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Abstract

We study prediction with expert advice in the setting where the losses

are accumulated with some discounting and the impact of old losses can

gradually vanish. We generalize the Aggregating Algorithm and the Ag-

gregating Algorithm for Regression, propose a new variant of exponen-

tially weighted average algorithm, and prove bounds on the cumulative

discounted loss.

1 Introduction

Prediction with expert advice is a framework for online sequence prediction.
Predictions are made step by step. The quality of each prediction (the discrep-
ancy between the prediction and the actual outcome) is evaluated by a real
number called loss. The losses are accumulated over time. In the standard
framework for prediction with expert advice (see the monograph [2] for a com-
prehensive review), the losses from all steps are just summed. In this paper, we
consider a generalization where older losses can be devalued; in other words, we
use discounted cumulative loss.

Predictions are made by Experts and Learner according to Protocol 1. In

Protocol 1 Prediction with expert advice under general discounting

L0 := 0.
Lθ
0 := 0, θ ∈ Θ.

for t = 1, 2, . . . do

Accountant announces αt−1 ∈ (0, 1].
Experts announce γθ

t ∈ Γ, θ ∈ Θ.
Learner announces γt ∈ Γ.
Reality announces ωt ∈ Ω.
Lθ
t := αt−1Lθ

t−1 + λ(γθ
t , ωt), θ ∈ Θ.

Lt := αt−1Lt−1 + λ(γt, ωt).
end for

this protocol, Ω is the set of possible outcomes and ω1, ω2, ω3 . . . is the sequence
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to predict; Γ is the set of admissible predictions, and λ : Γ× Ω → [0,∞] is the
loss function. The triple (Ω,Γ, λ) specifies the game of prediction. The most
common examples are the binary square loss, log loss, and absolute loss games.
They have Ω = {0, 1} and Γ = [0, 1], and their loss functions are λsq(γ, ω) =
(γ−ω)2, λlog(γ, 0) = − log(1− γ) and λlog(γ, 1) = − log γ, λabs(γ, ω) = |γ−ω|,
respectively.

The players in the game of prediction are Experts θ from some pool Θ,
Learner, and also Accountant and Reality. We are interested in (worst-case
optimal) strategies for Learner, and thus the game can be regarded as a two-
player game, where Learner opposes the other players. The aim of Learner is
to keep his total loss Lt small as compared to the total losses Lθ

t of all experts
θ ∈ Θ.

The standard protocol of prediction with expert advice (as described in [19,
20]) is a special case of Protocol 1 where Accountant always announces αt = 1,
t = 0, 1, 2, . . .. The new setting gives some more freedom to Learner’s opponents.

Another important special case is the exponential (geometric) discounting
αt = α ∈ (0, 1). Exponential discounting is widely used in finance and eco-
nomics (see, e. g., [16]), time series analysis (see, e. g., [8]), reinforcement learn-
ing [18], and other applications. In the context of prediction with expert advice,
Freund and Hsu [6] noted that the discounted loss provides an alternative to
“tracking the best expert” framework [11]. Indeed, an exponentially discounted
sum depends almost exclusively on the last O(log(1/α)) terms. If the expert
with the best one-step performance changes at this rate, then Learner observ-
ing the α-discounted losses will mostly follow predictions of the current best
expert. Under our more general discounting, more subtle properties of best
expert changes may be specified by varying the discount factor. In particular,
one can cause Learner to “restart mildly” giving αt = 1 (or αt ≈ 1) most of the
time and αt ≪ 1 at crucial moments. (We prohibit αt = 0 in the protocol, since
this is exactly the same as the stopping the current game and starting a new,
independent game; on the other hand, the assumption αt 6= 0 simplifies some
statements.)

Cesa-Bianchi and Lugosi [2, § 2.11] discuss another kind of discounting

LT =

T
∑

t=1

βT−tlt , (1)

where lt are one-step losses and βt are some decreasing discount factors. To see
the difference, let us rewrite our definition in the same style:

LT = αT−1LT−1 + lT = αT−2αT−1LT−2 + αT−1lT−1 + lT = . . .

=

T
∑

t=1

αt · · ·αT−1lt =
1

βT

T
∑

t=1

βtlt , (2)

where βt = 1/α1 · · ·αt−1, β1 = 1. The sequence βt is non-decreasing, β1 ≤
β2 ≤ β3 ≤ . . .; but it is applied “in the reverse order” compared to (1). So, in
both definitions, the older losses are the less weight they are ascribed. However,
according to (1), the losses lt have different relative weights in LT , LT+1 and so
on, whereas (2) fixes the relative weight of lt with respect to all previous losses
forever starting from the moment t. The latter property allows us to get uniform
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algorithms for Learner with loss guarantees that hold for all T = 1, 2, . . .; in
contrast, Theorem 2.8 in [2] gives a guarantee only at one moment T chosen
in advance. The only kind of discounting that can be expressed both as (1)

and as (2) is the exponential discounting
∑T

t=1 α
T−tlt. Under this discounting,

NormalHedge algorithm is analysed in [6]; we briefly compare the obtained
bounds in Section 3.

Let us say a few words about “economical” interpretation of discounting.
Recall that αt ≤ 1 in Protocol 1, in other words, the previous cumulative loss
cannot become more important at later steps. If the losses are interpreted as the
lost money, it is more natural to assume that the old losses must be multiplied
by something greater than 1. Indeed, the money could have been invested and
have brought some interest, so the current value of an ancient small loss can be
considerably large. Nevertheless, there is a not so artificial interpretation for
our discounting model as well. Assume that the loss at each step is expressed as
a quantity of some goods, and we pay for them in cash; say, we pay for apples
damaged because of our incorrect weather prediction. The price of apples can
increase but never decreases. Then βt in (2) is the current price,

∑T
t=1 βtlt is

the total sum of money we lost, and LT is the quantity of apples that we could
have bought now if we had not lost so much money. (We must also assume that
we cannot hedge our risk by buying a lot of cheap apples in advance—the apples
will rot—and that the bank interest is zero.)

We need the condition αt ≤ 1 for our algorithms and loss bounds. However,
the case of αt ≥ 1 is no less interesting. We cannot say anything about it and
leave it as an open problem, as well as the general case of arbitrary positive αt.

The rest of the paper is organized as follows. In Section 2, we propose a
generalization of the Aggregating Algorithm [20] and prove the same bound as
in [20] but for the discounted loss. In Section 3, we consider convex loss func-
tions and propose an algorithm similar to the Weak Aggregating Algotihm [14]
and the exponentially weighted average forecaster with time-varying learning
rate [2, § 2.3], with a similar loss bound. In Section 4, we consider the use
of prediction with expert advice for the regression problem and adapt the Ag-
gregating Algorithm for Regression [22] (applied to spaces of linear functions
and to reproducing kernel Hilbert spaces) to the discounted square loss. All
our algorithms are inspired by the methodology of defensive forecasting [4]. We
do not explicitly use or refer to this technique in the main text. However, to
illustrate these ideas we provide an alternative treatment of the regression task
with the help of defensive forecasting in Appendix A.2.

2 Linear Bounds for Learner’s Loss

In this section, we assume that the set of experts is finite, Θ = {1, . . . ,K}, and
show how Learner can achieve a bound of the form Lt ≤ cLk

t + (c lnK)/η for
all Experts k, where c ≥ 1 and η > 0 are constants. Bounds of this kind were
obtained in [19]. Loosely speaking, such a bound holds for certain c and η if
and only if the game (Ω,Γ, λ) has the following property:

∃γ ∈ Γ ∀ω ∈ Ω λ(γ, ω) ≤ − c

η
ln

(

∑

i∈I

pie
−ηλ(γi,ω)

)

(3)
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for any finite index set I, for any γi ∈ Γ, i ∈ I, and for any pi ∈ [0, 1] such that
∑

i∈I pi = 1. It turns out that this property is sufficient for the discounted case
as well.

Theorem 1. Suppose that the game (Ω,Γ, λ) satisfies condition (3) for certain

c ≥ 1 and η > 0. In the game played according to Protocol 1, Learner has a

strategy guaranteeing that, for any T and for any k ∈ {1, . . . ,K}, it holds

LT ≤ cLk
T +

c lnK

η
. (4)

We formulate the strategy for Learner in Subsection 2.1 and prove the the-
orem in Subsection 2.2.

