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Abstract. This paper is concerned with the combinatorial structure of
concept classes that can be learned from a small number of examples. We
show that the recently introduced notion of recursive teaching dimension
(RTD, reflecting the complexity of teaching a concept class) is a relevant
parameter in this context. Comparing the RTD to self-directed learning,
we establish new lower bounds on the query complexity for a variety of
query learning models and thus connect teaching to query learning.

For many general cases, the RTD is upper-bounded by the VC-dimension,
e.g., classes of VC-dimension 1, (nested differences of) intersection-closed
classes, “standard” boolean function classes, and finite maximum classes.
The RTD thus is the first model to connect teaching to the VC-dimension.
The combinatorial structure defined by the RTD has a remarkable re-
semblance to the structure exploited by sample compression schemes
and hence connects teaching to sample compression. Sequences of teach-
ing sets defining the RTD coincide with unlabeled compression schemes
both (i) resulting from Rubinstein and Rubinstein’s corner-peeling and
(ii) resulting from Kuzmin and Warmuth’s Tail Matching algorithm.

1 Introduction

The complexity of the problem of learning a concept C' in a given concept class
C can be measured in different ways. If A is a learning algorithm of a particular
type, one measures for instance how much information A must process, how
many prediction errors A will make on single attributes of C, or how expensive
the computation executed by A is, when identifying C'. The worst-case behavior
of A is given by the highest such amount measured over all concepts C. The
complexity value assigned to C with respect to the underlying learning model is
then defined as the best possible worst-case behavior of any learning algorithm.

While run-time and memory complexity are important aspects of machine
learning problems, the aspect of “information complexity” (e.g., how many la-
beled data points are needed for learning) has at least equally important status.
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From an application point of view, the cost of a machine learning process is often
dominated by the amount of data needed. From a theoretical point of view, the
study of information complexity yields formal guarantees concerning the amount
of data that needs to be processed to solve a learning problem. Moreover, ana-
lyzing information complexity often helps to understand the structure of a given
class of target concepts. In addition, the theoretical study of information com-
plexity helps to identify parallels between various formal models of learning.

The reason for these parallels is that algorithms used in a number of different
formal learning models reflect principles related to sample compression schemes,
i.e., schemes for “encoding” a set of examples in a small subset of examples.
For instance, from the set of examples they process, learning algorithms often
extract a subset of particularly “significant” examples in order to represent their
hypotheses. This way sample bounds for PAC-learning of a class C can be ob-
tained from the size of a smallest sample compression scheme for C, see [14, 5].
Here the size of a scheme is the size of the largest subset resulting from compres-
sion of any sample consistent with some concept in C. Similarly teachers, which
provide examples to the learner in models of co-operative learning, compress
concepts to subsets of particularly “helpful” examples, cf. [6,19, 10, 2].

In the past two decades, several learning models were defined with the aim
of achieving low information complexity in a non-trivial way. One such model is
learning from partial equivalence queries [15], which subsumes all types of queries
for which negative answers are witnessed by counterexamples, e.g., membership,
equivalence, subset, superset, and disjointness queries [1]. As lower bounds on
the information complexity in this model (here called query complexity) hold
for numerous learning models, they are particularly interesting objects of study.

In the query model of self-directed learning [7], a query is a prediction of
a label for an instance of the learner’s choice and the learner “pays” only for
wrong predictions. Self-directed learners are very powerful; they yield a query
complexity lower-bounding the one obtained from partial equivalence queries [8].
Even though the self-directed learning complexity can exceed the VC-dimension,
existing results show some connection between these two complexity measures.

A recent model of teaching with low information complexity is recursive
teaching, where a teacher chooses a sample based on a sequence of nested sub-
classes of C, see [22]. The nesting is defined by (i) choosing all concepts in C that
are easiest to teach, i.e., that have the smallest sets of examples distinguishing
them from all other concepts in C and (ii) recursively repeating this process with
the remaining concepts. The largest number of examples required at any stage is
the recursive teaching dimension (RTD) of C. The RTD significantly improves on
bounds for previous teaching models. It lower-bounds not only the complexity of
the “classical” teaching model [6, 19] but also the complexity of iterated optimal
teaching [2], which is often significantly below the classical teaching dimension.

Using the RTD, this paper is the first one to establish a relation between
teaching complexity and complexity of query learning, between teaching com-
plexity and the VC-dimension, as well as between teaching complexity and sam-
ple compression, in particular revealing a surprisingly strong connection to un-



labeled sample compression, cf. [4,12]. No such relations are exhibited by the
classical teaching models. Our main contributions are the following.

