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PAC learnability of a concept class under non-atomic
measures: a problem by Vidyasagar

Vladimir Pestov

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue,
Ottawa, Ontario, Canada K1N 6N5

Abstract. In response to a 1997 problem of M. Vidyasagar, we state a neces-
sary and sufficient condition for distribution-free PAC learnability ofa concept
classC under the family of all non-atomic (diffuse) measures on the domain
Ω. Clearly, finiteness of the classical Vapnik–Chervonenkisdimension ofC is
a sufficient, but no longer necessary, condition. Besides, learnability of C un-
der non-atomic measures does not imply the uniform Glivenko–Cantelli property
with regard to non-atomic measures. Our learnability criterion is stated in terms
of a combinatorial parameter VC(C modω1) which we call the VC dimension
of C modulo countable sets. The new parameter is obtained by “thickening up”
single points in the definition of VC dimension to uncountable “clusters”. Equiv-
alently, VC(C modω1) ≤ d if and only if every countable subclass ofC has VC
dimension≤ d outside a countable subset ofΩ. The new parameter can be also
expressed as the classical VC dimension ofC calculated on a suitable subset of
a compactification ofΩ. We do not make any measurability assumptions onC ,
assuming instead the validity of Martin’s Axiom (MA).

1 Introduction

A fundamental result of statistical learning theory says that for a concept classC the
three conditions are equivalent: (1)C is distribution-free PAC learnable over the family
P(Ω) of all probability measures on the domainΩ, (2)C is a uniform Glivenko–Cantelli
class with regard toP(Ω), and (3) the Vapnik–Chervonenkis dimension ofC is finite
[VC,BEHW]. In this paper we are interested in the problem, discussed by Vidyasagar
in both editions of his book [V1,V2] as problem 12.8, of giving a similar combinatorial
description of concept classesC which are PAC learnable under the familyPna(Ω) of
all non-atomic probability measures onΩ. (A measureµ is non-atomic, or diffuse,if
every setA of strictly positive measure contains a subsetB with 0 < µ(B) < µ(A).)

The condition VC(C ) < ∞, while of course sufficient forC to be learnable under
Pna(Ω), is not necessary. Let a concept classC consist of all finite and all cofinite
subsets of a standard Borel spaceΩ. Then VC(C ) = ∞, and moreoverC is clearly
not a uniform Glivenko-Cantelli classwith regard to non-atomic measures.At the same
time, C is PAC learnable under non-atomic measures: any learning rule L consistent
with the subclass{∅, Ω} will learn C . Notice thatC is notconsistentlylearnable under
non-atomic measures: there are consistent learning rules mapping every training sample
to a finite set, and they will not learn any cofinite subset ofΩ.

http://arxiv.org/abs/1006.5090v1


The point of this example is that PAC learnability of a concept classC under non-
atomic measures is not affected by adding toC symmetric differencesC △ N for each
C ∈ C and every countable setN.

A version of VC dimension oblivious to this kind of set-theoretic “noise” is obtained
from the classical definition by “thickening up” individualpoints and replacing them
with uncountable clusters (Figure 1).
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Fig. 1.A family A1,A2, . . . ,An of uncountable sets shattered byC .

Define theVC dimension of a concept classC modulo countable setsas the supre-
mum of naturaln for which there exists a family ofn uncountable sets,A1,A2, . . . ,An ⊆

Ω, shattered byC in the sense that for eachJ ⊆ {1, 2, . . . , n}, there isC ∈ C which
contains all setsAi , i ∈ J, and is disjoint from all setsA j , j < J. Denote this parameter
by VC(C modω1). Clearly, for every concept classC

VC(C modω1) ≤ VC(C ).

In our example above, one has VC(C modω1) = 1, even as VC(C ) = ∞.
Here is our main result.

Theorem 1. Let (Ω,A ) be a standard Borel space, and letC ⊆ A be a concept class.
Under the Martin’s Axiom (MA), the following are equivalent.

1. C is PAC learnable under the family of all non-atomic measures.
2. VC(C modω1) = d < ∞.
3. Every countable subclassC ′ ⊆ C has finite VC dimension on the complement to

some countable subset ofΩ (which depends onC ′).
4. There is d such that for every countableC

′ ⊆ C one has VC(C ′) ≤ d on the
complement to some countable subset ofΩ (depending onC ′).

5. Every countable subclassC ′ ⊆ C is a uniform Glivenko–Cantelli class with regard
to the family of non-atomic measures.

