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Abstract

Iterative learning is a model of language learning from positive data, due to
Wiehagen. When compared to a learner in Gold’s original model of language
learning from positive data, an iterative learner can be thought of as memory-
limited . However, an iterative learner can memorize some input elements by
coding them into the syntax of its hypotheses. A main concern of this paper is:
to what extent are such coding tricks necessary?

One means of preventing some such coding tricks is to require that the hy-
pothesis space used be free of redundancy, i.e., that it be 1-1. In this context,
we make the following contributions. By extending a result of Lange & Zeug-
mann, we show that many interesting and non-trivial classes of languages can be
iteratively identified using a Friedberg numbering as the hypothesis space. (Re-
call that a Friedberg numbering is a 1-1 effective numbering of all computably
enumerable sets.) An example of such a class is the class of pattern languages
over an arbitrary alphabet. On the other hand, we show that there exists an
iteratively identifiable class of languages that cannot be iteratively identified
using any 1-1 effective numbering as the hypothesis space.

We also consider an iterative-like learning model in which the computational
component of the learner is modeled as an enumeration operator , as opposed
to a partial computable function. In this new model, there are no hypotheses,
and, thus, no syntax in which the learner can encode what elements it has or
has not yet seen. We show that there exists a class of languages that can be
identified under this new model, but that cannot be iteratively identified. On
the other hand, we show that there exists a class of languages that cannot be
identified under this new model, but that can be iteratively identified using a
Friedberg numbering as the hypothesis space.
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1. Introduction

Iterative learning (It-learning, Definition 1(a)) is a model of language learn-
ing from positive data, due to Wiehagen [Wie76]. Like many models based on
positive data, the It-learning model involves a learner that is repeatedly fed
elements drawn from {#} and from some unknown target language L ⊆ N,
where N is the set of natural numbers, {0, 1, 2, ...}.3 After being fed each such
element, the learner outputs a hypothesis (provided that the learner does not
diverge). The learner is said to identify the target language L iff there is some
point from whence on the learner outputs always the same hypothesis, and that
hypothesis corresponds to L. Furthermore, the learner is said to identify a class
of languages L iff the learner identifies each L ∈ L when fed the elements of L
(and possibly #).

In the It-learning model, the learner itself is modeled as a triple.

• The first element of the triple is a two-place partial computable function,
whose arguments are, respectively, the learner’s most recently output hy-
pothesis, and the next input element.

• The second element of the triple is a preliminary hypothesis, i.e., the
hypothesis output by the learner before being fed any input.

• The third element of the triple is a hypothesis space. The hypothesis
space determines the language that corresponds to each of the learner’s
hypotheses. Formally, a hypothesis space is a numbering (Xj)j∈N of some
collection of subsets of N, and that is effective in the sense that the two-
place predicate λj, x [x ∈ Xj ] is partial computable.4

It-learning is a special case of Gold’s original model of language learning from
positive data [Gol67]. In Gold’s original model, the learner is provided access
to all previously seen input elements, in addition to the next input element.
In this sense, a learner in Gold’s model can be thought of as memorizing all
previously seen input elements. When compared to learners in Gold’s model,
iterative learners are restricted in terms of the classes of languages that they
can identify.5 In this sense, the memory-limited aspect of iterative learners is a
true restriction, and not a mere superficial difference in definitions.

3The symbol ‘#’ is pronounced “pause”. The inclusion of # in the model allows the target
language L to be empty, i.e., in such a case, the learner is repeatedly fed #.

4Not-necessarily-effective hypothesis spaces have also been considered [dBY10]. However,
such hypothesis spaces are not needed herein. For the remainder, we use the terms hypothesis
space and effective numbering interchangeably.

5Many variants of the It-learning model have been considered, and have also been shown
to be restricted in this sense [LZ96, CCJS07, JLMZ10].
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This does not however mean that iterative learners are memory-less. In
particular, an iterative learner can memorize some input elements by employing
coding tricks, which we define (informally) as follows.

• A coding trick is any use by an iterative learner of the syntax of a hypoth-
esis to determine what elements that learner has or has not yet seen.