(i) We show that the RTD is never higher (and often considerably lower)
than the complexity of self-directed learning. Hence all lower bounds on RTD
will hold for self-directed learning, for learning from partial equivalence queries,
and for a variety of other query learning models.

(i) We establish a connection between the RTD and the VC-dimension.
Though there are classes for which the RTD exceeds the VC-dimension, we
present a number of quite general and natural cases in which the RTD is upper-
bounded by the VC-dimension. These include classes of VC-dimension 1, inter-
section-closed classes and nested differences thereof, a variety of naturally struc-
tured boolean function classes, and finite maximum classes in general (i.e., classes
of maximum possible cardinality for a given VC-dimension and domain size). It
remains open whether every class of VC-dimension d has an RTD linear in d.

(#ii) We establish a connection between the RTD and unlabeled compres-
sion schemes. To prove that the RTD of a finite maximum class equals its VC-
dimension, we use a recent result from [17]. Rubinstein and Rubinstein show
that, for all maximum classes, a technique called corner-peeling defines unla-
beled compression schemes whose size equals the VC-dimension. Corner-peeling
is a particular way of recursively removing concepts from the given concept class,
while representing every such peeling step by a small subset of the underlying
instance space, i.e., an unlabeled sample. Firstly, the recursive nesting of concept
classes is common to both peeling and RTD. Secondly, and more importantly, we
observe that every maximum class allows corner-peeling with an additional prop-
erty, which ensures that the resulting unlabeled samples contain exactly those
instances a teacher following the RTD model would use. A closer look reveals
the following two facts for any finite maximum class C of VC-dimension d:

e Both Rubinstein and Rubinstein’s corner-peeling and Kuzmin and War-
muth’s Tail Matching [12] construct unlabeled compression schemes for C that
map to samples exactly coinciding with those used in the RTD model for C. All
samples are of size at most d.

e The RTD model allows for a nesting of C that uses samples of size at most
d whose unlabeled versions form an unlabeled compression scheme of size d.

The correspondence between RTD and compression schemes is quite remark-
able, because these models arose in different branches of Learning Theory and,
for that reason, differ in several respects:

e The RTD-model has comparatively restrictive rules for producing teaching
sets (which is a kind of compression).

e It does not explicitly address the issue of sample compression (but rather
compresses the concept as a function on the whole domain).

Despite these differences, sample compression schemes lead to RTD-nestings
for a wide variety of classes (including linear arrangements and halfspaces). Con-
sequently, the question of whether or not the RTD is linear in the VC-dimension
appears to be related to the long-standing open question of whether or not the
sample compression complexity is linear in the VC-dimension, cf. [14]. We believe



that studying the RTD will continue to provide new insights into the combina-
torial structure of concept classes that possess small compression schemes.

2 Definitions, Notations and Facts

Throughout this paper, X denotes a finite set and C denotes a concept class
over the domain X. For X’ C X, we define C|x. := {C N X'| C € C}. We treat
concepts interchangeably as subsets of X and as 0, 1-valued functions on X. A
labeled example is a pair (z,!) with x € X and [ € {0,1}. If S is a set of labeled
examples, we define X(S) = {x € X | (,0) € S or (z,1) € S}. For brevity,
[n] :={1,...,n}. VCD(C) denotes the VC-dimension of a concept class C.

Definition 1 Let K be a function that assigns a “complexity” K(C) € N to each
concept class C. We say that K is monotonic if C' C C implies that K(C') <
K(C). We say that K is twofold monotonic if K is monotonic and, for every
concept class C over X and every X' C X, it holds that K(Cx/) < K(C).

2.1 Learning Complexity

A partial equivalence query [15] of a learner is given by a function h : X —
{0,1,x} that is passed to an oracle. The latter returns “YES” if the target
concept C* coincides with h on all € X for which h(z) € {0,1}; it returns
a “witness of inequivalence” (i.e., an x € X such that C*(z) # h(z) € {0,1})
otherwise. LC-PARTIAL(C) denotes the smallest number ¢ such that there is
some learning algorithm that exactly identifies each concept C* € C with up to
q partial equivalence queries (regardless of the oracle’s answering strategy).

A query in the model of self-directed learning [7,8] consists of an instance
xz € X and alabel b € {0, 1}, passed to an oracle. The latter returns the true label
C*(x) assigned to x by the target concept C*. We say the learner made a mistake
if C*(z) # b. The self-directed learning complezity of C, denoted SDC(C), is
defined as the minimum worst-case number of mistakes that a learning algorithm
A can achieve on C, if A exactly identifies every C* € C.