6. Same, with sample complexity s(ǫ, δ) which only depends onC and not onC ′.

If C is universally separable [P], the above are also equivalentto:

7. VC dimension ofC is finite outside of a countable subset ofΩ.
8. C is a uniform Glivenko-Cantelli class with respect to the family of non-atomic

probability measures.



Martin’s Axiom (MA) [F] is one of the most often used and best studied additional
set-theoretic assumptions beyond the standard Zermelo-Frenkel set theory with the Ax-
iom of Choice (ZFC). In particular, Martin’s Axiom follows from the Continuum Hy-
pothesis (CH), but it is also compatible with the negation ofCH, and in fact it is namely
the combination MA+¬CH that is really interesting.

The concept class in our initial simple example (which is even image admissible
Souslin [D]) shows that in general (7) and (8) are not equivalent to the remaining con-
ditions. Notice that for universally separable classes, (1), (7) and (8) are equivalent
without additional set-theoretic assumptions.

The core of the theorem — and the main technical novelty of ourpaper — is the
proof of the implication (3)⇒(1). It is based on a special choice of a consistent learning
rule L having the property that for every conceptC ∈ C , the image of all learning
samples of the form (σ,C ∩ σ) underL forms a uniform Glivenko–Cantelli class. It is
for establishing this property ofL that we need Martin’s Axiom.

Most of the remaining implications are relavely straightforward adaptations of the
standard techniques of statistical learning. Nevertheless, (2)⇒(3) requires a certain
technical dexterity, and we study this implication in the setting of Boolean algebras.

We begin the paper by reviewing a general formal setting, followed by a dicussion
of Boolean algebras which seem like a natural framework for the problem at hand, espe-
cially in view of possible generalizations to learning under other intermediate families
of measures.

In particular, we will show that our version of the VC dimension modulo count-
able sets, VC(C modω1), is just the usual VC dimension of the classC of concepts
extended over a suitable compactification ofΩ and restricted to a certain subdomain of
the compactification.

Now the part of Theorem 1 for universally separable concept classes follows easily.
Afterwards, we discuss Martin’s Axiom, prove the existenceof a learning rule with the
above special property, and deduce Theorem 1 for arbitrary concept classes.

2 The setting

We need to fix a precise setting, which is mostly standard. Thedomain(instance space)
Ω = (Ω,A ) is a measurable space,that is, a setΩ equipped with a sigma-algebra of
subsetsA . Typically,Ω is assumed to be astandard Borel space,that is, a complete sep-
arable metric space equipped with the sigma-algebra of Borel subsets. We will clarify
the assumption whenever necessary.

A concept classis a family,C , of measurable subsets ofΩ. (Equivalently,C can be
viewed as a family of measurable{0, 1}-valued functions onΩ.)

In the learning model, a setP of probability measures onΩ is fixed. Usually either
P = P(Ω) is the set of all probability measures (distribution-freelearning), orP = {µ}
is a single measure (learning under fixed distribution). In our article, the case of interest
is the familyP = Pna(Ω) of all non-atomic measures.

Every probability measureµ onΩ defines a distancedµ onA as follows:

dµ(A, B) = µ (A△ B) .



We will not distinguish between a measureµ and its Lebesgue completion, that is,
an extension ofµ over the larger sigma-algebra of Lebesgue measurable subsets of
Ω. Consequently, we will sometimes use the termmeasurabilitymeaningLebesgue
measurability. No confusion can arise here.

Often it is convenient to approximate the concepts fromC with elements of thehy-
pothesis space,H , which is, technically, a subfamily ofA whose closure with regard
to each (pseudo)metricdµ, µ ∈ P, containsC . However, in our article we make no
distinction betweenH andC .

A learning sampleis a pairs = (σ, τ) of finite subsets ofΩ, whereτ ⊆ σ. It is
convenient to assume that elementsx1, x2, . . . , xn ∈ σ are ordered, and thus the set of
all samples (σ, τ) with |σ| = n can be identified with(Ω × {0, 1})n. A learning rule(for
C ) is a mapping

L :
∞
⋃

n=1

Ωn × {0, 1}n→ C

which satisfies the following measurability condition: foreveryC ∈ C andµ ∈ L, the
function

Ω ∋ σ 7→ µ (L(σ,C ∩ σ) △C) ∈ R (1)

is measurable.
A learning ruleL is consistent(with C ) if for everyC ∈ C and eachσ ∈ Ωn one

has
L(σ,C ∩ σ) ∩ σ = C ∩ σ.