The following is an example. Suppose that an iterative learner
(M,p, (Xj)j∈N) identifies a class of languages L. Further suppose that one
desires a learner that identifies the class L ′, where

L ′ = L ∪ {L ∪ {0} | L ∈ L}. (1)

Such a learner (M ′, p′, (Yk)k∈N) may be obtained as follows. Let (Yk)k∈N be
such that, for each j:

Y2j = Xj ; Y2j+1 = Xj ∪ {0}. (2)

Then, let M ′ be such that, for each x ∈ (N ∪ {#})− {0}:

M ′(2j, x) = 2M(j, x);

M ′(2j + 1, x) = 2M(j, x) + 1;

M ′(2j, 0) = 2M(j, 0) + 1;

M ′(2j + 1, 0) = 2M(j, 0) + 1.
(3)

It is easily seen that (M ′, 2p, (Yk)k∈N) iteratively identifies L ′. Intuitively, M ′

simulates M , while using the least-significant bit of each hypothesis to encode
whether or not M ′ has seen a 0. (Note the switch from even to odd hypotheses
in the upper-right of (3).) Further note that, if L already contains languages
for which 0 is a member, then there is redundancy in the hypothesis space
(Yk)k∈N. In particular, if 0 ∈ Xj , then Y2j = Y2j+1. For such hypotheses, the
least-significant bit affects only their syntax, and not their semantics.

This example demonstrates how coding tricks can at least facilitate the iden-
tification of a class of languages. A main concern of this paper is: to what extent
are such coding tricks necessary?

One approach to preventing some such coding tricks is to require that the hy-
pothesis space be free of redundancy, i.e., that it be 1-1. One means of doing this
is to require that the hypothesis space be a Friedberg numbering [Fri58, Kum90].
A Friedberg numbering is a 1-1 effective numbering of all computably enumer-
able (ce) subsets of N. The use of such numberings as hypothesis spaces was
considered by Jain & Stephan [JS08].6 They observed, for example, that Fin ,
the collection of all finite subsets of N, cannot be iteratively identified using a
Friedberg numbering as the hypothesis space [JS08, Remark 25]. For the re-
mainder, to FrIt-identify a class of languages L shall mean to iteratively identify
L using a Friedberg numbering as the hypothesis space (see Definition 1(b)).

6Freivalds, et al. [FKW82] considered the use of Friedberg numberings as hypothesis spaces
in the context of function learning.
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Our first main result is to show that, despite this observation of Jain &
Stephan, many interesting and non-trivial classes can be FrIt-identified. More
specifically, we extend a result of Lange & Zeugmann [LZ96, Theorem 12] by
showing that, for each class L, if there exists a single hypothesis space witnessing
that L is both uniformly decidable and computably finitely thick, then L can be
FrIt-identified (Theorem 6). By comparison, Lange & Zeugmann showed that
such a class can be It-identified.

We delay the definitions of the terms uniformly decidable and computably
finitely thick to Section 3. In the meantime, however, we mention one significant
application of our result. A pattern language [Ang80] is a type of language with
applications to molecular biology (see, e.g., [SSS+94]). Furthermore, the pattern
languages naturally form classes that are It-identifiable by Lange & Zeugmann’s
result,7 and, thus, are FrIt-identifiable, by ours.

We briefly recall the definition of a pattern language. Suppose that Σ is
an alphabet, i.e., a non-empty, finite set of symbols. A pattern over Σ is a
finite string whose symbols are drawn from Σ, and from some infinite collection
of variables. The language determined by a pattern p (over Σ) is the set of
all strings that result by substituting some non-empty string (over Σ) for each
variable in p. A pattern language over Σ is any language determined by a pattern
over Σ. PatΣ denotes the class of pattern languages over Σ.

For example, suppose that Σ = {0, 1}, and that p is the pattern x0x1y,
where x and y are variables. Then, PatΣ includes the language determined by
p, which, in turn, includes the following strings. (To lessen the burden upon
the reader, we have underlined in each string a 0 and 1 that may be regarded
as part of the original pattern.)

0000010

0000011

0001000

0001001

0001010

0001011

0001100

0001101

0001110

0001111

0100110

0100111

1001010

1001011

1011000

1011001

1011010

1011011

1011100

1011101

1011110

1011111

1101110

1101111

On the other hand, the language determined by p includes no other strings of
length 7.