For the standard undiscounted case (Accountant announces αt = 1 at each
step t), this theorem was proved by Vovk in [19] with the help of the Aggregating
Algorithm (AA) as Learner’s strategy. It is known ([10, 20]) that this bound
is asymptotically optimal for large pools of Experts (for games satisfying some
assumptions): if the game does not satisfy (3) for some c ≥ 1 and η > 0, then,
for sufficiently large K, there is a strategy for Experts and Reality (recall that
Accountant always says αt = 1) such that Learner cannot secure (4). For the
special case of c = 1, bound (4) is tight for any fixedK as well [21]. These results
imply optimality of Theorem 1 in the new setting with general discounting
(when we allow arbitrary behaviour of Accountant with the only requirement
αt ∈ (0, 1]). However, they leave open the question of lower bounds under
different discounting assumptions (that is, when Accountant moves are fixed);
a particularly interesting case is the exponential discounting αt = α ∈ (0, 1).

2.1 Learner’s Strategy

To prove Theorem 1, we will exploit the AA with a minor modification.

Algorithm 1 The Aggregating Algorithm

1: Initialize weights of Experts wk
0 := 1/K, k = 1, . . . ,K.

2: for t = 1, 2, . . . do

3: Get Experts’ predictions γk
t ∈ Γ, k = 1, . . . ,K.

4: Calculate gt(ω) = − c
η ln

(

∑K
k=1 w

k
t−1e

−ηλ(γk
t ,ω)

)

, for all ω ∈ Ω.

5: Output γt := σ(gt) ∈ Γ.
6: Get ωt ∈ Ω.
7: Update the weights w̃k

t := wk
t−1e

−ηλ(γk
t ,ωt), k = 1, . . . ,K,

8: and normalize them wk
t := w̃k

t /
∑K

k=1 w̃
k
t , k = 1, . . . ,K.

9: end for.

The pseudocode of the AA is given as Algorithm 1. The algorithm has three
parameters, which depend on the game (Ω,Γ, λ): c ≥ 1, η > 0, and a function
σ : RΩ → Γ. The function σ is called a substitution function and must have the
following property: λ(σ(g), ω) ≤ g(ω) for all ω ∈ Ω if for g ∈ R

Ω there exists any
γ ∈ Γ such that λ(γ, ω) ≤ g(ω) for all ω ∈ Ω. A natural example of substitution
function is given by

σ(g) = argmin
γ∈Γ

(

λ(γ, ω)− g(ω)
)

(5)
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(if the minimum is attained at several points, one can take any of them). An
advantage of this σ is that the normalization step in line 8 is not necessary and
one can take wk

t = w̃k
t . Indeed, multiplying all wk

t by a constant (independent
of k) we add to all gt(ω) a constant (independent of ω), and σ(gt) does not
change.

The Aggregating Algorithm with Discounting (AAD) differs only by the use
of the weights in the computation of gt and the update of the weights.

The pseudocode of the AAD is given as Algorithm 2.

Algorithm 2 The Aggregating Algorithm with Discounting

1: Initialize weights of Experts wk
0 := 1, k = 1, . . . ,K.

2: for t = 1, 2, . . . do

3: Get discount αt−1 ∈ (0, 1].
4: Get Experts’ predictions γk

t ∈ Γ, k = 1, . . . ,K.

5: Calculate gt(ω) = − c
η

(

ln
∑K

k=1
1
K (wk

t−1)
αt−1e−ηλ(γk

t ,ω)
)

, for all ω ∈ Ω.

6: Output γt := σ(gt) ∈ Γ.
7: Get ωt ∈ Ω.
8: Update the weights wk

t := (wk
t−1)

αt−1eηλ(γt,ωt)/c−ηλ(γk
t ,ωt), k = 1, . . . ,K,

9: end for.

For a substitution function satisfying (5), one can use in line 8 the update

rule wk
t := (wk

t−1)
αt−1e−ηλ(γk

t ,ωt), which does not contain Learner’s losses, in
the same manner as the normalization in Algorithm 1 can be omitted.

2.2 Proof of the Bound

Assume that c and η are such that condition (3) holds for the game. Let us
show that Algorithm 2 preserves the following condition:

K
∑

k=1

1

K
wk

t ≤ 1 . (6)

Condition (6) trivially holds for t = 0. Assume that (6) holds for t− 1, that is,
∑K

k=1 w
k
t−1/K ≤ 1. Thus, we have

K
∑

k=1

1

K
(wk

t−1)
αt−1 ≤

(

K
∑

k=1

1

K
wk

t−1

)αt−1

≤ 1 ,

since the function x 7→ xα is concave for α ∈ (0, 1], x ≥ 0, and since x ≤ 1
implies xα ≤ 1 for α ≥ 0 and x ≥ 0.

Let w̃k be any reals such that w̃k ≥ (wk
t−1)

αt−1/K and
∑K

k=1 w̃
k = 1. Due

to condition (3) there exists γ ∈ Γ such that for all ω ∈ Ω

λ(γ, ω) ≤ − c

η
ln

(

K
∑

k=1

w̃ke−ηλ(γk
t ,ω)

)

≤ − c

η
ln

(

K
∑

k=1

1

K
(wk

t−1)
αt−1e−ηλ(γk

t ,ω)

)

= gt(ω)
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(the second inequality holds due to our choice of w̃k). Thus, due to the property
of σ, we have λ(γt, ω) ≤ gt(ω) for all ω ∈ Ω. In particular, this holds for ω = ωt,
and we get

λ(γt, ωt) ≤ − c

η
ln

(

K
∑

k=1

1

K
(wk

t−1)
αt−1e−ηλ(γk

t ,ωt)

)

,

which is equivalent to (6).
To get the loss bound (4), it remains to note that

lnwk
t = η

(

Lt/c− Lk
t

)

.

Indeed, for t = 0, this is trivial. If this holds for wk
t−1, then

lnwk
t = αt−1 ln(w

k
t−1) + ηλ(γt, ωt)/c− ηλ(γk

t , ωt)

= αt−1η
(

Lt−1/c− Lk
t−1

)

+ ηλ(γt, ωt)/c− ηλ(γk
t , ωt)

= η
(

(αt−1Lt−1 + λ(γt, ωt))/c− (αt−1Lk
t−1 + λ(γk

t , ωt))
)

= η
(

Lt/c− Lk
t

)

and we get the equality for wk
t . Thus, condition (6) means that

K
∑

k=1

1

K
eη(Lt/c−Lk

t ) ≤ 1 , (7)

and (4) follows by lower-bounding the sum by any of its terms.

Remark. Everything in this section remains valid, if we replace the equal ini-
tial Experts’ weights 1/K by arbitrary non-negative weights wk,

∑K
k=1 w

k = 1.
This leads to a variant of (4), where the last additive term is replaced by c

η ln 1
wk .

Additionally, we can consider any measurable space Θ of Experts and a non-
negative weight function w(θ), and replace sums over K by integrals over Θ.
Then the algorithm and its analysis remain valid (if we impose natural in-
tegrability conditions on Experts’ predictions γθ

t ; see [22] for more detailed
discussion)—this will be used in Section 4.

3 Learner’s Loss in Bounded Convex Games

The linear bounds of the form (4) are perfect when c = 1. However, for many
games (for example, the absolute loss game), condition (3) does not hold for
c = 1 (with any η > 0), and one cannot get a bound of the form Lt ≤ Lk

t +O(1).
Since Experts’ losses Lθ

T may grow as T in the worst case, any bound with c > 1
only guarantees that Learner’s loss may exceed an Expert’s loss by at mostO(T ).
However, for a large class of interesting games (including the absolute loss game),
one can obtain guarantees of the form LT ≤ Lk

T + O(
√
T ) in the undiscounted

case. In this section, we prove an analogous result for the discounted setting.
A game (Ω,Γ, λ) is non-empty if Ω and Γ are non-empty. The game is

called bounded if L = maxω,γ λ(γ, ω) < ∞. One may assume that L = 1
(if not, consider the scaled loss function λ/L). The game is called convex if

6



for any predictions γ1, . . . , γM ∈ Γ and for any weights p1, . . . , pM ∈ [0, 1],
∑M

m=1 pm = 1,

∃γ ∈ Γ ∀ω ∈ Ω λ(γ, ω) ≤
M
∑

m=1

pmλ(γm, ω) . (8)

Note that if Γ is a convex set (e. g., Γ = [0, 1]) and λ(γ, ω) is convex in γ
(e. g.,λabs), then the game is convex.