A learning ruleL is probably approximately correct(PAC) underP if for every ǫ > 0

sup
µ∈P

sup
C∈C
µ⊗n {σ ∈ Ωn : µ (L(σ,C ∩ σ) △C) > ǫ} → 0 asn→ ∞. (2)

Hereµ⊗n denotes the (Lebesgue extension of the) product measure onΩn. Now the
origin of the measurability condition (1) on the mappingL is clear: it is implicit in (2).

Equivalently, there is a functions(ǫ, δ) (sample complexityof L) such that for each
C ∈ C and everyµ ∈ P an i.i.d. sampleσ with ≥ s(ǫ, δ) points has the property
µ(C △ L(σ,C ∩ σ)) < ǫ with confidence≥ 1− δ.

A concept classC consisting of measurable sets isPAC learnable underP, if there
exists a PAC learning rule forC underP. A classC is consistently learnable(under
P) if every learning rule consistent withC is PAC underP. If P = P(Ω) is the set
of all probability measures, thenC is said to be (distribution-free)PAC learnable. At
the same time, learnability under intermediate families ofmeasures onΩ has received
considerable attention, cf. Chapter 7 in [V2].

Notice that in this paper, we only talk ofpotentialPAC learnability, adopting a
purely information-theoretic viewpoint.

A closely related concept is that of auniform Glivenko–Cantelliconcept classwith
regard to a family of measuresP, that is, a concept classC such that for eachǫ > 0

sup
µ∈P

µ⊗n

{

sup
C∈C
|µ(C) − µn(C)| ≥ ǫ

}

→ 0 asn→ ∞. (3)



(Cf. [D], Ch. 3; [M].) Hereµn stands for the empirical (uniform) measure onn points,
sampled in an i.i.d. fashion fromΩ according to the distributionµ. One also says thatC
has the property ofuniform convergence of empirical measures(UCEM property)with
regard toP [V2].

Every uniform Glivenko–Cantelli class (with regard toP) is PAC learnable (under
P), and in the distribution-free situation, the converse is true as well. Already in the case
of learning under a single measure, it is not so: a PAC learnable class under a single
distributionµ need not be uniform Glivenko-Cantelli with regard toµ (cf. Chapter 6 in
[V2]). Not every PAC learnable class under non-atomic measures is uniform Glivenko–
Cantelli with regard to non-atomic measures either: the class consisting of all finite and
all cofinite subsets ofΩ is a counter-example.

We say, following Pollard [P], that a concept classC consisting of measurable sets
is universally separableif it contains a countable subfamilyC ′ with the property that
everyC ∈ C is a pointwise limit of a suitable sequence (Cn)∞n=1 of sets fromC ′: for
everyx ∈ Ω there isN with the property that, for alln ≥ N, x ∈ Cn if x ∈ C, andx < Cn

if x ∈ C. Such a familyC ′ is said to beuniversally densein C .
Probably the main source of uniform Glivenko–Cantelli classes is the finiteness of

VC dimension. Assume thatC satisfies a suitable measurability condition, for instance,
C is image admissible Souslin, or else universally separable. (In particular, a countable
C satisfies either condition.) If VC(C ) = d < ∞, thenC is uniform Glivenko–Cantelli,
with a sample complexity bound that does not depend onC , but only onǫ, δ, andd.
The following is a typical (and far from being optimal) such estimate, which can be
deduced, for instance, along the lines of [M]:

s(ǫ, δ, d) ≤
128
ǫ2

(

d log

(

2e2

ǫ
log

2e
ǫ

)

+ log
8
δ

)

. (4)

For our purposes, we will fix any such bound and refer to it as a“standard” sample
complexity estimate fors(ǫ, δ, d).

A subsetN ⊆ Ω is universal nullif for every non-atomic probability measureµ on
(Ω,A ) one hasµ(N′) = 0 for some Borel setN′ containingN. Universal null Borel sets
are just countable sets.

3 VC dimension and Boolean algebras

Recall that aBoolean algebra, B = 〈B,∧,∨,¬, 0, 1〉, consists of a set,B, equipped with
two associative and commutative binary operations,∧ (“meet”) and∨ (“join”), which
are distributive over each other and satisfy the absorptionprinciplesa ∨ (a ∧ b) = a,
a∧ (a∨ b) = a, as well as a unary operation¬ (complement), and two elements 0 and
1, satisfyinga∨ ¬a = 1, a∧ ¬a = 0.