The mistake bound [13] of a particular learning algorithm A for concept class
C, denoted M4(C), is the worst-case number of 0,1-prediction mistakes made
by A on any given sequence of instances labeled consistently according to some
target concept from C. The optimal mistake bound for a concept class C, denoted
Mopi(C), is the minimum of M4(C) over all learning algorithms A.

Clearly, LC-PARTIAL and SDC are monotonic, and M, is twofold mono-
tonic. The following chain of inequalities is well-known [8, 15]:

SDC(C) < LC-PARTIAL(C) < Mo (C) (1)

2.2 Teaching Complexity

A teaching set for a concept C' € C is a set S of labeled examples such that C,
but no other concept in C, is consistent with S. Let 7S(C,C) denote the family



of teaching sets for C' € C, let TS(C;C) denote the size of the smallest teaching
set for C € C, and let

TSmin(C) := min TS(C;C), TSpmaz(C) := rélgé(TS(C; C).

The quantity TD(C) := TS, (C) is called the teaching dimension of C [6]. Note
that TD is monotonic. A concept class C consisting of exactly one concept C' has
teaching dimension 0 because §) € TS(C,{C}).

Definition 2 (see [22]) A teaching plan for C is a sequence
P:((Clvsl)a-~-a(CN7SN)) (2)

with the following properties:

— N=|C| and C ={C4,...,Cn}.

— For allt: 1,...,N, St S TS(Ct,{Ct,...,CN}).

The quantity ord(P) := max;=1,.. n—1|St| is called the order of the teaching
plan P. Finally, we define

RTD(C) := min{ord(P) | P is a teaching plan for C},
RTD*(C) := )I(r}g}){( RTD(Cx-) -

The quantity RTD(C) is called the recursive teaching dimension of C.

A teaching plan (2) is said to be repetition-free if the sets X (S1),..., X (Sn)
are pairwise distinct. (Clearly, the corresponding labeled sets, Si,..., Sy, are
always pairwise distinct.) As observed in [22], the following holds:
— RTD is monotonic.
— The recursive teaching dimension coincides with the order of any teaching
plan that is in canonical form, i.e., a teaching plan ((C4, S1), ..., (Cn,SN))
such that |Si| = TSpin({Ct,...,Cn}) holds for all t € {1,...,N —1}.

Intuitively, a canonical teaching plan is a sequence that is recursively built by
always picking an easiest-to-teach concept C; in the class C \ {C1,...,Ci_1}
together with an appropriate teaching set S;.

The definition of teaching plans immediately yields the following result:

Lemma 3 1. If K is monotonic and TS, (C) < K(C) for every concept class
C, then RTD(C) < K(C) for every concept class C.

2. If K is twofold monotonic and TS, (C) < K(C) for every concept class C,
then RTD*(C) < K(C) for every concept class C.

RTD and TS,,,;» are related as follows:
Lemma 4 RTD(C) = maxc/ce TSmin(C').
Proof. Let C7 be the first concept in a canonical teaching plan P for C so
that TS(Cy;C) = TS;in(C) and the order of P equals RTD(C). It follows that
RTD(C) = max{TS(C1;C),RTD(C\ {C1})} = max{TS,,;»n(C),RTD(C\ {C1})},
and RTD(C) < maxcrce TSmin(C') follows inductively. As for the reverse di-

rection, let Cj C C be a maximizer of TS,,;,. Since RTD is monotonic, we get
RTD(C) > RTD(C{)) > TS.in(C)) = maxcrce TSimin(C'). O



2.3 Intersection-closed Classes and Nested Differences

A concept class C is called intersection-closed if C N C’" € C for all C,C" € C.
Among the standard examples for intersection-closed classes are the d-dimensional

boxes over domain [n]%:

BOX? := {[ay : b1] x -~ x [ag : bg] | Vi=1,...,d: 1<a;b <n}

Here, [a : b] is an abbreviation for {a,a+1,...,b}, where [a : b] is the empty set
if @ > b. For the remainder of this section, C is assumed to be intersection-closed.
For T C X, we define (T')¢ as the smallest concept in C containing T, i.e.,

(T)e:= () C.