Theorem 2. Suppose that (Ω,Γ, λ) is a non-empty convex game, and λ(γ, ω) ∈
[0, 1] for all γ ∈ Γ and ω ∈ Ω. In the game played according to Protocol 1,

Learner has a strategy guaranteeing that, for any T and for any k ∈ {1, . . . ,K},
it holds

LT ≤ Lk
T +

√
lnK

√

BT

βT
, (9)

where βt = 1/(α1 · · ·αt−1) and BT =
∑T

t=1 βt.

Note that BT /βT is the maximal predictors’ loss, which incurs when the
predictor suffers the maximal possible loss lt = 1 at each step.

In the undiscounted case, αt = 1, thus βt = 1, BT = T , and (9) becomes

LT ≤ Lk
T +

√
T lnK .

A similar bound (but with worse constant
√
2 instead of 1 before

√
T lnK) is

obtained in [2, Theorem 2.3]:

LT ≤ Lk
T +

√
2T lnK +

√

lnK

8
.

For the exponential discounting αt = α, we have βt = α−t+1 and BT =
(1− α−T )/(1− 1/α), and (9) transforms into

LT ≤ Lk
T +

√
lnK

√

1− αT

1− α
≤ Lk

T +

√

lnK

1− α
.

A similar bound (with worse constants) is obtained in [6] for NormalHedge:

LT ≤ Lk
T +

√

8 ln 2.32K

1− α
.

The NormalHedge algorithm has an important advantage: it can guarantee the
last bound without knowledge of the number of experts K (see [3] for a precise
definition). We can achieve the same with the help of a more complicated
algorithm but at the price of a worse bound (Theorem 3).

3.1 Learner’s Strategy for Theorem 2

The pseudocode of Learner’s strategy is given as Algorithm 3. It contains a
constant a > 0, which we will choose later in the proof.

The algorithm is not fully specified, since lines 6–7 of Algorithm 3 allow
arbitrary choice of γ satisfying the inequality. The algorithm can be completed

7



with the help of a substitution function σ as in Algorithm 2, so that lines 6–8
are replaced by

gt(ω) = − 1

ηt
ln

(

K
∑

k=1

1

K

(

wk
t−1

)αt−1ηt/ηt−1

e−ηtλ(γ
k
t ,ω)−η2

t /8

)

and γt = σ(gt). However, the current form of Algorithm 3 emphasizes the
similarity to the Algorithm 5, which is described later (Subsection 3.3) but
actually inspired our analysis.

Algorithm 3 Learner’s Strategy for Convex Games

1: Initialize weights of Experts wk
0 := 1, k = 1, . . . ,K.

Set β1 = 1, B0 = 0.
2: for t = 1, 2, . . . do

3: Get discount αt−1 ∈ (0, 1]; update βt = βt−1/αt−1, Bt = Bt−1 + βt.
4: Compute ηt = a

√

βt/Bt.
5: Get Experts’ predictions γk

t ∈ Γ, k = 1, . . . ,K.
6: Find γ ∈ Γ s.t. for all ω ∈ Ω

7: λ(γ, ω) ≤ − 1
ηt

ln
(

∑K
k=1

1
K

(

wk
t−1

)αt−1ηt/ηt−1
e−ηtλ(γ

k
t ,ω)−η2

t /8
)

8: Output γt := γ.
9: Get ωt ∈ Ω.

10: Update the weights wk
t :=

(

wk
t−1

)αt−1ηt/ηt−1
eηt

(

λ(γt,ωt)−λ(γk
t ,ωt)

)

−η2
t /8,

11: k = 1, . . . ,K,
12: end for.

Let us explain the relation of Algorithm 3 to the Weak Aggregating Algo-
rithm [14] and the exponentially weighted average forecaster with time-varying
learning rate [2, § 2.3]. To this end, consider Algorithm 4.

Algorithm 4 Weak Aggregating Algorithm with Discounting

1: Initialize Experts’ cumulative losses Lk
0 := 0, k = 1, . . . ,K.

Set β1 = 1, B0 = 0.
2: for t = 1, 2, . . . do

3: Get discount αt−1 ∈ (0, 1]; update βt = βt−1/αt−1, Bt = Bt−1 + βt.
4: Compute ηt = a

√

βt/Bt.

5: Compute the weights qkt = e−αt−1ηtL
k
t−1 , k = 1, . . . ,K.

6: Compute the normalized weights w̃k
t = qkt

/

∑K
j=1 q

j
t .

7: Get Experts’ predictions γk
t ∈ Γ, k = 1, . . . ,K.

8: Find γ ∈ Γ s.t. for all ω ∈ Ω λ(γ, ω) ≤∑K
k=1 w̃

k
t λ(γ

k
t , ω).

9: Output γt := γ.
10: Get ωt ∈ Ω.
11: Update Lk

t := αt−1Lk
t−1 + λ(γk

t , ωt), k = 1, . . . ,K.
12: end for.

The proof of Theorem 2 implies that Algorithm 4 is a special case of Al-

gorithm 3. Indeed, (15) implies that wk
t−1 = e−ηt−1L

k
t−1+C , where C does not

depend on k and wk
t−1 are the weights from Algorithm 3. Therefore qkt =

8



C′(wk
t−1)

αt−1ηt/ηt−1 , where C′ does not depend on k, and one can take w̃k
t for

w̃k in the proof of Theorem 2. Thus, if Algorithm 4 output some γt then Algo-
rithm 3 can output this γt as well.

Recall that if αt = 1 for all t (the undiscounted case), βt = 1 and Bt = t,
hence ηt = a/

√
t. In this case, Algorithm 4 is just the Weak Aggregating

Algorithm as described in [14].
Consider now the case when Γ is a convex set and λ(γ, ω) is convex in γ.

Then one can take γt =
∑K

k=1 w̃
k
t γ

k
t in Algorithm 4. For αt = 1, we get exactly

the exponentially weighted average forecaster with time-varying learning rate [2,
§ 2.3].

3.2 Proof of Theorem 2

Similarly to the case of the AAD, let us show that Algorithm 3 always can find
γ in lines 6–7 and preserves the following condition:

K
∑

k=1

1

K
wk

t ≤ 1 . (10)

First check that αt−1ηt/ηt−1 ≤ 1. Indeed, αt−1 = βt−1/βt, and thus

αt−1
ηt

ηt−1
=

βt−1

βt

a
√

βt/Bt

a
√

βt−1/Bt−1

=

√

βt−1

βt

Bt−1

Bt
=

√
αt−1

√

Bt−1

Bt−1 + βt
≤ 1 .

(11)
Condition (10) trivially holds for t = 0. Assume that (10) holds for t − 1,

that is,
∑K

k=1 w
k
t−1/K ≤ 1. Thus, we have

K
∑

k=1

1

K
(wk

t−1)
αt−1ηt/ηt−1 ≤

(

K
∑

k=1

1

K
wk

t−1

)αt−1ηt/ηt−1

≤ 1 , (12)

since the function x 7→ xα is concave for α ∈ (0, 1], x ≥ 0, and since x ≤ 1
implies xα ≤ 1 for α ≥ 0 and x ≥ 0.

Let w̃k be any reals such that w̃k ≥ (wk
t−1)

αt−1ηt/ηt−1/K and
∑K

k=1 w̃
k = 1.

(For example, w̃k = (wk
t−1)

αt−1ηt/ηt−1

/

∑K
j=1(w

j
t−1)

αt−1ηt/ηt−1 .) By the Ho-

effding inequality (see, e. g., [2, Lemma 2.2]), we have

ln
K
∑

k=1

w̃ke−ηtλ(γ
k
t ,ω) ≤ −ηt

K
∑

k=1

w̃kλ(γk
t , ω) +

η2t
8

, (13)

since λ(γ, ω) ∈ [0, 1] for any γ ∈ Γ and ω ∈ Ω. Since the game is convex, there

exists γ ∈ Γ such that λ(γ, ω) ≤∑K
k=1 w̃

kλ(γk
t , ω) for all ω ∈ Ω. For this γ and

for all ω ∈ Ω we have

λ(γ, ω) ≤
K
∑

k=1

w̃kλ(γk
t , ω) ≤ − 1

ηt
ln

(

K
∑

k=1

w̃ke−ηλ(γk
t ,ω)−η2

t /8

)

≤ − 1

ηt
ln

(

∑ 1

K

(

wk
t−1

)αt−1ηt/ηt−1

e−ηtλ(γ
k
t ,ω)−η2

t /8

)

(14)
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(the second inequality follows from (13), and the third inequality holds due to
our choice of w̃k). Thus, one can always find γ in lines 6–7 of Algorithm 3. It
remains to note that the inequality in line 7 with γt substituted for γ and ωt

substituted for ω is equivalent to

1 ≥
∑ 1

K

(

wk
t−1

)αt−1ηt/ηt−1

eηtλ(γt,ωt)−ηtλ(γ
k
t ,ωt)−η2

t /8 =
∑ 1

K
wk

t .