For instance, the family 2Ω of all subsets of a setΩ, with the union as join, inter-
section as meet, the empty set as 0 andΩ as 1, as well as the set-theoretic complement
¬A = Ac, forms a Boolean algebra. In fact, every Boolean algebra canbe realized as
an algebra of subsets of a suitableΩ. Even better, according to the Stone representa-
tion theorem, a Boolean algebraB is isomorphic to the Boolean algebra formed by all



open-and-closed subsets of a suitable compact space,S(B), called theStone spaceof B,
where the Boolean algebra operations are interpreted set-theoretically as above.

The spaceS(B) can be obtained in different ways. For instance, one can think
of elements ofS(B) as Boolean algebra homomorphisms fromB to the two-element
Boolean algebra{0, 1} (the algebra of subsets of a singleton). In this way,S(B) is a
closed topological subspace of the compact zero-dimensional space{0, 1}B with the
usual Tychonoff product topology.

The Stone space of the Boolean algebraB = 2Ω is known as theStone-̌Cech com-
pactification ofΩ, and is denotedβΩ. The elements ofβΩ are ultrafilters on Ω. A
collectionξ of non-empty subsets ofΩ is an ultrafilter if it is closed under finite inter-
sections and if for every subsetA ⊆ Ω eitherA ∈ ξ or Ac ∈ ξ. To every pointx ∈ Ω
there corresponds atrivial (principal) ultrafilter, x̄, consisting of all setsA containing
x. However, ifΩ is infinite, the Axiom of Choice assures that there exist non-principal
ultrafilters onΩ. Basic open sets in the spaceβΩ are of the formĀ = {ζ ∈ βΩ : A ∈ ζ},
whereA ⊆ Ω. It is interesting to note that each̄A is at the same time closed, and in fact
Ā is the closure ofA in βΩ. Moreover, every open and closed subset ofβΩ is of the
form Ā.

A one-to-one correspondence between ultrafilters onΩ and Boolean algebra homo-
morphisms 2Ω → {0, 1} is this: think of an ultrafilterξ onΩ as its own indicator function
χξ on 2Ω, sendingA ⊆ Ω to 1 if and only ifA ∈ ξ. It is not difficult to verify thatχξ is a
Boolean algebra homomorphism, and that every homomorphismarises in this way.

The book [Jo] is a standard reference to the above topics.
Given a subsetC of a Boolean algebraB, and a subsetX of the Stone spaceS(B),

one can regardC as a set of binary functions restricted toX, and compute the VC
dimension ofC overX. We will denote this parameter VC(C ↾ X).

A subsetI of a Boolean algebraB is an ideal if, wheneverx, y ∈ I anda ∈ B,
one hasx ∨ y ∈ I anda ∧ x ∈ I . Define asymmetric differenceon B by the formula
x△ y = (x∨ y)∨¬(x∧ y). Thequotient Boolean algebra B/I consists of all equivalence
classes modulo the equivalence relationx ∼ y ⇐⇒ x△ y ∈ I . It can be easily verified
to be a Boolean algebra on its own, with operations induced from B in a unique way.

The Stone space ofB/I can be identified with a compact topological subspace of
S(B), consisting of all homomorphismsB → {0, 1} whose kernel containsI . For in-
stance, ifB = 2Ω andI is an ideal of subsets ofΩ, then the Stone space of 2Ω/I is easily
seen to consist of all ultrafilters onΩ which do not contain sets fromI .

Theorem 2. Let C be a concept class on a domainΩ, and let I be an ideal of sets on
Ω. The following conditions are equivalent.

1. The VC dimension of the (family of closures of the) conceptclassC restricted to
the Stone space of the quotient algebra2Ω/I is at least n: VC(C ↾ S(2Ω/I )) ≥ n.

2. There exists a family A1,A2, . . . ,An of measurable subsets ofΩ not belonging to I,
which is shattered byC in the sense that if J⊆ {1, 2, . . . , n}, then there is C∈ C

which contains all sets Ai , i ∈ J, and is disjoint from all sets Ai , i < J.

Proof. (1)⇒(2). Choose ultrafiltersξ1, . . . , ξn in the Stone space of the Boolean algebra
2Ω/I , whose collection is shattered byC . For everyJ ⊆ {1, 2, . . . , n}, selectCJ ∈ C



which carves the subset{ξi : i ∈ J} out of {ξ1, . . . , ξn}. This meansCJ ∈ ξi if and only if
i ∈ J. For all i = 1, 2, . . . , n, set

Ai =

⋂

J∋i

CJ

⋂⋂

J=i

Cc
J. (5)

ThenAi ∈ ξi and henceAi < I . Furthermore, ifi ∈ J, then clearlyAi ⊆ CJ, and if i < J,
thenAi ∩CJ = ∅. The setsAi are measurable by their definition.