TCCeC

A spanning set for T C X w.r.t. C is a set S C T such that (S)c = (T)¢. S
is called a minimal spanning set w.r.t. C if, for every proper subset S’ of S,
(8¢ # (S)¢. I(C) denotes the size of the largest minimal spanning set w.r.t. C.
It is well-known [16, 9] that every minimal spanning set w.r.t. C is shattered by
C. Thus, I(C) < VCD(C). Note that, for every C° € C, I(Cjco) < I(C), because
each spanning set for a set 7' C C° w.r.t. C is also a spanning set for 7" w.r.t. C|ce.
The class of nested differences of depth d (at most d) with concepts from C,
denoted DIFF?(C) (DIFF=%(C), resp.), is defined inductively as follows:

DIFF!(C) :=C,
DIFF%(C) := {C'\ D| C € C,D € DIFF*}(C)},
d
DIFF=4(C) := | J DIFF’(C).
=1

Expanding the recursive definition of DIFF?(C) shows that, e.g., a set in DIFF*(C)
has the form Cy \ (Cs2 \ (Cs \ Cy)) where C1,Cs,C3,Cy € C. We may assume
without loss of generality that C; O C5 O - - because C is intersection-closed.

Nested differences of intersection-closed classes were examined thoroughly at
an early stage of research on computational learning theory [9].

2.4 Maximum Classes and Unlabeled Compression Schemes

Let ®4(n) := Z?:o (). For d = VCD(C) and for any subset X’ of X, we have
ICx/| < @a(|X']), according to Sauer’s Lemma [20,18]. The concept class C is
called a mazimum class if Sauer’s inequality holds with equality for every subset
X' of X. It is well-known [21,5] that a class over a domain X is maximum iff
Sauer’s inequality holds with equality for X’ = X.

The following definition is from [12]:

Definition 5 An unlabeled compression scheme for a maximum class of VC-
dimension d is given by an injective mapping r that assigns to every concept C
a set r(C) C X of size at most d such that the following condition is satisfied:

VO, 0" €C (C #C"), 3w er(C)Ur(C): Cla) £ C' (). (3)



(3) is referred to as the non-clashing property. In order to ease notation, we
add the following technical definitions. A representation mapping of order k for
a (not necessarily mazimum) class C is any injective mapping r that assigns
to every concept C a set 7(C) C X of size at most k such that (3) holds. A
representation-mapping r is said to have the acyclic non-clashing property if
there is an ordering C1,...,Cx of the concepts in C such that

V1<i<j<N,3zxer(C): Ciz)#Ci(z). (4)

Considering maximum classes, it was shown [12] that a representation map-
ping with the non-clashing property guarantees that, for every sample S labeled
according to a concept from C, there is exactly one concept C' € C that is con-
sistent with S and satisfies 7(C) C X(S5). This allows to encode (compress)
a labeled sample S by r(C) and, since r is injective, to decode (decompress)
r(C) by C (so that the labels in S can be reconstructed). This coined the term
“unlabeled compression scheme”.

A concept class C over a domain X of size n is identified with a subset of
{0,1}". The one-inclusion-graph G(C) associated with C is defined as follows:

— The nodes are the concepts from C.
— Two concepts are connected by an edge if and only if they differ in exactly
one coordinate (when viewed as nodes in the Boolean cube).

A cube C' in C is a subcube of {0,1}" such that every node in C’ represents a
concept from C. In the context of the one-inclusion graph, the instances (cor-
responding to the dimensions in the Boolean cube) are usually called “colors”
(and an edge along dimension i is viewed as having color 7).

The following definitions are from [17] (although, stylistically, we are stressing
here the similarities to teaching plans):

Definition 6 A corner-peeling plan for C is a sequence
P=((C1,€),...,(Cn,Cy)) ()
with the following properties:
1. N=|C| and C ={C1,...,Cn}.

2. Forallt=1,...,N, C; is a cube in {Cy,...,Cn} which contains C¢ and all
its neighbors in G({C4,...,Cn}). (Note that this uniquely specifies C;.)

The nodes Cy are called the corners of the cubes C;, respectively. The dimension
of the largest cube among Cy,...,Cl is called the order of the corner-peeling
plan P. C can be d-corner-peeled if there exists a corner-peeling plan of order d.

C is called shortest-path closed if, for every pair of distinct concepts C, C’ € C,
G(C) contains a path of length H(C,C”) that connects C and C’, where H
denotes the Hamming distance. [17] showed the following:

1. If a maximum class C has a corner-peeling plan (5) of order VCD(C), then
an unlabeled compression scheme for C is obtained by setting (C;) equal to
the set of colors in cube C; for t =1,..., N.