Now let us check that

lnwk
t = ηt

(

Lt − Lk
t

)

− ηt
8βt

t
∑

τ=1

βτητ . (15)

Indeed, for t = 0, this is trivial. Assume that it holds for wk
t−1. Then, taking the

logarithm of the update expression in line 10 of Algorithm 3 and substituting
lnwk

t−1, we get

lnwk
t =

αt−1ηt
ηt−1

lnwk
t−1 + ηt

(

λ(γt, ωt)− λ(γk
t , ωt)

)

− η2t
8

=
αt−1ηt
ηt−1

(

ηt−1

(

Lt−1 − Lk
t−1

)

− ηt−1

8βt−1

t−1
∑

τ=1

βτητ

)

+ηt
(

λ(γt, ωt)−λ(γk
t , ωt)

)

−η2t
8

= ηt
(

αt−1Lt−1 + λ(γt, ωt)− αt−1Lk
t−1 − λ(γk

t , ωt)
)

− ηt
8βt

t−1
∑

τ=1

βτητ − η2t
8

= ηt
(

Lt − Lk
t

)

− ηt
8βt

t
∑

τ=1

βτητ .

Condition (10) implies that wk
T ≤ K for all k and T , hence we get a loss

bound

LT ≤ Lk
T +

lnK

ηT
+

1

8βT

T
∑

t=1

βtηt . (16)

Recall that ηt = a
√

βt/Bt. To estimate
∑T

t=1 βtηt, we use the following
inequality (see Appendix A.1 for the proof).

Lemma 1. Let βt be any reals such that 1 ≤ β1 ≤ β2 ≤ . . .. Let BT =
∑T

t=1 βt.

Then, for any T , it holds

1

βT

T
∑

t=1

βt

√

βt

Bt
≤ 2

√

BT

βT
.

Then (16) implies

LT ≤ Lk
T +

lnK

a

√

BT

βT
+

2a

8

√

BT

βT
= Lk

T +

(

lnK

a
+

a

4

)

√

BT

βT
.

Choosing a = 2
√
lnK, we finally get

LT ≤ Lk
T +

√
lnK

√

BT

βT
.

10



3.3 A Bound with respect to ǫ-Best Expert

Algorithm 3 originates in the “Fake Defensive Forecasting” (FDF) algorithm
from [5, Theorem 9]. That algorithm is based on the ideas of defensive forecast-
ing [4], in particular, Hoeffding supermartingales [24], combined with the ideas
from an early version of the Weak Aggregating Algorithm [13]. However, our
analysis in Theorem 2 is completely different from [5], following the lines of [2,
Theorem 2.2] and [13].

In this subsection, we consider a direct extension of the FDF algorithm
from [5, Theorem 9] to the discounted case. Algorithm 5 becomes the FDF
algorithm when αt = 1.

Algorithm 5 Fake Defensive Forecasting Algorithm with Discounting

1: Initialize cumulative losses L0 = 0, Lk
0 := 0, k = 1, . . . ,K.

Set β1 = 1, B0 = 0.
2: for t = 1, 2, . . . do

3: Get discount αt−1 ∈ (0, 1]; update βt = βt−1/αt−1, Bt = Bt−1 + βt.
4: Compute ηt =

√

βt/Bt.
5: Get Experts’ predictions γk

t ∈ Γ, k = 1, . . . ,K.
6: Find γ ∈ Γ s.t. for all ω ∈ Ω ft(γ, ω) ≤ Ct,

where ft and Ct are defined by (17) and (18), respectively.
7: Output γt := γ.
8: Get ωt ∈ Ω.
9: Update Lt := αt−1Lt−1 + λ(γt, ωt).

10: Update Lk
t := αt−1Lk

t−1 + λ(γk
t , ωt), k = 1, . . . ,K.

11: end for.

Algorithm 5 in line 6 uses the function

ft(γ, ω) =
K
∑

k=1

1

K

∞
∑

j=1

c

j2
exp

(

jαt−1ηt(Lt−1 − Lk
t−1)−

j2ηt
2βt

t−1
∑

τ=1

βτητ

)

× exp

(

jηt(λ(γ, ω)− λ(γk
t , ω))−

j2η2t
2

)

(17)

and the constant

Ct =

K
∑

k=1

1

K

∞
∑

j=1

c

j2
exp

(

jαt−1ηt(Lt−1 − Lk
t−1)−

j2ηt
2βt

t−1
∑

τ=1

βτητ

)

, (18)

where 1/c =
∑∞

j=1
1
j2 .

Algorithm 5 is more complicated than Algorithm 3, and the loss bound we
get is weaker and holds for a narrower class of games. However, this bound
can be stated as a bound for ǫ-quantile regret introduced in [3]. Namely, let
Lǫ
t be any value such that for at least ǫK Experts their loss Lk

t after step t
is not greater than Lǫ

t . The ǫ-quantile regret is the difference between Lt and
Lǫ
t . For ǫ = 1/K, we can choose Lǫ

t = mink Lk
t ≤ Lk

t for all k = 1, . . . ,K, and
thus a bound in terms of the ǫ-quantile regret implies a bound in terms of Lk

t .
The value 1/ǫ plays the role of the “effective” number of experts. Algorithm 5
guarantees a bound in terms of Lǫ

t for any ǫ > 0, without the prior knowledge
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of ǫ, and in this sense the algorithm works for the unknown number of Experts
(see [5] for a more detailed discussion).

For Algorithm 5 we need to restrict the class of games we consider. The
game is called compact if the set Λ = {λ(γ, ·) ∈ R

Ω | γ ∈ Γ} is compact in the
standard topology of RΩ.

Theorem 3. Suppose that (Ω,Γ, λ) is a non-empty convex compact game, Ω is

finite, and λ(γ, ω) ∈ [0, 1] for all γ ∈ Γ and ω ∈ Ω. In the game played according

to Protocol 1, Learner has a strategy guaranteeing that, for any T and for any

ǫ > 0, it holds

LT ≤ Lǫ
T + 2

√

BT

βT
ln

1

ǫ
+ 7

√

BT

βT
, (19)

where βt = 1/(α1 · · ·αt−1) and BT =
∑T

t=1 βt.

Proof. The most difficult part of the proof is to show that one can find γ in line 6
of Algorithm 5. We do not do this here, but refer to [5]; the proof is literally the
same as in [5, Theorem 9] and is based on the supermartingale property of ft.
(The rest of the proof below also follows [5, Theorem 9]; the only difference is
in the definition of ft and Ct.)

Let us check that Ct ≤ 1 for all t. Clearly, C1 = 1. Assume that we
have Ct ≤ 1. This implies ft(γt, ωt) ≤ 1 due to the choice of γt, and thus
(ft(γt, ωt))

αtηt+1/ηt ≤ 1. Similarly to (11), we have αtηt+1/ηt ≤ 1. Since the
function x 7→ xα is concave for α ∈ (0, 1], x ≥ 0, we get

1 ≥
(

ft(γt, ωt)
)αtηt+1/ηt

=





K
∑

k=1

1

K

∞
∑

j=1

c

j2
exp

(

jηt(Lt − Lk
t )−

j2ηt
2βt

t
∑

τ=1

βτητ

)





αtηt+1/ηt

≥
K
∑

k=1

1

K

∞
∑

j=1

c

j2

(

exp

(

jηt(Lt − Lk
t )−

j2ηt
2βt

t
∑

τ=1

βτητ

))αtηt+1/ηt

=

K
∑

k=1

1

K

∞
∑

j=1

c

j2
exp

(

jαtηt+1(Lt − Lk
t )−

j2ηt+1

2βt+1

t
∑

τ=1

βτητ

)

= Ct+1 .