As the reader may have already noticed, if one’s intent is simply to eliminate
redundancy in the hypothesis space, then to require that the hypothesis space
be a Friedberg numbering is really overkill. That is because to require that
the hypothesis space be a Friedberg numbering is to require that it be free of
redundancy and that it represent all of the ce sets.

Thus, we consider two variants of FrIt-learning, which we call injective it-
erative learning (InjIt-learning, Definition 1(c)) and class injective iterative
learning (ClassInjIt-learning, Definition 1(d)). In the InjIt-learning learning
model, the hypothesis space is required to be free of redundancy (i.e., be 1-
1), but need not represent all of the ce sets.8 The ClassInjIt-learning model is

7The pattern languages were first shown to be It-identifiable by Lange & Wiehagen [LW91].
8The use of 1-1 hypothesis spaces was also considered in [BCJS10] in the context of learning
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similar; however, for a learner to ClassInjIt-identify a class of languages L, it is
additionally required the learner’s hypothesis space represent L exactly . Clearly,
every class of languages that can be FrIt-identified can be InjIt-identified, and,
similarly, every class of languages that can be ClassInjIt-identified can be
InjIt-identified. On the other hand, Fin can be ClassInjIt-identified, but,
as per Jain & Stephan’s observation mentioned above, Fin cannot be FrIt-
identified. Furthermore, if one lets K be the diagonal halting problem [Rog67],
then

K def=
{
{x} | x ∈ K

}
(4)

can be FrIt-identified, but since no hypothesis space represents K exactly, K
cannot be ClassInjIt-identified.

A related notion that has been considered is order independent learn-
ing [BB75, Ful90]. A learner is said to order independently identify a language L
iff there exists some hypothesis j for L such that, when fed any text for L, there
is some point from whence on the learner outputs only j. In effect, such a learner
may benefit from redundancy in the hypothesis space in the near term, but it
cannot so benefit in the limit . For the remainder, to OrdIndIt-identify a class
of languages L shall mean to iteratively identify L order independently (see Defi-
nition 1(e)). Clearly, every class of languages that can be InjIt-identified can be
OrdIndIt-identified. Interestingly, we show that the converse also holds (The-
orem 15). Thus, for each class L, if there exists a learner for L that does not
benefit from redundancy in the hypothesis space in the limit, then there exists
a learner for L that does not benefit from redundancy in the hypothesis space
whatsoever .

Our next model, which we call extensional iterative learning (ExtIt-
learning, Definition 1(f)), also tries to limit the extent to which a learner can
benefit from redundancy in the hypothesis space. The approach differs con-
siderably from that of OrdIndIt-learning, however. For a learner to ExtIt-
identify a class of languages, it is required that, when presented with equivalent
hypotheses and identical input elements, the learner must produce equivalent
hypotheses. More formally: suppose that, for some class of languages L, the
following conditions are satisfied.

• σ0 is a non-empty sequence of elements drawn from {#} and from some
language in L.

• σ1 is another non-empty sequence of elements drawn from {#} and from
some (possibly distinct) language in L.

• When fed all but the last elements of σ0 and σ1, respectively, the learner
outputs hypotheses for the same language (though these hypotheses may
differ syntactically).

• The last elements of σ0 and σ1 are identical.

certain specific classes of languages.
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Then, for the learner to ExtIt-identify L, it is required that:

• When fed all of σ0 and σ1, respectively, the learner outputs hypotheses
for the same language (though these hypotheses may differ syntactically).

Clearly, if a learner identifies a class of languages using a 1-1 hypothesis space,
then that learner satisfies the just above requirement. Thus, every class of
languages that can be InjIt-identified can be ExtIt-identified. On the other
hand, we show that there exists a class of languages that can be ExtIt-identified,
but that cannot be InjIt-identified (Theorem 16).

Before introducing our final model, let us recall the definition of an enumer-
ation operator [Rog67, §9.7]. For now, we focus on enumeration operators of a
particular type. A more general definition is given in Section 2.1.

Let P(N) be the powerset of N, i.e., the collection of all subsets of N. Let
〈·, ·〉 be any pairing function, i.e., a computable, 1-1, onto function of type

N2 → N [Rog67, page 64]. Let #̂ = 0, and, for each x ∈ N, let x̂ = x + 1. Let
(Dj)j∈N be any 1-1, canonical enumeration of Fin .

