantelltoncept classith
regard to a family of measure®, that is, a concept class such that for each > 0

supu®" {sup|p(C) - un(C)| = e} — 0 ash — oo. (3)
HEP Ce?®



(Cf. [D], Ch. 3; [M].) Hereun, stands for the empirical (uniform) measureropoints,
sampled in an i.i.d. fashion fro®@ according to the distribution. One also says théat
has the property ainiform convergence of empirical measu(e<CEM property)with
regard to®P [V2].

Every uniform Glivenko—Cantelli class (with regardf) is PAC learnable (under
), and in the distribution-free situation, the conversets &s well. Already in the case
of learning under a single measure, it is not so: a PAC ledenglass under a single
distributionu need not be uniform Glivenko-Cantelli with regardutdcf. Chapter 6 in
[MV2]). Not every PAC learnable class under non-atomic messsis uniform Glivenko—
Cantelli with regard to non-atomic measures either: thesctansisting of all finite and
all cofinite subsets af is a counter-example.

We say, following Pollard [P], that a concept clag<onsisting of measurable sets
is universally separabld it contains a countable subfamify” with the property that
everyC € ¢ is a pointwise limit of a suitable sequendg);’ , of sets from#”: for
everyx € Q there isN with the property that, for ath > N, x € C, if xe C, andx ¢ C,
if X € C. Such a family¢” is said to bauniversally dens@ €.

Probably the main source of uniform Glivenko—Cantelli sissis the finiteness of
VC dimension. Assume th&t satisfies a suitable measurability condition, for instance
¢ is image admissible Souslin, or else universally separé@ioi@articular, a countable
¢ satisfies either condition.) If V&) = d < oo, then% is uniform Glivenko—Cantelli,
with a sample complexity bound that does not depen&ohut only one, ¢, andd.
The following is a typical (and far from being optimal) suc$timate, which can be
deduced, for instance, along the lines|of [M]:

e, 6,d) < 1—228(d Iog(g log 2_e)+ log §) (4)
€ € € )
For our purposes, we will fix any such bound and refer to it &standard” sample
complexity estimate fos(e, 6, d).
A subsetN C Q is universal nullif for every non-atomic probability measugeon
(9, o) one hagi(N’) = 0 for some Borel sel’ containingN. Universal null Borel sets
are just countable sets.

3 VC dimension and Boolean algebras

Recall that 8Boolean algebraB = (B, A, v, =, 0, 1), consists of a seB, equipped with
two associative and commutative binary operationé:meet”) andv (“join”), which
are distributive over each other and satisfy the absorggrorciplesaVv (a A b) = a,
aA (avh) = a, as well as a unary operatien(complement), and two elements 0 and
1, satisfyingav —-a=1,aA -a=0.

For instance, the family‘2of all subsets of a s&®, with the union as join, inter-
section as meet, the empty set as 0 @b 1, as well as the set-theoretic complement
-A = AS, forms a Boolean algebra. In fact, every Boolean algebrabearealized as
an algebra of subsets of a suitalé’e Even better, according to the Stone representa-
tion theorem, a Boolean algebBas isomorphic to the Boolean algebra formed by all



open-and-closed subsets of a suitable compact sféBE,called theStone spacef B,
where the Boolean algebra operations are interpretedheetdtically as above.

The spaceS(B) can be obtained in fferent ways. For instance, one can think
of elements ofS(B) as Boolean algebra homomorphisms fr@o the two-element
Boolean algebrd0, 1} (the algebra of subsets of a singleton). In this waB) is a
closed topological subspace of the compact zero-dimeak&pace(0, 1} with the
usual Tychonf product topology.

The Stone space of the Boolean algeBra 29 is known as théStone€ech com-
pactification ofQ, and is denote@Q. The elements oBQ are ultrafilters on Q. A
collection¢ of non-empty subsets @ is an ultrafilter if it is closed under finite inter-
sections and if for every subsAtC Q eitherA € £ or A® € £. To every pointx € Q
there correspondstaivial (principal) ultrafilter, X, consisting of all seté\ containing
x. However, ifQ is infinite, the Axiom of Choice assures that there exist pdneipal
ultrafilters onQ. Basic open sets in the spg@@ are of the formA = {{ € BQ: A€ ¢},
whereA C Q. Itis interesting to note that ea¢his at the same time closed, and in fact
A'is the closure ofA in Q. Moreover, every open and closed subseg@fis of the
form A.