2. Every maximum class C can be VCD(C)-corner-peeled.

Although it was known before [12] that any maximum class has an unlabeled
compression scheme, the scheme resulting from corner-peeling has some very
special and nice features. We will see an application in Section 5, where we show
that RTD(C) = VCD(C) for every maximum class C.

3 Recursive Teaching and Query Learning

Kuhlmann proved the following result:
Lemma 7 (see [11]) For every concept class C: TS,,n(C) < SDC(C).

In view of (1), the monotonicity of LC-PARTIAL and SDC, the twofold mono-
tonicity of My, and in view of Lemma 3, we obtain:

Corollary 8 For every concept class C, the following holds:

1. RTD(C) < SDC(C) < LC-PARTIAL(C) < My (C).
2. RTD*(C) < M, (C).

As demonstrated in [8], the model of self-directed learning is extremely pow-
erful. According to Corollary 8, recursive teaching is an even more powerful
model so that upper bounds on SDC apply to RTD as well, and lower bounds
on RTD apply to SDC and LC-PARTIAL as well. The following result, which is
partially known from [8,22], illustrates this:

Corollary 9 1. If VCD(C) =1, then RTD(C) = SDC(C) = 1.
RTD(Monotone Monomials) = SDC(Monotone Monomials) = 1.
RTD(Monomials) = SDC(Monomials) = 2.

RTD(BOX?) = SDC(BOX%) = 2.

RTD(m-Term Monotone DNF) < SDC(m-Term Monotone DNF) < m.
SDC(m-Term Monotone DNF) > RTD(m-Term Monotone DNF) > m pro-
vided that the number of Boolean variables is at least m? + 1.

S G o o

Proof. All upper bounds on SDC are from [8] and, as mentioned above, they
apply to RTD as well. Lower bound 1 on RTD (for concept classes with at
most two distinct concepts) is trivial. RTD(Monomials) = 2 is shown in [22].
As a lower bound, this carries over to BOX? which contains Monomials as
a subclass. Thus the first five assertions are obvious from known results in
combination with Corollary 8. As for the last assertion, we have to show that
RTD(m-Term Monotone DNF) > m. To this end assume that there are n >
m? 4 1 Boolean variables. According to Lemma, 4, it suffices to find a subclass
C' of m-Term Monotone DNF such that TS,,;,(C') > m. Let C’ be the class
of all DNF formulas that contain precisely m pairwise variable-disjoint terms
of length m each. Let F' be an arbitrary but fixed formula in C’. Without loss
of generality, the teacher always picks either a minimal positive example (such
that flipping any 1-bit to 0 turns it negative) or a maximal negative example



(such that flipping any 0-bit to 1 turns it positive). By construction of C’, the
former example has precisely m ones (and reveals one of the m terms in F') and
the latter example has precisely m zeros (and reveals one variable in each term).
We may assume that the teacher consistently uses a numbering of the m terms
from 1 to m and augments any O-component (component i say) of a negative
example by the number of the term that contains the corresponding Boolean
variable (the term containing variable z;). Since adding information is to the
advantage of the learner, this will not corrupt the lower-bound argument. We
can measure the knowledge that is still missing after having seen a collection of
labeled instances by the following parameters:

— m/, the number of still unknown terms
— Il1,..., Ly, where [j is the number of still unknown variables in term k

The effect of a teaching set on these parameters is as follows: a positive example
decrements m’, and a negative example decrements some of l1, ..., [,,. Note that
n was chosen sufficiently large® so that the formula F is not uniquely specified
as long as none of the parameters has reached level 0. Since all parameters are
initially of value m, the size of any teaching set for F' must be at least m. O

In powerful learning models, techniques for proving lower bounds become an
issue. One technique for proving a lower bound on RTD was applied already
in the proof of Corollary 9: select a subclass C’ C C and derive a lower bound
on TS,,in(C’). We now turn to the question whether known lower bounds for
LC-PARTTAL or SDC remain valid for RTD. [15] showed that LC-PARTIAL is
lower-bounded by the logarithm of the length of a longest inclusion chain in C.
This bound does not even apply to SDC, which follows from an inspection of the
class of half-intervals over domain [n]. The longest inclusion chain in this class,
0 c {1} c{1,2} c --- Cc {1,2,...,n}, has length n + 1, but its self-directed
learning complexity is 1. Theorem 8 in [3] implies that SDC is lower-bounded
by log |C|/log|X]| if SDC(C) > 2. A similar bound applies to RTD:

Lemma 10 Suppose RTD(C) > 2. Then, RTD(C) > #g‘%(l and repetition-
log |C]

log | X~

free teaching plans for C are of order at least

Proof. Let k := RTD(C), and let P be a teaching plan of order k for C. Clearly,
P contains |C| pairwise different teaching sets, and every teaching set is a labeled
subset of X of size at most k. Thus,

k
=30 ()2 < 2ax < 2x ©)

Solving for k yields the desired lower bound on RTD(C). In a similar calculation
for repetition-free teaching plans, a factor 2¢ (and later 2¥) is missing in (6). O

3 A slightly refined argument shows that requiring n > (m—1)?41 would be sufficient.
But we made no serious attempt to make this assumption as weak as possible.