An enumeration operator of type P(N) × (N ∪ {#}) → P(N) is a mapping
that is algorithmic in the following precise sense. To each enumeration operator
Θ (of the given type), there corresponds a ce set H, such that, for each X ⊆ N
and x ∈ N ∪ {#},

Θ(X,x) =
{
y |
〈
j, 〈x̂, y〉

〉
∈ H ∧ Dj ⊆ X

}
. (5)

Thus, given an enumeration of X, and given x, one can enumerate Θ(X,x) in
the following manner.

• Enumerate H. For each element of the form
〈
j, 〈x̂, y〉

〉
∈ H, if ever the

finite set Dj appears in the enumeration of X, then list y into Θ(X,x).

Enumeration operators exhibit certain notable properties, including monotonic-
ity . Intuitively, this means that an enumeration operator can tell from its set
argument X what elements are in X, but it cannot tell from X what elements
are in the complement of X. More is said about the properties of enumeration
operators in Section 2.1.

The final model that we consider is called iterative learning by enumeration
operator (EOIt-learning, Definition 1(g)). As the name suggests, the compu-
tational component of the learner is modeled as an enumeration operator, as
opposed to a partial computable function. Specifically, the learner is modeled
as a pair , where:

• The first element of the pair is an enumeration operator of type P(N) ×
(N∪ {#})→ P(N), whose arguments are, respectively, the learner’s most
recently output language, and the next input element.

• The second element of the pair is the learner’s preliminarily output lan-
guage, i.e., the language output by the learner before being fed any input.
(We require that this preliminary language be ce.)
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Thus, there are no hypotheses in this model. Since there are no hypotheses,
there is no syntax in which the learner can encode what elements it has or has
not yet seen.

The expulsion of hypotheses from the model has an additional consequence,
and that is that the success criterion has to be adjusted. Specifically, we say
that a learner in this model identifies a language L iff when fed the elements
of L (and possibly #), there is some point from whence on the learner outputs
only the language L. The success criterion for identifying a class of languages
is adjusted similarly. This more liberal approach to language identification, in
some sense, gives an advantage to learners in this model. In particular, there
exists a class of languages that can be EOIt-identified, but that cannot be
It-identified (Proposition 20).

Interestingly, there also exists a class of languages that cannot be EOIt-
identified, but that can be FrIt and ClassInjIt-identified (Theorem 24). To
help to see why, consider the following two scenarios. First, suppose that (M , X)
is a learner in the enumeration operator model, and that Y is its most recently
output language. Then, since M is an enumeration operator, M can tell from
Y what elements are in Y , but it cannot tell from Y what elements are in the
complement of Y . Next, consider the analogous situation for a conventional
iterative learner. That is, suppose that (M,p, (Xj)j∈N) is such a learner, and
that j is its most recently output hypothesis. Then, in many cases, M can tell
from j what elements are in the complement of Xj . In this sense, one could say
that a hypothesis implicitly encodes negative information about the language
that it represents. (In fact, this phenomenon can clearly be seen in the proof of
Theorem 24 below.)

A question to then ask is: is this a coding trick , i.e., is it the case that every
learner that operates on hypotheses (as opposed to languages) is employing
coding tricks? At present, we do not see a clear answer to this question. Thus,
we leave it as a subject for further study.

The main points of the preceding paragraphs are summarized in Figure 1.
The remainder of this paper is organized as follows. Section 2 covers prelimi-
naries. Section 3 presents our results concerning uniformly decidable and com-
putably finitely thick classes of languages. Section 4 presents our results con-
cerning Friedberg, injective, class injective, order independent, and extensional
iterative learning (FrIt, InjIt, ClassInjIt, OrdIndIt, and ExtIt-learning, re-
spectively). Section 5 presents our results concerning iterative learning by enu-
meration operator (EOIt-learning).

2. Preliminaries

Computability-theoretic concepts not covered below are treated in [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. Lowercase math-italic

letters (e.g., a, j, x), with or without decorations, range over elements of N,
unless stated otherwise. Uppercase italicized letters (e.g., A, J , X), with or
without decorations, range over subsets of N, unless stated otherwise. For each

7
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Fin∨L4

K ∨L4

Fin

K , Coinit

L1Pat

FrIt InjIt

 OrdIndIt

= ExtIt

EOIt

ClassInjIt

It

L0Fin∨K Fin∨K ∨L4L0∨L4L2

Figure 1: A summary of main results. PatΣ is the class of pattern languages over Σ, where
Σ is an arbitrary alphabet. Fin is the collection of all finite subsets of N. K is defined as
{{x} | x ∈ K}, where K is the diagonal halting problem. Coinit is defined as {N + e | e ∈ N}.
The remaining classes are defined in the proofs of the following results: L0, Theorem 16; L1,
Proposition 20; L2, Theorem 22; L3, Theorem 23; and L4, Theorem 24. The operation ‘∨’ is
defined in (6).