Thus, for each t we have ft(γt, ωt) ≤ 1, that is,

K
∑

k=1

1

K

∞
∑

j=1

c

j2
exp

(

jηt(Lt − Lk
t )−

j2ηt
2βt

t
∑

τ=1

βτητ

)

≤ 1 .

For any ǫ > 0, let us take any Lǫ
T such that for at least ǫK Experts their losses

Lk
T are smaller than or equal to Lǫ

T . Then we have

1 ≥
K
∑

k=1

1

K

∞
∑

j=1

c

j2
exp

(

jηt(Lt − Lk
t )−

j2ηt
2βt

t
∑

τ=1

βτητ

)
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≥ ǫ

∞
∑

j=1

c

j2
exp

(

jηt(Lt − Lǫ
t)−

j2ηt
2βt

t
∑

τ=1

βτητ

)

≥ cǫ

j2
exp

(

jηt(Lt − Lǫ
t)−

j2ηt
2βt

t
∑

τ=1

βτητ

)

for any natural j. Taking the logarithm and rearranging, we get

Lt ≤ Lǫ
t +

j

2βt

t
∑

τ=1

βτητ +
1

jηt
ln

j2

cǫ
.

Substituting ηt =
√

βt/Bt and using Lemma 1, we get

Lt ≤ Lǫ
t +

(

j +
2

j
ln j +

1

j
ln

1

ǫ
+

1

j
ln

1

c

)

√

Bt

βt
.

Letting j =
⌈

√

ln(1/ǫ)
⌉

+1 and using the estimates j ≤
√

ln(1/ǫ)+2, (ln j)/j ≤
2, (ln(1/ǫ))/j ≤

√

ln(1/ǫ), 1/j ≤ 1, and ln(1/c) = ln(π2/6) ≤ 1, we obtain the
final bound.

4 Regression with Discounted Loss

In this section we consider a task of regression, where Learner must predict
“labels” yt ∈ R for input instances xt ∈ X ⊆ R

n. The predictions proceed
according to Protocol 2. This task can be embedded into prediction with expert

Protocol 2 Competitive online regression

for t = 1, 2, . . . do

Reality announces xt ∈ X.
Learner announces γt ∈ Γ.
Reality announces yt ∈ Ω.

end for

advice if Learner competes with all functions x → y from some large class serving
as a pool of (imaginary) Experts.

4.1 The Framework and Linear Functions as Experts

Let the input space be X ⊆ R
n, the set of predictions be Γ = R, and the

set of outcomes be Ω = [Y1, Y2]. In this section we consider the square loss
λsq(γ, y) = (γ − y)2. Learner competes with a pool of experts Θ = R

n (treated
as linear functionals on R

n). Each individual expert is denoted by θ ∈ Θ and
predicts θ′xt at step t.

Let us take any distribution over the experts P (dθ). It is known from [19]
that (3) holds for the square loss with c = 1, η = 2

(Y2−Y1)2
:

∃γ ∈ Γ ∀y ∈ Ω = [Y1, Y2] (γ − y)2 ≤ −1

η
ln

(∫

Θ

e−η(θ′xt−y)2P (dθ)

)

. (20)
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Denote by X the matrix of size T × n consisting of the rows of the input
vectors x′

1, . . . , x
′
T . Let also WT = diag(β1/βT , β2/βT , . . . , βT /βT ), i.e., WT is

a diagonal matrix T × T . In a manner similar to [22], we prove the following
upper bound for Learner’s loss.

Theorem 4. For any a > 0, there exists a prediction strategy for Learner in

Protocol 2 achieving, for every T and for any linear predictor θ ∈ R
n,

T
∑

t=1

βt

βT
(γt − yt)

2 ≤
T
∑

t=1

βt

βT
(θ′xt − yt)

2

+ a‖θ‖2 + (Y2 − Y1)
2

4
ln det

(

X ′WTX

a
+ I

)

. (21)

If, in addition, ‖xt‖∞ ≤ Z for all t, then

T
∑

t=1

βt

βT
(γt − yt)

2 ≤
T
∑

t=1

βt

βT
(θ′xt − yt)

2

+ a‖θ‖2 + n(Y2 − Y1)
2

4
ln

(

Z2

a

∑T
t=1 βt

βT
+ 1

)

. (22)

In the undiscounted case (αt = 1 for all t), the bounds in the theorem
coincide with the bounds for the Aggregating Algorithm for Regression [22,
Theorem 1] with Y2 = Y and Y1 = −Y , since, as remarked after Theorem 2,

βt = 1 and
(

∑T
t=1 βt

)

/βT = T in the undiscounted case. Recall also that in

the case of the exponential discounting (αt = α ∈ (0, 1)) we have βt = α−t+1

and
(

∑T
t=1 βt

)

/βT = (1−αT−1)/(1−α) ≤ 1/(1−α). Thus, for the exponential

discounting bound (22) becomes

T
∑

t=1

αT−t(γt − yt)
2 ≤

T
∑

t=1

αT−t(θ′xt − yt)
2

+ a‖θ‖2 + n(Y2 − Y1)
2

4
ln

(

Z2(1− αT−1)

a(1 − α)
+ 1

)

. (23)

4.2 Functions from an RKHS as Experts

In this section we apply the kernel trick to the linear method to compete with
wider sets of experts. Each expert f ∈ F predicts f(xt). Here F is a reproducing
kernel Hilbert space (RKHS) with a positive definite kernel k : X×X → R. For
the definition of RKHS and its connection to kernels see [17]. Each kernel defines
a unique RKHS. We use the notation KT = {k(xi, xj)}i,j=1,...,T for the kernel
matrix for the input vectors at step T . In a manner similar to [7], we prove the
following upper bound on the discounted square loss of Learner.

Theorem 5. For any a > 0, there exists a strategy for Learner in Protocol 2
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achieving, for every positive integer T and any predictor f ∈ F ,

T
∑

t=1

βt

βT
(γt − yt)

2 ≤
T
∑

t=1

βt

βT
(f(xt)− yt)

2

+ a‖f‖2 + (Y2 − Y1)
2

4
ln det

(√
WTKT

√
WT

a
+ I

)

. (24)

Corollary 1. Assume that c2F = supx∈X
k(x, x) < ∞ for the RKHS F . Un-

der the conditions of Theorem 5, given in advance any constant T such that
(

∑T
t=1 βt

)

/βT ≤ T , one can choose parameter a such that the strategy in The-

orem 5 achieves for any f ∈ F
T
∑

t=1

βt

βT
(γt−yt)

2 ≤
T
∑

t=1

βt

βT
(f(xt)−yt)

2+

(

(Y2 − Y1)
2

4
+ ‖f‖2

)

cF
√
T . (25)

where c2F = supx∈X
k(x, x) < ∞ characterizes the RKHS F .

Proof. The determinant of a symmetric positive definite matrix is upper bounded
by the product of its diagonal elements (see Chapter 2, Theorem 7 in [1]), and
thus we have

ln det

(

I +

√
WTKT

√
WT

a

)

≤ T ln






1 +

c2F

(

∏T
t=1

βt

βT

)1/T

a







≤ T
c2F
a

(

T
∏

t=1

βt

βT

)1/T

≤ T
c2F
aβT

∑T
t=1 βt

T
≤ c2FT

a

(we use ln(1 + x) ≤ x and the inequality between the geometric and arithmetic
means). Choosing a = cF

√
T , we get bound (25) from (24).

Recall again that
(

∑T
t=1 βt

)

/βT = (1−αT−1)/(1−α) ≤ 1/(1−α) in the case

of the exponential discounting (αt = α ∈ (0, 1)), and we can take T = 1/(1−α).

In the undiscounted case (αt = 1), we have
(

∑T
t=1 βt

)

/βT = T , so we need

to know the number of steps in advance. Then, bound (25) matches the bound
obtained in [23, the displayed formula after (33)]. If we do not know an upper
bound T in advance, it is still possible to achieve a bound similar to (25) using
the Aggregating Algorithm with Discounting to merge Learner’s strategies from
Theorem 5 with different values of parameter a, in the same manner as in [23,
Theorem 3].