A subset X’ C X is called C-distinguishing if, for each pair of distinct concepts
C,C" € C, there is some z € X’ such that C(z) # C’(z). The matrix associated
with a concept class C over domain X is given by M(z,C) = C(z) € {0,1}. We
call two concept classes C,C’ equivalent if their matrices are equal up to permu-
tation of rows or columns, and up to flipping all bits of a subset of the rows.*
The following result characterizes the classes of recursive teaching dimension 1:

Theorem 11. The following statements are equivalent:

1. SDC(C) = 1.

2. RTD(C) =1.

3. There exists a C-distinguishing set X' C X such that C|x: is equivalent to
a concept class whose matriz M is of the form M = [M’'|0] where M’ is a
lower-triangular square-matriz with ones on the main-diagonal and 0 denotes
the all-zeros vector.

Proof. 1 implies 2. If SDC(C) = 1, C contains at least two distinct concepts.
Thus, RTD(C) > 1. According to Corollary 8, RTD(C) < SDC(C) = 1.

2 implies 3. Let P be a teaching plan of order 1 for C, and let X’ be the set of
instances occurring in P (which clearly is C-distinguishing). Let (Cy, {(x1,b1)})
be the first item of P. Let M be the matrix associated with C (up to equivalence).
We make C; the first column and x; the first row of M. We may assume that
by = 1. (Otherwise flip all bits in row 1.) Since {(z1,1)} is a teaching set for C1,
the first row of M is of the form (1,0, ...,0). We may repeat this argument for
every item in P so that the resulting matrix M is of the desired form. (The last
zero-column represents the final concept in P with the empty teaching set.)

3 implies 1. Since X' is C-distinguishing, exact identification of a concept
C € C is the same as exact identification of C restricted to X’. Let z1,...,2zn-1
denote the instances corresponding to the rows of M. Let C4,...,Cy denote
the concepts corresponding to the columns of M. A self-directed learner passes
(21,0), (z2,0),. .. to the oracle until it makes the first mistake (if any). If the first
mistake (if any) happens for (xg, 0), the target concept must be Cj, (because of
the form of M). If no mistake has occurred on items (x1,0),..., (zn_1,0), there
is only one possible target concept left, namely C'y. Thus the self-directed learner
exactly identifies the target concept at the expense of at most one mistake. [J

Note that concept classes of recursive teaching dimension 1 can have arbi-
trarily large VC-dimension. However, [11] presents a family (Cy,)m>1 of concept
classes such that VCD(C,,) = 2m but RTD(C,,) > TDunmin(Cr) = 3m. This
shows that RTD cannot generally be upper-bounded by the VC-dimension (but
leaves open the possibility of an upper bound of the form O(VCD(C))).

As we have seen in this section, the gap between SDC(C) and LC-PARTIAL(C)
can be arbitrarily large (e.g., the class of half-intervals over domain [n]). We will
see below, that a similar statement applies to RTD(C) and SDC(C) (despite of
the fact that both measures assign value 1 to the same family of concept classes).

4 Reasonable complexity measures (including RTD, SDC, VCD) are invariant under
these operations.



4 Recursive Teaching and Intersection-closed Classes

As shown by Kuhlmann [11], TS,,,;,,(C) < I(C) holds for every intersection-closed
concept class C. Kuhlmann’s central argument (which occurred first in a proof of
arelated result in [8]) can be applied recursively so that the following is obtained:

Lemma 12 For every intersection-closed class C, RTD(C) < I(C).

Proof. Let k := I(C). We present a teaching plan for C of order at most k. Let
C1,...,Cn be the concepts in C in topological order such that C; D C; implies
i < j. It follows that, for every i € [N], C; is an inclusion-maximal concept in
Ci:={C;,...,Cn}. Let S; denote a minimal spanning set for C; w.r.t. C. Then:

— 1S;] < k and C; is the unique minimal concept in C that contains S;.
— As (Cj is inclusion-maximal in C;, C; is the only concept in C; that contains S;.