X and y, X + y def= {x + y | x ∈ X}. For each non-empty X, minX denotes
the minimum element of X. min ∅ def= ∞. For each non-empty, finite X, maxX
denotes the maximum element of X. max ∅ def= −1. For each non-empty, finite
X, X− def= X − {maxX}.
P(N) denotes the powerset of N, i.e., the collection of all subsets of N. P(N)m

denotes the collection of all tuples of length m whose elements are drawn from
P(N). Uppercase calligraphic letters (e.g., L, X , Y ), with or without decorations,
range over subsets of P(N), unless stated otherwise. For each X and Y ,

X ∨ Y def= {2X | X ∈ X} ∪ {2Y + 1 | Y ∈ Y }. (6)

Fin denotes the collection of all finite subsets of N. (Dj)j∈N denotes a 1-1,
canonical enumeration of Fin .
〈·, ·〉 denotes any fixed pairing function, i.e., a computable, 1-1, onto function

of type N2 → N [Rog67, page 64]. For each x, 〈x〉 def= x. For each x0, ..., xn−1,
where n > 2, 〈x0, ..., xn−1〉 def=

〈
x0, 〈x1, ..., xn−1〉

〉
.

N#
def= N ∪ {#}. The function λx ∈ N# x̂ is such that #̂ = 0, and, for each

x ∈ N, x̂ = x + 1. A text is a total function of type N → N#. For each text
t and i ∈ N, t[i] denotes the initial segment of t of length i. For each text t,
content(t) def= {t(i) | i ∈ N} − {#}. For each text t and L ⊆ N, t is a text for L
def⇔ content(t) = L.
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Seq denotes the set of all initial segments of texts. Lowercase Greek letters
(e.g., ρ, σ, τ), with or without decorations, range over elements of Seq, unless
stated otherwise. λ denotes the empty initial segment (equivalently, the every-
where divergent function). For each σ, |σ| denotes the length of σ (equivalently,
the size of the domain of σ). For each σ and i ≤ |σ|, σ[i] denotes the initial
segment of σ of length i. For each σ, content(σ) def= {σ(i) | i < |σ|} − {#}. For
each σ and τ , σ ·τ denotes the concatenation of σ and τ . For each σ ∈ Seq−{λ}:

σ− def= σ[|σ| − 1]; (7)

last(σ) def= σ(|σ| − 1). (8)

For each L and L, Txt(L), Txt(L), Seq(L), and Seq(L) are defined as follows.

Txt(L) = { t | t is a text for L}. (9)

Txt(L) = { t | (∃L ∈ L)[t ∈ Txt(L)]}. (10)

Seq(L) = {σ | content(σ) ⊆ L}. (11)

Seq(L) = {σ | (∃L ∈ L)[σ ∈ Seq(L)]}. (12)

For each one-argument partial function ψ and x ∈ N, ψ(x)↓ denotes that
ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges. We use ↑ to denote the value
of a divergent computation.

For each X , a numbering of X is an onto function of type N→ X . A number-
ing (Xj)j∈N is effective def⇔ the predicate λj, x [x ∈ Xj ] is partial computable.
EN denotes the collection of all effective numberings.

CE denotes the collection of all computably enumerable (ce) subsets of N.
For each m and n, PCm,n denotes the collection of partial computable functions
mapping Nm × Nn# to N. We shall be concerned primarily with PC1,0 and
PC1,1. (ϕp)p∈N denotes any fixed, acceptable numbering of PC1,0. For each i,

Wi
def= {x | ϕi(x)↓}. Thus, (Wi)i∈N is an effective numbering of CE . K denotes

the diagonal halting problem, i.e., {x | x ∈Wx}.
For each M ∈ PC1,1 and p, the partial function M∗p is such that, for each

σ ∈ Seq and x ∈ N#:

M∗p (λ) = p; (13)

M∗p (σ · x) =

{
M
(
M∗p (σ), x

)
, if M∗p (σ)↓;

↑, otherwise.
(14)

For each text t and j ∈ N, M∗p converges on t to j def⇔ there exists an i0 such

that (∀i ≥ i0)
[
M∗p (t[i]) = j

]
; M∗p diverges on t def⇔ M∗p does not converge on t

(to any j).