(2)⇒(1). Let A1,A2, . . . ,An be a family of subsets ofΩ not belonging to the set
ideal I and shattered byC in sense of the lemma. For everyi, the family of sets of the
form Ai ∩ Bc, B ∈ I is a filter and so is contained in some free ultrafilterξi , which is
clearly disjoint fromI and containsAi . If J ⊆ {1, 2, . . . , n} andCJ ∈ C contains all
setsAi , i ∈ J and is disjoint from all setsAi , i < J, then the closurēCJ of CJ in the
Stone space containsξi if and only if i ∈ J. We conclude: the collection of ultrafilters
ξi , i = 1, 2, . . . , n, which are all contained in the Stone space of 2Ω/I , is shattered by the
closed sets̄CJ.

It follows in particular that the VC dimension of a concept class does not change if
the domainΩ is compactified.

Corollary 1. VC(C ↾ Ω) = VC(C ↾ βΩ).

Proof. The inequality VC(C ↾ Ω) ≤ VC(C ↾ βΩ) is trivial. To establish the converse,
assume there is a subset ofβΩ of cardinalityn shattered byC . Choose setsAi as in
Theorem 2,(2). Clearly, any subset ofΩmeeting eachAi at exactly one point is shattered
by C .

Definition 1. Given a concept classC on a domainΩ and an ideal I of subsets ofΩ,
we define the VC dimension ofC modulo I,

VC(C modI ) = VC(C ↾ S(2Ω/I )).

That is, VC(C modI ) ≥ n if and only if any of the equivalent conditions of Theorem 2
are met.

Definition 2. Let C be a concept class on a domainΩ. If I is the ideal of all count-
able subsets ofΩ, we denote the VC(C modI ) by VC(C modω1) and call it theVC
dimension modulo countable sets.

4 Finiteness of VC dimension modulo countable sets is necessary
for learnability

Lemma 1. Every uncountable Borel subset of a standard Borel space supports a non-
atomic Borel probability measure.

Proof. Let A be an uncountable Borel subset of a standard Borel spaceΩ, that is,Ω is
a Polish space equipped with its Borel structure. Accordingto Souslin’s theorem (see
e.g. Theorem 3.2.1 in [A]), there exists a Polish (complete separable metric) spaceX



and a continuous one-to-one mappingf : X→ A. The Polish spaceX must be therefore
uncountable, and so supports a diffuse probability measure,ν. The direct image measure
f∗ν = ν( f −1(B)) onΩ is a Borel probability measure supported onA, and it is diffuse
because the inverse image of every singleton is a singleton in X and thus has measure
zero.

The following result makes no measurability assumptions onthe concept class.

Theorem 3. Let C be a concept class on a domain(Ω,B) which is a standard Borel
space. IfC is PAC learnable under non-atomic measures, then the VC dimension ofC
modulo countable sets is finite.

Proof. This is just a minor variation of a classical result for distribution-free PAC learn-
ability (Theorem 2.1(i) in [BEHW]; we will follow the proof as presented in [V2],
Lemma 7.2 on p. 279).

Suppose VC(C modω1) ≥ d. According to Theorem 2, there is a family of uncount-
able Borel setsAi , i = 1, 2, . . . , d, shattered byC in our sense. Using Lemma 1, select
for everyi = 1, 2, . . . , d a non-atomic probability measureµi supported onAi , and let
µ = 1

d

∑d
i=1 µi . Thisµ is a non-atomic Borel probability measure, giving eachAi equal

weight 1/d.
For everyd-bit stringσ there is a conceptCσ ∈ C which contains allAi with σi = 1

and is disjoint fromAi with σi = 0. If A and B take constant values on all the sets
Ai , i = 1, 2, . . . , d, thendµ(A, B) is just the normalized Hamming distance between the
correspondingd-bit strings. Now, givenA ∈ C and 0≤ k ≤ d, there are

∑

k≤2ǫd

(

d
k

)

conceptsB with dµ(A, B) ≤ 2ǫ. This allows to get the following lower bound on the
number of pairwise 2ǫ-separated concepts:

2d

∑

k≤2ǫd

(

d
k

) .

The Chernoff–Okamoto bound allows to estimate the above expression frombelow by
exp[2(0.5− 2ǫ)2d]. We conclude: the metric entropy ofC with regard toµ is bounded
below as:

M(2ǫ,C , µ) ≥ exp[2(0.5− 2ǫ)2d].