Corollary 2. Assume that c2F = supx∈X
k(x, x) < ∞ for the RKHS F . Under

the conditions of Theorem 5, there exists a strategy for Learner in Protocol 2

achieving, for every positive integer T and any predictor f ∈ F ,

T
∑

t=1

βt

βT
(γt − yt)

2 ≤
T
∑

t=1

βt

βT
(f(xt)− yt)

2 + cF‖f‖(Y2 − Y1)

√

∑T
t=1 βt

βT

+
(Y2 − Y1)

2

2
ln

∑T
t=1 βt

βT
+ ‖f‖2 + (Y2 − Y1)

2 ln

(

cF (Y2 − Y1)

‖f‖ + 2

)

. (26)
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Proof. Let us take the strategies from Theorem 5 for a = 1, 2, 3, . . . and pro-
vide them as Experts to the Aggregating Algorithm with Discounting, with
the square loss function, η = 2/(Y2 − Y1)

2 and initial Experts’ weights propro-
tional to 1/a2. Then Theorem 1 (extended as described in Remark at the end
of Section 2) guarantees that the extra loss of the aggregated strategy (com-
pared to the strategy from Theorem 5 with parameter a) is not greater than
(Y2−Y1)

2

2 ln a2

c , where c =
∑K

k=1 1/k
2. On the other hand, for the strategy from

Theorem 5 with parameter a similarly to the proof of Corollary 1 we get

T
∑

t=1

βt

βT
(γt − yt)

2 ≤
T
∑

t=1

βt

βT
(f(xt)− yt)

2 + a‖f‖2 + c2F(Y2 − Y1)
2

4a

∑T
t=1 βt

βT
.

Adding (Y2−Y1)
2

2 ln a2

c to the right-hand side and choosing

a =









cF(Y2 − Y1)

2‖f‖

√

∑T
t=1 βt

βT









,

we get the statement after simple estimations.

4.3 Proofs of Theorems 4 and 5

Let us begin with several technical lemmas from linear algebra. The proofs of
some of these lemmas are moved to Appendix A.1.

Lemma 2. Let A be a symmetric positive definite matrix of size n × n. Let

θ, b ∈ R
n, c be a real number, and Q(θ) = θ′Aθ + b′θ + c. Then

∫

Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

,

where Q0 = minθ∈Rn Q(θ).

The proof of this lemma can be found in [9, Theorem 15.12.1].

Lemma 3. Let A be a symmetric positive definite matrix of size n × n. Let

b, z ∈ R
n, and

F (A, b, z) = min
θ∈Rn

(θ′Aθ + b′θ + z′θ)− min
θ∈Rn

(θ′Aθ + b′θ − z′θ) .

Then F (A, b, z) = −b′A−1z.

Lemma 4. Let A be a symmetric positive definite matrix of size n × n. Let

θ, b1, b2 ∈ R
n, c1, c2 be real numbers, and Q1(θ) = θ′Aθ + b′1θ + c1, Q2(θ) =

θ′Aθ + b′2θ + c2. Then

∫

Rn e−Q1(θ)dθ
∫

Rn e−Q2(θ)dθ
= ec2−c1−

1
4
(b2+b1)

′A−1(b2−b1) .

The previous three lemmas were implicitly used in [22] to derive a bound on
the cumulative undiscounted square loss of the algorithm competing with linear
experts.
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Lemma 5. For any matrix B of size n×m, any matrix C of size m×n, and any

real number a such that the matrices aIm +CB and aIn +BC are nonsingular,

it holds

B(aIm + CB)−1 = (aIn +BC)−1B , (27)

where In, Im are the unit matrices of sizes n× n and m×m, respectively.

Proof. Note that this is equivalent to (aIn +BC)B = B(aIm + CB).

Lemma 6. For matrix B of size n×m, any matrix C of size m× n, and any

real number a, it holds

det(aIn +BC) = det(aIm + CB) , (28)

where In, Im are the unit matrices of sizes n× n and m×m, respectively.

4.3.1 Proof of Theorem 4.

We take the Gaussian initial distribution over the experts with a parameter
a > 0:

P0(dθ) =
(aη

π

)n/2

e−aη‖θ‖2

dθ.

and use “Algorithm 2 with infinitely many Experts”. Repeating the derivations
from Subsection 2.2, we obtain the following analogue of (7):

(aη

π

)n/2
∫

Θ

e
η
(

∑

T
t=1

βt
βT

(γt−yt)
2−

∑

T
t=1

βt
βT

(θ′xt−yt)
2
)

e−aη‖θ‖2

dθ ≤ 1.

The simple equality

T
∑

t=1

βt

βT
(θ′xt − yt)

2 + a‖θ‖2 = θ′(aI +X ′WTX)θ − 2

T
∑

t=1

βt

βT
ytθ

′xt +

T
∑

t=1

βt

βT
y2t

(29)
shows that the integral can be evaluated with the help of Lemma 2:

(aη

π

)n/2
∫

Θ

e
−η

(

∑

T
t=1

βt
βT

(θ′xt−yt)
2+a‖θ‖2

)

dθ

=
( a

π

)n/2

e
−ηminθ

(

∑

T
t=1

βt
βT

(θ′xt−yt)
2+a‖θ‖2

)

πn/2

√

det(aI +X ′WTX)
.

We take the natural logarithms of both parts of the bound and using the value
η = 2

(Y2−Y1)2
obtain (21). The determinant of a symmetric positive definite

matrix is upper bounded by the product of its diagonal elements (see Chapter
2, Theorem 7 in [1]):

det

(

X ′WTX

a
+ I

)

≤
(

Z2
∑T

t=1 βt

aβT
+ 1

)n

,

and thus we obtain (22).
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4.3.2 Proof of Theorem 5.

We must prove that for each T and each sequence (x1, y1, . . . , xT , yT ) ∈ (X ×
R)T the guarantee (24) is satisfied. Fix T and (x1, y1, . . . , xT , yT ). Fix an
isomorphism between the linear span of kx1

, . . . , kxT
obtained for the Riesz

Representation theorem and R
T̃ , where T̃ ≤ T is the dimension of the linear span

of kx1
, . . . , kxT

. Let x̃1, . . . , x̃T ∈ R
T̃ be the images of kx1

, . . . , kxT
, respectively,

under this isomorphism. We have then k(·, xi) = 〈·, x̃i〉 for any xi.
We apply the strategy from Theorem 4 to x̃1, . . . , x̃T . The predictions of

the strategies are the same due to Proposition 1 below. Any expert θ ∈ R
T̃ in

bound (21) can be represented as

θ =

T
∑

i=1

cix̃i =

T
∑

i=1

cik(·, xi)

for some ci ∈ R. Thus the experts’ predictions are θ′x̃t =
∑T

i=1 cik(xt, xi), and

the norm is ‖θ‖2 =
∑T

i,j=1 cicjk(xi, xj).

Denote by X̃ the T×T̃ matrix consisting of the rows of the vectors x̃′
1, . . . , x̃

′
T .

From Lemma 6 we have

det

(

X̃ ′WT X̃

a
+ I

)

= det

(√
WT X̃X̃ ′

√
WT

a
+ I

)

.

Thus using KT = X̃X̃ ′ we obtain the upper bound

T
∑

t=1

βt

βT
(γt − yt)

2 ≤
T
∑

t=1

βt

βT

(

T
∑

i=1

cik(xt, xi)− yt

)2

+ a

T
∑

i,j=1

cicjk(xi, xj) +
(Y2 − Y1)

2

4
ln det

(√
WTKT

√
WT

a
+ I

)

for any ci ∈ R, i = 1, . . . , T . By the Representer theorem (see Theorem 4.2 in

[17]) the minimum of
∑T

t=1
βt

βT
(f(xt)−yt)

2+a‖f‖2 over all f ∈ F is achieved on
one of the linear combinations from the bound obtained above. This concludes
the proof.

4.4 Regression Algorithms

In this subsection we derive explicit form of the prediction strategies for Learner
used in Theorems 4 and 5.