2.1. Enumeration Operators

An enumeration operator is a mapping of type P(N)m × Nn# → P(N), for
some m and n, and that is algorithmic in the following precise sense. To each
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enumeration operator Θ : P(N)m × Nn# → P(N), there corresponds a ce set H,
such that, for each (X0, ..., Xm−1) ∈ P(N)m and (x0, ..., xn−1) ∈ Nn#,

Θ(X0, ..., Xm−1, x0, ..., xn−1)

= {y | 〈j0, ..., jm−1, x̂0, ..., x̂n−1, y〉 ∈ H ∧ (∀i < m)[Dji ⊆ Xi]}.
(15)

A strategy for enumerating Θ(X0, ..., Xm−1, x0, ..., xn−1), given X0, ..., Xm−1

and x0, ..., xn−1, can easily be generalized from that given for enumeration op-
erators of type P(N)× N# → P(N) in Section 1.

For each m and n, EOm,n denotes the collection of all enumeration operators
of type P(N)m ×Nn# → P(N). We shall be concerned primarily with EO1,0 and
EO1,1.

Enumeration operators exhibit monotonicity and continuity proper-
ties [Rog67, Theorem 9-XXI], described below for EO1,1.

• Monotonicity : for each M ∈ EO1,1, X,Y ⊆ N, and x ∈ N#,

X ⊆ Y ⇒ M (X,x) ⊆ M (Y, x). (16)

• Continuity : for each M ∈ EO1,1, X ⊆ N, x ∈ N#, and y ∈ N,

y ∈ M (X,x) ⇒ (∃A ∈ Fin)[A ⊆ X ∧ y ∈ M (A, x)]. (17)

For each M ∈ EO1,1 and X, the function M ∗X : Seq→ P(N) is such that, for
each σ ∈ Seq and x ∈ N#:

M ∗X(λ) = X; (18)

M ∗X(σ · x) = M
(

M ∗X(σ), x
)
. (19)

2.2. Iterative and Iterative-like Learning Models

The following are the formal definitions of the learning models described
in Section 1. The symbols Fr, Inj, ClassInj, OrdInd, Ext, and EO are
mnemonic for Friedberg , injective, class injective, order independent , exten-
sional , and enumeration operator , respectively.

Definition 1. For each L, (a)-(g) below. In parts (a)-(f), (M,p, (Xj)j∈N) ∈
PC1,1 × N× EN . In part (g), (M , X) ∈ EO1,1 × CE .

(a) (Wiehagen [Wie76]) (M,p, (Xj)j∈N) It-identifies L ⇔ for each t ∈
Txt(L), there exists a j such that M∗p converges on t to j and Xj =
content(t).

(b) (Jain & Stephan [JS08]) (M,p, (Xj)j∈N) FrIt-identifies L ⇔ (M,p,
(Xj)j∈N) It-identifies L, and (Xj)j∈N is a Friedberg numbering.

(c) (M,p, (Xj)j∈N) InjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is 1-1.

(d) (M,p, (Xj)j∈N) ClassInjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L,
(Xj)j∈N is 1-1, and {Xj | j ∈ N} = L.

10



(e) (M,p, (Xj)j∈N) OrdIndIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L,
and, for each L ∈ L, there exists a j such that, for each t ∈ Txt(L), M∗p
converges on t to j.

(f) (M,p, (Xj)j∈N) ExtIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and,
for each σ0, σ1 ∈ Seq(L)− {λ},

[XM∗p (σ−0 ) = XM∗p (σ−1 ) ∧ last(σ0) = last(σ1)] ⇒ XM∗p (σ0) = XM∗p (σ1).

(20)

(g) (M , X) EOIt-identifies L ⇔ for each t ∈ Txt(L), there exists an i0 such
that (∀i ≥ i0)

[
M ∗X(t[i]) = content(t)

]
.