The assumption VC(C modω1) = ∞ now implies that for every 0< ǫ < 0.25,

sup
P∈P

M(2ǫ,C , µ) = ∞,

whereP denotes the family of all non-atomic measures onΩ. By Lemma 7.1 in [V2],
p. 278, the classC is not PAC learnable underP.



5 The universally separable case

Lemma 2. LetC be a universally separable concept class, and letC ′ be a universally
dense countable subset ofC . Then

VC(C ) = VC(C ′).

Proof. For everyC ∈ C there is a sequence (Cn) of elements ofC ′ with the property
that for eachx ∈ Ω there isN such that ifn ≥ N andx ∈ C, thenx ∈ Cn, and if x < C,
thenx < Cn. Equivalently, for every finiteA ⊆ Ω, there is anN so that whenevern ≥ N,
one hasCn ∩ A = C ∩ A. This means that ifA is shattered byC , it is equally well
shattered byC ′. This established the inequaity VC(C ) ≤ VC(C ′), while the converse
inequality is obviously true.

Theorem 4. For a universally separable concept classC , the following conditions are
equivalent.

1. VC(C modω1) ≤ d.
2. There exists a countable subset A⊆ Ω such that VC(C ↾ (Ω \ A)) ≤ d.

Proof. (1)⇒(2): Choose a countable universally dense subfamilyC ′ of C . LetB be the
smallest Boolean algebra of subsets ofΩ containingC ′. Denote byA the union of all
elements ofB that are countable sets. Clearly,B is countable, and soA is a countable
set.

Let a finite setB ⊆ Ω \ A be shattered byC . Then, by Lemma 2, it is shattered by
C ′. Select a familyS of 2|B| sets inC ′ shatteringB. For everyb ∈ B the set

[b] =
⋂

b∈C∈S

C
⋂ ⋂

b<C∈S

Cc

is uncountable (for it belongs toB yet is not contained inA), and the collection of
sets [b], b ∈ B is shattered byC ′. This establishes the inequality VC(C ↾ (Ω \ A)) ≤
VC(C modω1).

(2)⇒(1): Fix an A ⊆ Ω so that VC(C modAc) ≤ d. Suppose a collection ofn
uncountable setsAi , i = 1, 2, . . . , n is shattered byC in our sense. The setsAi \ A are
non-empty; pick a representativeai ∈ Ai \ A, i = 1, 2, . . . , n. The resulting set{ai}

n
i=1 is

shattered byC , meaningn ≤ d.

Corollary 2. Let C be a universally separable concept class on a Borel domainΩ. If
d = VC(C modω1) < ∞, thenC is a universal Glivenko-Cantelli class with regard to
non-atomic measures and consistently PAC learnable under non-atomic measures.

Proof. The classC has finite VC dimension in the complement to a suitable countable
subsetA of Ω, henceC is a universal Glivenko-Cantelli class (in the classical sense) in
the standard Borel spaceΩ \ A. But A is a universal null set inΩ, hence clearlyC is
universal Glivenko-Cantelli with regard to non-atomic measures.



The classC is distribution-free consistently PAC learnable in the domain Ω \ A,
with the standard sample complexitys(ǫ, δ, d). LetL be any consistent learning rule for
C in Ω. The restriction ofL to Ω \ A (more exactly, to∪∞n=1 ((Ω \ A)n × {0, 1}n)) is a
consistent learning rule forC restricted to the standard Borel spaceΩ \ A, and together
with the fact thatA has measure zero with regard to any non-atomic measure, it implies
thatL is a PAC learning rule forC under non-atomic measures, with the same sample
complexity functions(ǫ, δ, d).

6 Martin’s Axiom and learnability

Martin’s Axiom (MA) in one of its equivalent forms says that no compact Hausdorff
topological space with the countable chain condition is a union of strictly less than con-
tinuum nowhere dense subsets. Thus, it can be seen as a strengthening of the statement
of the Baire Category Theorem. In particular, the ContinuumHypothesis (CH) implies
MA. However, MA is compatible with the negation of CH, and this is where the most
interesting applications of MA are to be found. We will be using just one particular
consequence of MA.

Theorem 5 (Martin-Solovay).Let (Ω, µ) be a standard Lebesgue non-atomic proba-
bility space. Under MA, the Lebesgue measure is2ℵ0-additive, that is, ifκ < 2ℵ0 and
Aα, α < κ is family of pairwise disjoint measurable sets, then∪α<κAα is Lebesgue mea-
surable and

µ















⋃

α<κ

Aα















=

∑

α<κ

µ(Aα).