A one-to-one correspondence between ultrafilter@@md Boolean algebra homo-
morphisms 2 — {0, 1} is this: think of an ultrafiltet onQ as its own indicator function
xe0n 22, sendingA € Qto 1 if and only ifA € ¢. Itis not difficult to verify thaty, is a
Boolean algebra homomorphism, and that every homomorpdniss in this way.

The book|[[J0] is a standard reference to the above topics.

Given a subse¥ of a Boolean algebr8, and a subseX of the Stone spac8(B),
one can regartd” as a set of binary functions restricted Xo and compute the VC
dimension of¢” over X. We will denote this parameter V&( | X).

A subsetl of a Boolean algebr® is anideal if, wheneverx,y € | anda € B,
one hasx vy € | anda A x € |. Define asymmetric dferenceon B by the formula
XAy = (XVy)V-(xAy). Thequotient Boolean algebra B consists of all equivalence
classes modulo the equivalence relationy <= x Ay € I. It can be easily verified
to be a Boolean algebra on its own, with operations induaa 8 in a unique way.

The Stone space @/I can be identified with a compact topological subspace of
S(B), consisting of all homomorphisn® — {0, 1} whose kernel containk For in-
stance, ifB = 29 andl is an ideal of subsets @, then the Stone space of 4 is easily
seen to consist of all ultrafilters gadwhich do not contain sets from

Theorem 2. Let ¢ be a concept class on a domaih and let | be an ideal of sets on
Q. The following conditions are equivalent.

1. The VC dimension of the (family of closures of the) concleiss %’ restricted to
the Stone space of the quotient algeB¥d| is at least n: VG | S(29/1)) > n.

2. There exists a family:AA,, . . ., A, of measurable subsets @fnot belonging to I,
which is shattered by’ in the sense that if & {1,2,...,n}, then there is Ce ¥
which contains all sets;Ai € J, and is disjoint from all sets;Ai ¢ J.

Proof. (M)=(2). Choose ultrafilters, . . ., & in the Stone space of the Boolean algebra
22/1, whose collection is shattered k. For everyd C {1,2,...,n}, selectC; € ¢



which carves the subsgy : i € J} out of{&1, ..., &} This meang; € & if and only if
ieJ.Foralli=12,...,n, set

A=(C )5 (5)

Jsi Jpi

ThenA; € & and hencey ¢ |. Furthermore, if € J, then clearlyh € C;, and ifi ¢ J,
thenA; N C; = 0. The setsd; are measurable by their definition.

@)=@). Let A1, A, ..., Ay be a family of subsets aP not belonging to the set
ideall and shattered by’ in sense of the lemma. For evdrythe family of sets of the
form A; N BY, B € | is a filter and so is contained in some free ultrafiggmwhich is
clearly disjoint froml and containgh. If J € {1,2,...,n} andC; € ¥ contains all
setsAj, i € J and is disjoint from all set#y, i ¢ J, then the closur€; of C; in the
Stone space contaiggsif and only ifi € J. We conclude: the collection of ultrafilters
&,i=1,2...,n which are all contained in the Stone space*0fi2is shattered by the

closed setg;.

It follows in particular that the VC dimension of a concef#sd does not change if
the domain? is compactified.

Corollary 1. VC(% I Q) = VC(¥€ | BQ).

Proof. The inequality VC¢ I Q) < VC(¥ | BQ) is trivial. To establish the converse,
assume there is a subsetgs? of cardinalityn shattered bys”. Choose set#, as in
Theoreni2[(R). Clearly, any subset®meeting eact at exactly one pointis shattered
by ©.

Definition 1. Given a concept clasg” on a domainR and an ideal | of subsets @,
we define the VC dimensionéfmodulo I,

VC(¢€ modl) = VC(Z | S(29/1)).

That is, V@% modl) > n if and only if any of the equivalent conditions of Theokém 2
are met.

Definition 2. Let% be a concept class on a domain If | is the ideal of all count-
able subsets o2, we denote the (@ modl) by VA% modw;) and call it theVC
dimension modulo countable sets

4  Finiteness of VC dimension modulo countable sets is necasg
for learnability

Lemma 1. Every uncountable Borel subset of a standard Borel spacpa@tgpa non-
atomic Borel probability measure.

Proof. Let A be an uncountable Borel subset of a standard Borel spatieat is,Q is
a Polish space equipped with its Borel structure. Accordin§ouslin’s theorem (see
e.g. Theorem 3.2.1 in_[A]), there exists a Polish (completgasable metric) spacé



and a continuous one-to-one mappingX — A. The Polish spack must be therefore
uncountable, and so supports &ae probability measure, The directimage measure
f.v = v(f~1(B)) on Q is a Borel probability measure supported Anand it is difuse
because the inverse image of every singleton is a singlet¥naind thus has measure
zero.