4.4.1 Strategy for Theorem 4.

In [22] Vovk suggests for the square loss the following substitution function
satisfying (5):

γT =
Y2 + Y1

2
− gT (Y2)− gT (Y1)

2(Y2 − Y1)
. (30)

It allows us to calculate gT with unnormalized weights:

gT (y) = −1

η

(

ln

∫

Θ

e
−η

(

θ′AT θ−2θ′(bT−1+yxT )+
(

∑T−1

t=1

βt
βT

y2
t+y2

))

dθ

)
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for any y ∈ Ω = [Y1, Y2] (here we use the expansion (29)), where

AT = aI +

T−1
∑

t=1

βt

βT
xtx

′
t + xTx

′
T = aI +X ′WTX,

and bT−1 =
∑T−1

t=1
βt

βT
ytxt. The direct calculation of gT is inefficient: it requires

numerical integration. Instead, we notice that

γT =
Y2 + Y1

2
− gT (Y2)− gT (Y1)

2(Y2 − Y1)

=
Y2 + Y1

2
− 1

2(Y2 − Y1)η
ln

∫

Θ
e
−η

(

θ′AT θ−2θ′(bT−1+Y1xT )+
(

∑T−1

t=1

βt
βT

y2
t+Y 2

1

))

dθ
∫

Θ
e
−η

(

θ′AT θ−2θ′(bT−1+Y2xT )+
(

∑T−1

t=1

βt
βT

y2
t+Y 2

2

))

dθ

=
Y2 + Y1

2
− 1

2(Y2 − Y1)η
ln e

η
(

Y 2
2 −Y 2

1 −(bT−1+(Y2+Y1
2 )xT )

′

A−1

T (Y2−Y1
2

xT )
)

=

(

bT−1 +

(

Y2 + Y1

2

)

xT

)′

A−1
T xT , (31)

where the third equality follows from Lemma 4.
The strategy which predicts according to (31) requires O(n3) operations per

step. The most time-consuming operation is the inverse of the matrix AT . Note
that for the undiscounted case the inverse could be computed incrementally
using the Sherman-Morrison formula, which leads to O(n2) operations per step.

4.4.2 Strategy for Theorem 5.

We use following notation. Let

kT be the last column of the matrix KT ,kT = {k(xi, xT )}Ti=1,
YT be the column vector of the outcomes YT = (y1, . . . , yT )

′.
(32)

When we write Z = (V;Y) or Z = (V′;Y′)′ we mean that the column vector
Z is obtained by concatenating two column vectors V,Y vertically or V′,Y′

horizontally.
As it is clear from the proof of Theorem 5, we need to prove that the strategy

for this theorem is the same as the strategy for Theorem 4 in the case when the
kernel is the scalar product.

Proposition 1. The predictions (31) can be represented as

γT =

(

YT−1;
Y2 + Y1

2

)′
√

WT

(

aI +
√

WTKT

√

WT

)−1√

WTkT (33)

for the scalar product kernel k(x, y) = 〈x, y〉, the unit T×T matrix I, and a > 0.

Proof. For the scalar product kernel we have we haveKT = X ′X and
√
WTkT =√

WTXxT . By Lemma 5 we obtain

(

aI +
√

WTXX ′
√

WT

)−1√

WTXxT =
√

WTX
(

aI +X ′WTX
)−1

xT .
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It is easy to see that

(

YT−1;
Y2 + Y1

2

)′

WTX =

(

T−1
∑

t=1

βt

βT
ytxt +

(

Y2 + Y1

2

)

xT

)′

and

X ′WTX =

T−1
∑

t=1

βt

βT
xtx

′
t + xTx

′
T .

Thus we obtain the formula (31) from (33).
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A Appendix

A.1 Proofs of Technical Lemmas

Proof of Lemma 1. For T = 1 the inequality is trivial. Assume it for T − 1.
Then

1

βT

T
∑

t=1

βt

√

βt

Bt
=

βT−1

βT

(

1

βT−1

T−1
∑

t=1

βt

√

βt

Bt

)

+

√

βT

BT

≤ 2
βT−1

βT

√

BT−1

βT−1
+

√

βT

BT
= 2

√

βT−1

βT

√

BT−1

βT
+

√

βT

BT

≤ 2

√

BT−1

βT
+

√

βT

BT−1 + βT
≤ 2

√

BT−1 + βT

βT
= 2

√

BT

βT
.

The first inequality is by the induction assumption, and the second inequal-
ity holds since βT−1 ≤ βT . The last inequality is 2

√
x/

√
y +

√
y/

√
x+ y ≤

2
√
x+ y/

√
y, which holds for any positive x and y. (Indeed, it is equivalent to

2
√
x
√
x+ y + y ≤ 2(x+ y) and 2

√
x
√
x+ y ≤ x+ y + x.)

Proof of Lemma 3. This lemma is proven by taking the derivative of the quadratic

forms in F by θ and calculating the minimum: minθ∈Rn(θ′Aθ+c′θ) = − (A−1c)′

4 c
for any c ∈ R

n (see Theorem 19.1.1 in [9]).

Proof of Lemma 4. After evaluating each of the integrals using Lemma 2 the
ratio is represented as follows:

∫

Rn e−Q1(θ)dθ
∫

Rn e−Q2(θ)dθ
= eminθ∈Rn Q2(θ)−minθ∈Rn Q1(θ) .

The difference of minimums can be calculated using Lemma 3 with b = b2+b1
2

and z = b2−b1
2 :

min
θ∈Rn

Q2(θ) − min
θ∈Rn

Q1(θ) = c2 − c1 −
1

4
(b2 + b1)

′A−1(b2 − b1) .
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Proof of Lemma 6. Consider the product of block matrices:
(

In B
0 Im

)(

aIn + BC 0
−C aIm

)

=

(

aIn aB
−C aIm

)

=

(

aIn 0
−C aIm + CB

)(

In B
0 Im

)

Taking the determinant of both sides, and using formulas for the determinant
of a block matrix, we get the statement of the lemma.

A.2 An Alternative Derivation of Regression Algorithms

Using Defensive Forecasting

In this section we derive the upper bound and the algorithms using a different
technique, the defensive forecasting [4].

A.2.1 Description of the Proof Technique

We denote the predictions of any expert θ (from a finite set or following strategies
from Section 4) by ξθt . For each step T and each expert θ we define the function

Qθ
t : Γ× Ω → [0,∞)

Qθ
t (γ, y) := eη(λ(γ,y)−λ(ξθt ,y)).

(34)

We also define the mixture function

QT :=

∫

Θ

T−1
∏

t=1

(

Qθ
t

)

∏T−1

i=t
αi

Qθ
TP0(dθ)

with some initial weights distribution P0(dθ) on the experts. Here η is a learning
rate coefficient; it will be defined later in the section. We define the correspon-
dence

γp = p(Y2 − Y1) + Y1, p ∈ [0, 1], (35)

between [0, 1] and Learner’s predictions γp ∈ Γ.
Let us introduce the notion of a defensive property. We use the notation

δΩ := {Y1, Y2}. Assume that there is a fixed bijection between the space P(δΩ)
of all probability measures on δΩ and the set [0, 1]. Each pπ ∈ [0, 1] corresponds
to some unique π ∈ P(δΩ).

Definition 1. A sequence R of functions R1, R2, . . . such that Rt : Γ × Ω →
(−∞,∞] is said to have the defensive property if, for any T and any πT ∈ P(δΩ),
it holds that

EπT
RT (γ

pπT
, y) ≤ 1, (36)

where Eπ is the expectation with respect to a measure π.

A sequence R is called forecast-continuous if, for all T and all y ∈ Ω, all the
functions RT (γ, y) are continuous in γ.

We now prove that Qθ
t has the defensive property.

Lemma 7. For η ∈
(

0, 2
(Y2−Y1)2

]

Qθ
t = eη((γt−yt)

2−(ξθt −yt)
2)

is a forecast-continuous sequence having the defensive property.
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Proof. The continuity is obvious. We need to prove that

peη((γ−Y2)
2−(ξθt−Y2)

2) + (1− p)eη((γ−Y1)
2−(ξθt−Y1)

2) ≤ 1 (37)

holds for all γ ∈ [Y1, Y2] and η ∈
(

0, 2
(Y2−Y1)2

]

. Indeed, for any γ ∈ R \ [Y1, Y2]

there exists γ̃ ∈ {Y1, Y2} such that (γ̃ − y)2 ≤ (γ − y)2 for any y ∈ Ω. Since the
exponent function is increasing, the inequality (37) for any γ ∈ R will follow.

We use the correspondence (35), ξθt = q(Y2 − Y1) + Y1 for some q ∈ R, and
µ = η(Y2 − Y1)

2. Then we have to show that for all p ∈ [0, 1], q ∈ R and

η ∈
(

0, 2
(Y2−Y1)2

]

peµ((1−p)2−(1−q)2) + (1 − p)eµ(p
2−q2) ≤ 1.

If we substitute q = p+ x, the last inequality will reduce to

pe2µ(1−p)x + (1− p)e−2µpx ≤ eµx
2

, ∀x ∈ R.