In particular, the union of less than continuum null subsetsofΩ is a null subset. ⊓⊔

For the proof and more on MA, see [K], Theorem 2.21, or [F], or [Je], pp. 563–565.

Lemma 3. LetC be an infinite concept class on a measurable spaceΩ. Denoteκ = |C |
the cardinality ofC . There exists a consistent learning ruleL for C with the property
that for every C∈ C and each n, the set

{L(σ,C ∩ σ) : σ ∈ Ωn} ⊆ C (6)

has cardinality< κ. Under MA the ruleL satisfies the measurability condition (1).

Proof. Choose a minimal well-ordering of elements ofC :

C = {Cα : α < κ},

and set for everyσ ∈ Ωn andτ ∈ {0, 1}n the valueL(σ, τ) equal toCβ, where

β = min{α < κ : Cα ∩ σ = τ},

provided such aβ exists. Clearly, for eachα < κ one has

L(σ,Cα ∩ σ) ⊆ {Cβ : β ≤ α},



which assures (6). Besides, the learning ruleL is consistent.
Fix C = Cα ∈ C , α < κ. For everyβ ≤ α defineDβ = {σ ∈ Ωn : C ∩ σ = Cβ ∩ σ}.

The setsDβ are measurable, and the function

Ωn ∋ σ 7→ µ(L(C ∩ σ) △C) ∈ R

takes a constant valueµ(Cβ △ Cα) on each setDβ \ ∪γ<βDγ, β ≤ α. Such sets, as well
as all their possible unions, are measurable under MA by force of Martin–Solovay’s
Theorem 5, and their union isΩn. This implies the condition (1) forL.

We again recall that a setA ⊆ Ω is absolutely nullif it is Lebesgue measurable with
regard to every non-atomic Borel probability measureµ onΩ andµ(A) = 0.

Lemma 4 (Assuming MA). Let C be a class of Borel subsets on a standard Borel
spaceΩ. Suppose there is a natural d such that every countable subclassC ′ ⊆ C has
VC dimension≤ d outside of an absolutely null set (which depends onC ). Then every
subclass ofC of cardinality< 2ℵ0 has the same property.

Proof. By induction on the cardinality ofC , which we denoteα (notice that it never
exceeds 2ℵ0, and so the proof only makes sense under the negation of the Continuum
Hypothesis). Suppose the result is true for allβ, ℵ0 ≤ β < α. Choose a minimally
well-ordered chainCγ, γ < α of subclasses ofC whose union isC . For everyγ, let
Nγ be a universal null subset ofΩ with the property thatCγ has VC dimension≤ d
outside ofNγ. Martin–Sollovay’s Theorem implies thatN = ∪γ<αNγ is absolutely
null. Consequently, eachCγ has VC dimension≤ d outside ofN, and the same applies
to the union of the chain.

Lemma 5 (Assuming MA).LetC be a concept class of cardinalityκ = |C | < 2ℵ0 on a
standard Borel spaceΩ. If d = VC(C ) is finite, thenC is a uniform Glivenko–Cantelli
class, with a standard sample complexity estimate s(ǫ, δ, d).

Proof. A transfinite induction onκ. Forκ = ℵ0 the result is classical. Else, representC

as a union of an increasing transfinite chain of concept classesCα, α < κ, for each of
which the statement of Lemma holds. For everyǫ > 0 andn ∈ N, the set

{

σ ∈ Ωn : sup
C∈C
|µn(σ) − µ(C)| < ǫ

}

=

⋂

α<κ

{

σ ∈ Ωn : sup
C∈Cα

|µn(σ) − µ(C)| < ǫ

}

is measurable by Martin-Solovay’s Theorem 5. Givenδ > 0 andn ≥ s(ǫ, δ, d), another
application of the same result leads to conclude that for every µ ∈ P(Ω):

µ⊗n

{

σ ∈ Ωn : sup
C∈C
|µn(σ) − µ(C)| < ǫ

}

= µ⊗n















⋂

α<κ

{

σ ∈ Ωn : sup
C∈Cα

|µn(σ) − µ(C)| < ǫ

}















= inf
α<κ
µ⊗n

{

σ ∈ Ωn : sup
C∈Cα

|µn(σ) − µ(C)| < ǫ

}

≥ 1− δ,

as required.



The following is an immediate consequence of two previous lemmas.

Lemma 6 (Assuming MA). Under the assumptions of Lemma 4, every subclass of
C of cardinality< 2ℵ0 is uniform Glivenko-Cantelli with regard to the family of non-
atomic measures onΩ. The sample complexity of this class is the usual sample com-
plexity s(δ, ǫ, d) of concept classes of VC dimension≤ d.