The following result makes no measurability assumptiontherconcept class.

Theorem 3. Let % be a concept class on a domdif2, %) which is a standard Borel
space. If¢ is PAC learnable under non-atomic measures, then the VCrdimoe of¢
modulo countable sets is finite.

Proof. This is just a minor variation of a classical result for diatition-free PAC learn-
ability (Theorem 2.1(i) in[[BEHW]; we will follow the proof & presented in_[V2],
Lemma7.2 onp. 279).

Suppose VC{ modw;) > d. According to Theoreml 2, there is a family of uncount-
able Borel set®\, i = 1,2,...,d, shattered by’ in our sense. Using Lemnia 1, select
for everyi = 1,2,...,d a non-atomic probability measure supported oA, and let
u= %Zid:l,ui- Thisu is a non-atomic Borel probability measure, giving ed¢tequal
weight 1/d.

For everyd-bit stringo there is a conce, € ¢ which contains alA; with o = 1
and is disjoint fromA; with o = 0. If A and B take constant values on all the sets
A,i=12,...,d thend,(A B)is just the normalized Hamming distance between the
correspondingl-bit strings. Now, giverA € ¥ and 0< k < d, there are

2

conceptsB with d,(A, B) < 2e. This allows to get the following lower bound on the
number of pairwise &separated concepts:
od
Dks2ed (ﬁ)
The Chern@—Okamoto bound allows to estimate the above expressiontiedow by

exp[2(Q5 - 2¢)%d]. We conclude: the metric entropy &f with regard tqu is bounded
below as:

M(2¢, €, 1) > exp[2(Q5 — 2¢)?d].
The assumption V& modw;) = oo now implies that for every & € < 0.25,

SupM(2¢, ¢, 1) = oo,
Pep

where® denotes the family of all non-atomic measuresbrBy Lemma 7.1 in[[V2],
p. 278, the clas¥’ is not PAC learnable undé?.



5 The universally separable case

Lemma 2. Let% be a universally separable concept class, andlebe a universally
dense countable subset@f Then

VC(?) = VC(E").

Proof. For everyC € ¥ there is a sequenc€() of elements ofs” with the property
that for eachx € Q there isN such that ifn > N andx € C, thenx € C,, and ifx ¢ C,
thenx ¢ C,. Equivalently, for every finitéA C Q, there is arN so that whenevar > N,
one hasC, N A = C n A. This means that ifA is shattered byz, it is equally well
shattered bys”. This established the inequaity V€] < VC(%”), while the converse
inequality is obviously true.

Theorem 4. For a universally separable concept class the following conditions are
equivalent.

1. V% modw,) < d.
2. There exists a countable subset & such that VG | (2\ A)) <d.

Proof. (I)=(2): Choose a countable universally dense subfa#iilpf . Let.# be the
smallest Boolean algebra of subsetgo€ontaining%”. Denote byA the union of all
elements of# that are countable sets. Clear,is countable, and sA is a countable
set.

Let a finite seB C Q \ A be shattered b¥’. Then, by Lemmal?2, it is shattered by
¢". Select a familys of 21® sets in” shatteringB. For everyb € B the set

CENAICANARS
beCe.” bgCe.”

is uncountable (for it belongs t& yet is not contained i), and the collection of
sets p], b € Bis shattered by”. This establishes the inequality VE(] (2 \ A)) <

VC(% modw,).
@)=(D): Fix anA ¢ Q so that VC¢ modA®) < d. Suppose a collection af
uncountable set8;, i = 1,2,...,nis shattered by in our sense. The sefs \ A are

non-empty; pick a representatigee A\ A,i = 1,2,...,n. The resulting sefa;} ; is
shattered by, meaningn < d.

Corollary 2. Let% be a universally separable concept class on a Borel dorait
d = VC(¥ modw;) < o, then% is a universal Glivenko-Cantelli class with regard to
non-atomic measures and consistently PAC learnable unaleratomic measures.

Proof. The classs” has finite VC dimension in the complement to a suitable cdalata
subsetA of 2, hences is a universal Glivenko-Cantelli class (in the classicalss) in
the standard Borel space\ A. But A is a universal null set i®2, hence clearly¢ is
universal Glivenko-Cantelli with regard to non-atomic regees.



The class#’ is distribution-free consistently PAC learnable in the @im \ A,
with the standard sample complexdfg, 6, d). Let £ be any consistent learning rule for
% in Q. The restriction of£ to Q \ A (more exactly, taJy’; (2 \ A)" x {0,1}")) is a
consistent learning rule f&f restricted to the standard Borel spa2g A, and together
with the fact thatA has measure zero with regard to any non-atomic measureliesn
that L is a PAC learning rule fo¥” under non-atomic measures, with the same sample
complexity functions(e, ¢, d).