Thus {(z,1) | x € S;} is a teaching set of size at most k for C; in C;. O
Since I(C) < VCD(C), we get
Corollary 13 For every intersection-closed class C, RTD(C) < VCD(C).

This implies RTD*(C) < VCD(C) for every intersection-closed class C, since
intersection-closedness is preserved when reducing a class C to Cjx for X 'C X.

For every fixed constant d (e.g., d = 2), [11] presents a family (C,,)m>1 of
intersection-closed concept classes such that the following holds:®

Ym >1: VCD(C,,) = d and SDC(C,,) > m . (7)

This shows that SDC(C) can in general not be upper-bounded by I(C) or VCD(C).
It shows furthermore that the gap between RTD(C) and SDC(C) can be arbi-
trarily large (even for intersection-closed classes).

Lemma 12 generalizes to nested differences:

Theorem 14. If C is intersection-closed then RTD(DIFF=%(C)) < d - I(C).
Proof. Any concept C € DIFFSd(C) can be written in the form
=:D;

C=C\(Co\ (- (Car\Ca)---)) (8)

such that, for every j, C; € CU {0}, C; 2 Cj4+1, and this inclusion is proper
unless C; = 0. Let D; = Cj11\ (Cjx2\ (- (Ca—1\ Cq) - - - )). We may obviously
assume that the representation (8) of C' is minimal in the following sense:

Vi=1,....d:C; =(C;\ Dj)c (9)

We define a lexicographic ordering, J1, on concepts from DIFFSd(C) as follows.
Let C be a concept with a minimal representation of the form (8), and let the

5 A family satisfying (7) but not being intersection-closed was presented previously [3].



minimal representation of C” be given similarly in terms of C}, D}. Then, by
definition, C 3 C" if C; D C] or C1 = C{ A Dy 1 Dj.

Let k := I(C). We present a teaching plan of order at most dk for DIFF<¢(C).
Therein, the concepts are in lexicographic order so that, when teaching concept C
with minimal representation (8), the concepts preceding C' w.r.t. 1 are discarded
already. A teaching set T for C' is then obtained as follows:

— For every j = 1,...,d, include in T' a minimal spanning set for C; \ D,
w.r.t. C. Augment its instances by label 1 if j is odd, and by label 0 otherwise.

By construction, C as given by (8) and (9) is the lexicographically smallest
concept in DIFFSd(C) that is consistent with T'. Since concepts being lexico-
graphically larger than C' are discarded already, T is a teaching set for C. O

Corollary 15 Let Cq,...,C, be intersection-closed classes over the domain X .
Assume that the “universal concept” X belongs to each of these classes.’ Then,

RTD (DIFFSd(c1 U---u cr)) <d- XT:I(Q).
1=1

Proof. Consider the concept class C :=C; A---AC. :={C1N---NC,. | C; €
Cifori=1,...,r}. According to [9], we have:

1. C¢U---UC, is a subclass of C.

2. C is intersection-closed.

3. Let C=C1nNn---NC, €C. For all i, let S; be a spanning set for C w.r.t. C;,
ie., S; CC and (Si)¢c; = (C)¢,.- Then S; U---U S, is a spanning set for C
w.r.t. C.

Thus I(C) < I(Cy) + -+ I(C,). The corollary follows from Theorem 14. O

5 Recursive Teaching Dimension and Maximum Classes

In this section, we show that the recursive teaching dimension coincides with the
VC-dimension on the family of maximum classes. In a maximum class C, every
set of k < VCD(C) instances is shattered, which implies RTD(C) > TS,,;,(C) >
VCD(C). Thus, we can focus on the reverse direction and pursue the question
whether RTD(C) < VCD(C). We shall answer this question to the affirmative by
establishing a connection between “teaching plans” and “corner-peeling plans”.

We say that a corner-peeling plan (5) is strong if Condition 2 in Definition 6
is replaced as follows:

2. Forallt =1,...,N, C/ is a cube in {C,...,Cn} which contains C; and
whose colors (augmented by their labels according to Cy) form a teaching

set for Cy € {Cy,...,Cn}.

5 This assumption is not restrictive: adding the universal concept to an intersection-
closed class does not destroy the intersection-closedness.



We denote the set of colors of C; as X; and its augmentation by labels according
to Cy as S; in what follows. The following result is obvious:

Lemma 16 A strong corner-peeling plan of the form (5) induces a teaching plan
of the form (2) of the same order.