Applying Hoeffding’s inequality (see [12]) to the random variableX that is equal
to 1 with probability p and to 0 with probability (1− p), we obtain

peh(1−p) + (1− p)e−hp ≤ eh
2/8

for any h ∈ R. With the substitution h := 2µx it reduces to

pe2µ(1−p)x + (1 − p)e−2µpx ≤ eµ
2x2/2 ≤ eµx

2

,

where the last inequality holds if µ ≤ 2. The last inequality is equivalent to
η ≤ 2

(Y2−Y1)2
, which we assumed.

We will further use the maximum value for η, η = 2
(Y2−Y1)2

.

The following lemma states the most important for us property of the se-
quences having the defensive property originally proven in [15].

Lemma 8. Let R be a forecast-continuous sequence having the defensive prop-

erty. For any T there exists p ∈ [0, 1] such that for all y ∈ δΩ

RT (γ
p, y) ≤ 1.

Proof. Define a function ft : δΩ× [0, 1] → (−∞,∞] by

ft(p, y) = Rt(γ
p, y)− 1.

Since R is forecast-continuous and the correspondence (35) is continuous, ft(y, p)
is continuous in p. Since R has the defensive property, we have

pf(p, Y2) + (1− p)f(1− p, Y1) ≤ 0 (38)

for all p ∈ [0, 1]. In particular, f(0, Y1) ≤ 0 and f(1, Y2) ≤ 0.
Our goal is to show that for some p ∈ [0, 1] we have f(p, Y1) ≤ 0 and

f(p, Y2) ≤ 0. If f(0, Y2) ≤ 0, we can take p = 0. If f(1, Y1) ≤ 0, we can take
p = 1. Assume that f(0, Y2) > 0 and f(1, Y1) > 0. Then the difference

f(p) := f(p, Y2)− f(p, Y1)

is positive for p = 0 and negative for p = 1. By the intermediate value theorem,
f(p) = 0 for some p ∈ (0, 1). By (38) we have f(p, Y2) = f(p, Y1) ≤ 0.
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This lemma shows that at each step there is a probability measure (corre-
sponding to p ∈ [0, 1]) such that the sequence having the defensive property
remains less than one for any outcome.

The proof of the upper bounds for Defensive Forecasting is based on the
following argument.

Lemma 9. Assume that the sequence of functions Qθ
t is forecast-continuous

and has the defensive property. Then the mixtures Qt as functions of two vari-

ables y, γ at the step t form a forecast-continuous sequence having the defensive

property.

Proof. The continuity easily follows from the continuity of Qθ
t and the in-

tegration functional. We proceed by induction in T . For T = 0 we have
EπQ0 = Eπ1 ≤ 1. For T > 0 assume that for any y1, . . . , yT−2 ∈ δΩ and
any γ1, . . . , γT−2 ∈ Γ

EπQT−1(y1, γ1, . . . , yT−2, γT−2, y, γ
pπ

) ≤ 1

for any π ∈ P(δΩ). Then by Lemma 8 there exists πT−1 ∈ P(δΩ) such that

QT−1(y1, γ1, . . . , yT−2, γT−2, y, γ
pπT−1

) =

∫

Θ

T−2
∏

t=1

(

Qθ
t

)

∏T−2

i=t
αi

Qθ
T−1P0(dθ) ≤ 1

(39)
for any y ∈ δΩ. We denote γT−1 = γpπT−1

and fix any yT−1 ∈ Ω. We obtain

EπQT (y1, γ1, . . . , yT−1, γT−1, y, γ
pπ

)

= Eπ

∫

Θ

T−1
∏

t=1

(

Qθ
t (γt, yt)

)

∏T−1

i=t
αi

Qθ
T (γ

pπ

, y)P0(dθ)

=

∫

Θ

T−1
∏

t=1

(

Qθ
t (γt, yt)

)

∏T−1

i=t
αi
(

EπQ
θ
T (γ

pπ

, y)
)

P0(dθ)

≤
∫

Θ

T−1
∏

t=1

(

Qθ
t (γt, yt)

)

∏T−1

i=t
αi

P0(dθ)

=

∫

Θ

(

T−2
∏

t=1

(

Qθ
t

)

∏T−2

i=t
αi

Qθ
T−1

)αT−1

P0(dθ)

≤
(

∫

Θ

T−2
∏

t=1

(

Qθ
t

)

∏T−2

i=t
αi

Qθ
T−1P0(dθ)

)αT−1

≤ 1.

The first inequality holds because EπQ
θ
T (γ

pπ

, y) ≤ 1 for any π ∈ P(δΩ). The
penultimate inequality holds due to the concavity of the function xα with x > 0,
α ∈ [0, 1]. The last inequality holds due to (39). This completes the proof.

By Lemma 8 at each step t there exists a prediction γt such that Qt is less
than one. Now we only need to generalize Lemma 8 for the case when the
outcome set is the full interval: Ω = [Y1, Y2].

Lemma 10. If γT is such that QT (y1, γ1, . . . , yT−1, γT−1, y, γT ) ≤ 1 for all

y ∈ {Y1, Y2}, then QT (y1, γ1, . . . , yT−1, γT−1, y, γT ) ≤ 1 for all y ∈ [Y1, Y2].

23



Proof. Note that any y ∈ [Y1, Y2] can be represented as y = uYT,2 + (1− u)YT,1

for some u ∈ [0, 1]. Thus

(ζ1 − y)2 − (ζ2 − y)2 = ζ21 − ζ22 − 2y(ζ1 − ζ2)

= u[(ζ1 − Y2)
2 − (ζ2 − Y2)

2] + (1− u)[(ζ1 − Y1)
2 − (ζ2 − Y1)

2]

for any ζ1, ζ2 ∈ R. Due to the convexity of the exponent function we have for
any η ≥ 0

eη[(ζ1−y)2−(ζ2−y)2] ≤ ueη[(ζ1−Y2)
2−(ζ2−Y2)

2] + (1− u)eη[(ζ1−Y1)
2−(ζ2−Y1)

2].

Thus
Qθ

T (γT , y) ≤ uQθ
T (γT , Y2) + (1− u)Qθ

T (γT , Y1)

and therefore

QT (y1, γ1, . . . , yT−1, γT−1, y, γT ) ≤ uQT (y1, γ1, . . . , yT−1, γT−1, Y2, γT )

+ (1− u)QT (y1, γ1, . . . , yT−1, γT−1, Y1, γT ) ≤ 1

where the second inequality follows from the condition of the lemma.

Finally we obtain

∫

Θ

T−1
∏

t=1

eη
∏T−1

i=t
αi(λ(γt,yt)−λ(ξθt ,yt))eη(λ(γT ,yT )−λ(ξθT ,yT ))P0(dθ) ≤ 1. (40)

A.2.2 Derivation of the Prediction Strategies Using Defensive Fore-

casting

Lemma 8 describes an explicit strategy of making predictions. This strategy
relies on the search for a fixed point and may become very inefficient especially
for the cases of infinite number of experts. Therefore we develop a more efficient
strategies for each of our problems.

We first note that the strategy in Lemma 8 solves

∫

Θ

T−1
∏

t=1

eη
∏T−1

i=t
αi(λ(γt,yt)−λ(ξθt ,yt))eη(λ(γ,Y2)−λ(ξθT ,Y2))P0(dθ)

−
∫

Θ

T−1
∏

t=1

eη
∏T−1

i=t
αi(λ(γt,yt)−λ(ξθt ,yt))eηT (λ(γ,Y1)−λ(ξθT ,Y1))P0(dθ) = 0

in γ ∈ [Y1, Y2] if the trivial predictions are not satisfactory (the integral becomes
a sum in the case of finite number of experts). We define

gT (y) := −1

η
ln

∫

Θ

e−ηλ(ξθT ,y)
T−1
∏

t=1

e−η
∏T−1

i=t
αiλ(ξ

θ
t ,yt)P0(dθ) (41)

for any y ∈ Ω. Rewriting the equation for the root we have

eη(λT (γ,Y2)−gT (Y2)) − eη(λT (γ,Y1)−gT (Y1)) = 0
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Moving the second exponent to the right-hand side and taking logη of both sides
we obtain

λ(γ, Y2)− gT (Y2) = λ(γ, Y1)− gT (Y1). (42)

For the square loss we can solve (42) in γ:

γ =
Y2 + Y1

2
− g(Y2)− g(Y1)

2(Y2 − Y1)
. (43)

This formula for predictions is equivalent to (30).
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