6 Martin’s Axiom and learnability

Martin’s Axiom (MA) in one of its equivalent forms says thabt kompact Hausdér
topological space with the countable chain condition isiampf strictly less than con-
tinuum nowhere dense subsets. Thus, it can be seen as dlsénging of the statement
of the Baire Category Theorem. In particular, the Continddypothesis (CH) implies
MA. However, MA is compatible with the negation of CH, andstlié where the most
interesting applications of MA are to be found. We will bengsjust one particular
consequence of MA.

Theorem 5 (Martin-Solovay). Let (©, 1) be a standard Lebesgue non-atomic proba-
bility space. Under MA, the Lebesgue measur@sadditive, that is, ifc < 2% and
A., a < kis family of pairwise disjoint measurable sets, then, A, is Lebesgue mea-

surable and
#(U Aa] = D u(A).

a<k a<kK

In particular, the union of less than continuum null subs#t® is a null subset. 0O
For the proof and more on MA, seel[K], Theorem 2.21[or [F]lJaf] pp. 563-565.

Lemma 3. Let% be an infinite concept class on a measurable sgadeenotex = |4
the cardinality of¢’. There exists a consistent learning rufefor € with the property
that for every Ce ¥ and each n, the set

(Lo, CNno):oceQy ¥ (6)
has cardinality< «. Under MA the rule£ satisfies the measurability conditidg (1).
Proof. Choose a minimal well-ordering of elements®@f
€ ={Cy: @<k},
and set for every € Q" andr € {0, 1}" the valueL(c, 7) equal toCs, where
B=minfa <k: C,No =1},
provided such & exists. Clearly, for each < « one has

L(o,Cono) C{Cs: B < al,



which assure${6). Besides, the learning tdlis consistent.
FixC=C, € ¢, a <« Forevenp < a defineDg = {c € Q": Cno =Cgnol.
The setd; are measurable, and the function

Q"s0 u(L(Cno)aC)eR

takes a constant valygCs; A C,,) on each seDg \ U,4D,, 8 < @. Such sets, as well
as all their possible unions, are measurable under MA byefofdViartin—Solovay’s
Theoreni b, and their union &". This implies the conditiori{1) for.

We again recall that a s&tC Q is absolutely nulif it is Lebesgue measurable with
regard to every non-atomic Borel probability measumn Q andu(A) = 0.

Lemma 4 (Assuming MA). Let ¥ be a class of Borel subsets on a standard Borel
space. Suppose there is a natural d such that every countable as&6l' € ¢ has
VC dimensiorx d outside of an absolutely null set (which depend$9nThen every
subclass off’ of cardinality< 2% has the same property.

Proof. By induction on the cardinality o#, which we denoter (notice that it never
exceeds ®, and so the proof only makes sense under the negation of thénQom
Hypothesis). Suppose the result is true for@allNo < 8 < a. Choose a minimally
well-ordered chairé,,y < a of subclasses o8 whose union is¢’. For everyy, let
N, be a universal null subset @ with the property tha, has VC dimensiorx d
outside of N,. Martin—Sollovay's Theorem implies tha¢ = U, N, is absolutely
null. Consequently, eacti, has VC dimensior d outside ofA, and the same applies
to the union of the chain.

Lemma5 (Assuming MA).Let% be a concept class of cardinaliky= || < 2% on a
standard Borel spacg. If d = VC(¥%) is finite, therts” is a uniform Glivenko—Cantelli
class, with a standard sample complexity estim#étessd).

Proof. A transfinite induction om. Forx = Ng the result is classical. Else, represgnt
as a union of an increasing transfinite chain of conceptetsés, @ < «, for each of
which the statement of Lemma holds. For every 0 andn € N, the set

{oe @ supluno) - ) < ef = (Y {o € 25 suplunto) - () < ¢}
Ce% CeC,

a<k

is measurable by Martin-Solovay’s TheorEim 5. Givern 0 andn > (e, 6, d), another
application of the same result leads to conclude that foryeve P(Q):

o € 97 suplun(c) - () < ¢f =u®”[ﬂ foeo sup|un(o—)—u(0>|<e}]
Ce? CeC,

a<K

= inf u®" {0' € Q": suplun(c) — u(C)| < e}
a<k Ceé,

>1-9,

as required.



The following is an immediate consequence of two previomsias.