The following result justifies the attribute “strong” of corner-peeling plans:
Lemma 17 FEvery strong corner-peeling plan is a corner-peeling plan.

Proof. Assume that Condition 2 is violated. Then there is a color € X \ X; and
a concept C € {Ciyi1,...,Cn} such that C coincides with Cy on all instances
except . But then C' is consistent with set S; so that S; is not a teaching set
for C; € {Cy,...,Cn}, and Condition 2’ is violated as well. O

Lemma 18 Let C be a shortest-path closed concept class. Then, every corner-
peeling plan for C is strong.

Proof. Assume that Condition 2’ is violated. Then some C € {Ci41,...,Cn} is
consistent with Sy. Thus, the shortest path between C and Cy in G({C4,...,Cn})
does not enter the cube C;. Hence there is a concept C’ € {Cy11,...,Cn}\ C]
that is a neighbor of C; in G({C},...,Cn}), and Condition 2 is violated. O

As maximum classes are shortest-path closed [12], we obtain:

Corollary 19 Every corner-peeling plan for a maximum class is strong, and
therefore induces a teaching plan of the same order.

Since [17] showed that every maximum class C can be VCD(C)-corner-peeled,
we may conclude that RTD(C) < VCD(C). As mentioned above, RTD(C) >
VCD(C) for every maximum class C, which implies

Corollary 20 For every mazimum class C, RTD(C) = VCD(C).

The fact that, for every maximum class C and every X’ C X, the class C|x
is still maximum implies that RTD*(C) = VCD(C) for every maximum class C.

We close this section by establishing a connection between repetition-free
teaching plans and representations having the acyclic non-clashing property:

Lemma 21 Let C be an arbitrary concept class. Then the following holds:

1. Every repetition-free teaching plan (2) of order d for C induces a represen-
tation mapping r of order d for C given by r(Cy) = X(S;) fort =1,...,N.
Moreover, r has the acyclic non-clashing property.

2. FEwvery representation mapping r of order d for C that has the acyclic non-
clashing property (4) induces a teaching plan (2) given by Sy = {(z, C¢(x)) |
x €r(Cy)} fort=1,...,N. Moreover, this plan is repetition-free.

Proof. 1. A clash between C; and Cy, t < ¢/, on X (S;) would contradict the
fact that S; is a teaching set for Cy € {Cy,...,Cn}.



2. Conversely, if S; = {(z,Ci(x)) | x € r(Ct)} is not a teaching set for C; €
{C4,...,Cn}, then there must be a clash on X (S;) between C; and a concept
from {Ciy1,...,Cn}. Repetition-freeness is obvious since r is injective. O

Corollary 22 Let C be maximum of VC-dimension d. Then, there is a one-one
mapping between repetition-free teaching plans of order d for C and unlabeled
compression schemes with the acyclic non-clashing property.

An inspection of [17] reveals that corner-peeling leads to an unlabeled com-
pression scheme with the acyclic non-clashing property (again implying that
RTD(C) < VCD(C) for maximum classes C). An inspection of [12] reveals that
the unlabeled compression scheme obtained by the Tail Matching Algorithm has
the acyclic non-clashing property too. Thus, this algorithm too can be used to
generate a recursive teaching plan of order VCD(C) for any maximum class C.

6 Conclusions

This paper relates the RTD, a recent teaching complexity notion, to classical
learning complexity parameters. One of these parameters is SDC, the complexity
of self-directed learning—the most information-efficient query model known to
date. Our result lower-bounding the SDC by the RTD has implications for the
analysis of information complexity in teaching and learning. In particular, every
upper bound on SDC holds for RTD; every lower bound on RTD holds for SDC.

Another important parameter in our comparison is the VC-dimension. Al-
though the VC-dimension can be arbitrarily large for classes of recursive teaching
dimension 1 (see Theorem 11 and the remark thereafter) and arbitrarily smaller
than SDC [3,11], it does not generally lie between the two. However, while the
SDC cannot be upper-bounded by any linear function of the VC-dimension, it
is still open whether such a bound is possible for the RTD.

As a partial solution to this open question, we showed that the VC-dimension
coincides with the RTD in the special case of maximum classes. Our results, and
in particular the remarkable correspondence to unlabeled compression schemes,
suggest that the RTD refers to a combinatorial structure that is of high relevance
for the complexity of information-efficient learning and sample compression. An-
alyzing the question whether teaching plans defining the RTD can in general be
used to construct compression schemes (and to bound their size) seems to be a
promising step towards new insights into the theory of sample compression.
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