Definition 2. Let It be as follows.

It =
{

L |
(
∃(M,p, (Xj)j∈N) ∈ PC1,1 × N× EN

)
[(M,p, (Xj)j∈N) It-identifies L]

}
.

Let FrIt, InjIt, ClassInjIt, OrdIndIt, ExtIt, and EOIt be defined similarly.

3. Uniform Decidability and Computable Finite Thickness

In this section, we extend a result of Lange & Zeugmann by showing that,
for each class L, if there exists a single hypothesis space witnessing that L is
both uniformly decidable and computably finitely thick, then L can be FrIt-
identified (Theorem 6). We also show that there exists a class of languages that
is uniformly decidable and computably finitely thick, but that is not in It, let
alone FrIt (Theorem 9). Thus, one could not arrive at the conclusion of the just
mentioned Theorem 6 if one were to merely require that: there exists a uniformly
decidable effective numbering of L, and a possibly distinct computably finitely
thick effective numbering of L.

The following are the formal definitions of the terms uniformly decidable and
computably finitely thick . For additional background, see [LZZ08].

Definition 3.

(a) An effective numbering (Xj)j∈N is uniformly decidable ⇔ the predicate
λj, x [x ∈ Xj ] is decidable.

(b) A class of languages L is uniformly decidable ⇔ there exists a uniformly
decidable effective numbering of L.

(c) An effective numbering (Xj)j∈N is computably finitely thick ⇔ there exists
a computable function f : N→ N such that, for each x,

{Xj | j ∈ Df(x)} = {Xj | x ∈ Xj}. (21)

(d) (Lange & Zeugmann [LZ96, Definition 9]) A class of languages L is
computably finitely thick ⇔ there exists a computably finitely thick effec-
tive numbering of L.

N.B. In part (c) just above, the function f need not satisfy Df(x) = {j | x ∈ Xj}.
However, see Lemma 7 below.
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Example 4.

(a) Fin is uniformly decidable, but is not computably finitely thick.

(b) CE is neither uniformly decidable nor computably finitely thick.

(c) The class
{
{e}, {e}∪ (We+ e+ 1) | e ∈ N

}
is not uniformly decidable, but

is computably finitely thick.9

(d) The class
Coinit def= {N + e | e ∈ N} (22)

is both uniformly decidable and computably finitely thick. Moreover, there
exists a single effective numbering witnessing both properties simultane-
ously.

(e) Let L be as follows.

L =
{
{e} | e ∈ N

}
∪
{
{e, ϕe(0) + e+ 1} | e ∈ N ∧ ϕe(0)↓

}
. (23)

Then, L is both uniformly decidable and computably finitely thick,10 but
there is no effective numbering of L witnessing both properties simulta-
neously. In fact, no such numbering exists for any class containing L.

The following result, due to Lange & Zeugmann, gives a sufficient condition for
a class of languages to be It-identifiable.

Theorem 5 (Lange & Zeugmann [LZ96, Theorem 12]). For each L, if
there exists an effective numbering of L that is both uniformly decidable and
computably finitely thick, then L ∈ It.11

The following result strengthens Theorem 5 (Lange & Zeugmann) just above.

Theorem 6. For each L, if there exists an effective numbering of L that is both
uniformly decidable and computably finitely thick, then L ∈ FrIt.

The proof of Theorem 6 relies on Lemma 7 just below.

Lemma 7. Suppose that L satisfies the conditions of Theorem 6, and that L
is infinite. Then, there exists an effective numbering (X ′j)j∈N of L satisfying (i)
and (ii) below.

9The classes given in parts (c) and (e) of Example 4 can be shown to be computably finitely
thick using a technique similar to that used in the proof of Theorem 9 below (see Figure 4(b),
specifically).

10See footnote 9.
11In [LZ96], Theorem 12 is stated as follows.