Lemma 6 (Assuming MA). Under the assumptions of Lemia 4, every subclass of
% of cardinality < 2% is uniform Glivenko-Cantelli with regard to the family ofmo
atomic measures of2. The sample complexity of this class is the usual sample com-
plexity £6, €, d) of concept classes of VC dimensioml.

Lemma 7 (Assuming MA).Let% be a concept class consisting of Borel subsets of a
standard Borel spac®. Assume that for some natural d, every countable subclass of
has VC dimensior d outside of some universal null subsetdfThen the clas¥’ is
PAC learnable under the family of all non-atomic measureQowith the usual sample
complexity &, €) of distribution-free PAC learning concept classes of VCatision
<d.

Proof. Using LemmdB, choose a learning rufefor ¢ with the property in Eq.[{6).
Since the family of all Borel subsets &fis well-known to have cardinality continuum,
for every concep€ and eachn the cardinality of the imag&t = L{ICNno: 0 e Q") C

¢ is strictly less than'®. By Lemmd6,% is a uniform Glivenko-Cantelli class with
regard to non-atomic measures@nsatisfying the standard sample complexity bound.
The proofis now concluded in a standard way.

7 The proof of the main theorem

(@)= (@): this is Theorernl3.
@)= (3): follows from Theoreri 4.
@)=(4): assume that for evedithere is a countable subclasgof ¥ with the property
that the VC dimension o0&y is > d after removing any countable subsetafClearly,
the countable classy , %4 will have infinite VC dimension outside of every countable
subset of2, a contradiction.
@)= (@): as a consequence of a classical result of Vapnik andvBhenkis, every
countable subclasg’ is universal Glivenko-Cantelli with regard to all probatyimea-
sures supported outside of some countable subs@t ahd a standard bound for the
sample complexity(s, €) only depends on, from which the statement follows.
©)=@): trivial.
(B)=(@): modelling the classical argument that the uniform &tiko-Cantelli property
implies finite VC dimension, in exactly the same spirit ashia proof of our Theorem
[3, one shows that the uniform Glivenko-Cantelli propertyaafoncept class with re-
gard to non-atomic measures implies a finite VC dimensionutmcbuntable sets. But
for a countable (more generally, universally separabledss” this means finite VC
dimension after a removal of a countable set, cf. Theddem 4.
@)=(@): this is Lemmal7, and the only implication requiring Mat Axiom.

The equivalence of{1), (7) and (8) in the universally seplaraase follows from
Theoreni## and Corollafy 2. O



8 Conclusion

We have characterized concept clasgethat are distribution-free PAC learnable un-
der the family of all non-atomic probability measures on doenain. The criterion is
obtained without any measurability conditions on the cphctass, but at the expense
of making a set-theoretic assumption in the form of Martiwgom. In fact, assuming
MA makes things easier, and as this axiom is very naturahayes it deserves its small
corner within the foundations of statistical learning.

It seems that generalizing the result from concept to fonatlasses, using a version
of the fat shattering dimension modulo countable sets,neillpose particular technical
difficulties, and we plan to perform this extension in a full jalwersion of the paper,
in order to keep the conference submission short. The Bo@kgebras will however
have to give way to commutativ& -algebras]A].

It would be still interesting to know if the present resultddhwithout Martin’s
Axiom, under the assumption that the concept class image admissible Souslin
([D], pages 186-187). Theftiiculty here is selecting a measurable learning filgith
the property that the images of all learning samptesC(n o), o € Q", are uniform
Glivenko-Cantelli. An obvious route to pursue is the re@r®n the Borel rank o%’,
but we were unable to follow it through.

Now, a concept clasg” will be learnable under fluse measures provided there is
a hypothesis clas#” which has finite VC dimension and such that ev@ry ¢ differs
from a suitableH € J# by a null set. If¢ consists of all finite and all cofinite subsets
of Q, this 77 is given by{0, Q}. One may conjecture thé&t is learnable under ffuse
measures if and only if it admits such a “cor&?” having finite VC dimension. Is this
true?

Another natural question is: can one characterize cond¢agges that are uniformly
Glivenko—Cantelli with regard to all non-atomic measur@gparently, this task re-
quires yet another version of shattering dimension, whschtiictly intermediate be-
tween Talagrand’s “witness of irregularity”|[T] and our V@mknsion modulo count-
able sets. We do not have a viable candidate.

Finally, our investigation open up a possibility of linkimgarnability and VC di-
mension to Boolean algebras and their Stone spaces. THid loew glib exercise in
generalization for its own sake, or maybe something deémered manages to invoke
model theory and forcing.
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