Lemma 7 (Assuming MA).Let C be a concept class consisting of Borel subsets of a
standard Borel spaceΩ. Assume that for some natural d, every countable subclass ofC

has VC dimension≤ d outside of some universal null subset ofΩ. Then the classC is
PAC learnable under the family of all non-atomic measures onΩ, with the usual sample
complexity s(δ, ǫ) of distribution-free PAC learning concept classes of VC dimension
≤ d.

Proof. Using Lemma 3, choose a learning ruleL for C with the property in Eq. (6).
Since the family of all Borel subsets ofΩ is well-known to have cardinality continuum,
for every conceptC and eachn the cardinality of the imageLC = L{C∩σ : σ ∈ Ωn} ⊆

C is strictly less than 2ℵ0. By Lemma 6,LC is a uniform Glivenko-Cantelli class with
regard to non-atomic measures onΩ, satisfying the standard sample complexity bound.
The proof is now concluded in a standard way.

7 The proof of the main theorem

(1)⇒(2): this is Theorem 3.
(2)⇒(3): follows from Theorem 4.
(3)⇒(4): assume that for everyd there is a countable subclassCd of C with the property
that the VC dimension ofCd is ≥ d after removing any countable subset ofΩ. Clearly,
the countable class∪∞d=1Cd will have infinite VC dimension outside of every countable
subset ofΩ, a contradiction.
(4)⇒(6): as a consequence of a classical result of Vapnik and Chervonenkis, every
countable subclassC ′ is universal Glivenko-Cantelli with regard to all probability mea-
sures supported outside of some countable subset ofΩ, and a standard bound for the
sample complexitys(δ, ǫ) only depends ond, from which the statement follows.
(6)⇒(5): trivial.
(5)⇒(3): modelling the classical argument that the uniform Glivenko-Cantelli property
implies finite VC dimension, in exactly the same spirit as in the proof of our Theorem
3, one shows that the uniform Glivenko-Cantelli property ofa concept class with re-
gard to non-atomic measures implies a finite VC dimension modulo countable sets. But
for a countable (more generally, universally separable) classC ′ this means finite VC
dimension after a removal of a countable set, cf. Theorem 4.
(3)⇒(1): this is Lemma 7, and the only implication requiring Martin’s Axiom.

The equivalence of (1), (7) and (8) in the universally separable case follows from
Theorem 4 and Corollary 2. ⊓⊔



8 Conclusion

We have characterized concept classesC that are distribution-free PAC learnable un-
der the family of all non-atomic probability measures on thedomain. The criterion is
obtained without any measurability conditions on the concept class, but at the expense
of making a set-theoretic assumption in the form of Martin’sAxiom. In fact, assuming
MA makes things easier, and as this axiom is very natural, perhaps it deserves its small
corner within the foundations of statistical learning.

It seems that generalizing the result from concept to function classes, using a version
of the fat shattering dimension modulo countable sets, willnot pose particular technical
difficulties, and we plan to perform this extension in a full journal version of the paper,
in order to keep the conference submission short. The Boolean algebras will however
have to give way to commutativeC∗-algebras [A].

It would be still interesting to know if the present results hold without Martin’s
Axiom, under the assumption that the concept classC is image admissible Souslin
([D], pages 186–187). The difficulty here is selecting a measurable learning ruleL with
the property that the images of all learning samples (σ,C ∩ σ), σ ∈ Ωn, are uniform
Glivenko-Cantelli. An obvious route to pursue is the recursion on the Borel rank ofC ,
but we were unable to follow it through.

Now, a concept classC will be learnable under diffuse measures provided there is
a hypothesis classH which has finite VC dimension and such that everyC ∈ C differs
from a suitableH ∈ H by a null set. IfC consists of all finite and all cofinite subsets
of Ω, thisH is given by{∅, Ω}. One may conjecture thatC is learnable under diffuse
measures if and only if it admits such a “core”H having finite VC dimension. Is this
true?

Another natural question is: can one characterize concept classes that are uniformly
Glivenko–Cantelli with regard to all non-atomic measures?Apparently, this task re-
quires yet another version of shattering dimension, which is strictly intermediate be-
tween Talagrand’s “witness of irregularity” [T] and our VC dimension modulo count-
able sets. We do not have a viable candidate.

Finally, our investigation open up a possibility of linkinglearnability and VC di-
mension to Boolean algebras and their Stone spaces. This could be a glib exercise in
generalization for its own sake, or maybe something deeper if one manages to invoke
model theory and forcing.
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