Let C be any [uniformly decidable] class. If C has [computable] finite thickness, then C ∈ It.
(∗)

Note that (∗) differs slightly from Theorem 5 above, in that (∗) does not require the existence
a single effective numbering witnessing both properties simultaneously. However, based on
the proof of this result, it is clear that such a requirement was intended. Furthermore, in light
of Theorem 9 below, (∗) cannot be established in its literal form.
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0. if ∅ ∈ L then

1. X ′0 ← ∅;
2. jmax ← 0;

3. else

4. jmax ← −1;

5. end if;

6. for x = 0, 1, ... do

7. let {j1, ..., jn} = {j ∈ Df(x) | x = minXj};
8. (X ′jmax+1, ..., X

′
jmax+n)← (Xj1 , ..., Xjn);

9. jmax ← jmax + n;

10. Df ′(x) ← {j ≤ jmax | x ∈ X ′j};
11. end for.

Figure 2: The construction of (X′j)j∈N and f ′ : N→ N in the proof of Lemma 7.

(i) (X ′j)j∈N is uniformly decidable.
(ii) (X ′j)j∈N satisfies the following strong form of computable finite thickness.

There exists a computable function f ′ : N→ N such that, for each x,

Df ′(x) = {j | x ∈ X ′j}. (24)

Proof. Suppose that L satisfies the conditions of Theorem 6, as witnessed by
(Xj)j∈N and f : N→ N, and that L is infinite. Intuitively, the effective number-
ing (X ′j)j∈N is constructed as follows. First, ∅ is listed into (X ′j)j∈N, if necessary.
Then, each set in L whose smallest element is 0 is listed, followed by each set in
L whose smallest element is 1, and so on. The construction maintains a variable
jmax, which records the largest index used to list any such set. This variable
is also used in the construction of f ′ : N → N. Formally, (X ′j)j∈N and f ′ are
constructed as in Figure 2.

Clearly, (X ′j)j∈N is a numbering of L. Furthermore, it is straightforward
to show that (X ′j)j∈N satisfies (i) in the statement of the lemma. To show
that (X ′j)j∈N satisfies (ii): let x be fixed, and consider the loop in lines 6-11 of
Figure 2 for this value of x. Note that any set listed into (X ′j)j∈N subsequent
to this iteration of the loop will have a minimum element larger than x. Thus,
immediately following line 9, it will be the case that

(∀j)[x ∈ X ′j ⇒ j ≤ jmax]. (25)

Clearly, then, f ′ satisfies (24). � (Lemma 7)

Proof of Theorem 6. Suppose that L satisfies the conditions of the theorem.
The proof is straightforward for the case when L is finite. So, suppose that L is
infinite. Let (Xj)j∈N and f : N→ N be as asserted to exist by Lemma 7 for L,
e.g., witnessing the strong form of computable finite thickness of Lemma 7(ii).
Let F : Fin → P(N) be such that, for each A ∈ Fin ,

F (A) =
⋂
{Df(x) | x ∈ A}. (26)

13



It is straightforward to show that, for each A ∈ Fin ,

F (A) = {j | A ⊆ Xj}. (27)

For each J , let XJ be such that

XJ =
⋂
{Xj | j ∈ J}. (28)

For each A ∈ Fin , say that A is exemplary ⇔

F (A) 6= ∅ ∧ A = XF (A) ∩ {0, ...,maxA}. (29)

Note that F (∅) = N, and, moreover, that ∅ is exemplary.

Claim 6.1. Suppose that A is exemplary, and that x ≤ maxA. Let A′ be such
that

A′ = A ∩ {0, ..., x}. (30)

Then, A′ is exemplary.

Proof of Claim. Suppose that A, x, and A′ are as stated. Since A′ ⊆ A,

F (A′) ⊇ F (A). (31)

Thus, since F (A) 6= ∅, F (A′) 6= ∅. To show that A′ = XF (A′) ∩ {0, ...,maxA′}:

A′ ⊆ XF (A′) ∩ {0, ...,maxA′} {immediate}
⊆ XF (A) ∩ {0, ...,maxA′} {by (31)}
⊆ XF (A) ∩ {0, ..., x} {because maxA′ ≤ x}
⊆ (XF (A) ∩ {0, ..., x}) ∩ {0, ..., x} {immediate}
⊆ (XF (A) ∩ {0, ...,maxA}) ∩ {0, ..., x} {because x ≤ maxA}
⊆ A ∩ {0, ..., x} {because A is exemplary}
= A′ {by (30)}.

� (Claim 6.1)

Claim 6.2. For each A ∈ Fin and x, XF (A) ∩ {0, ..., x} is exemplary.

Proof of Claim. Let A ∈ Fin and x be fixed, and let A′ = XF (A) ∩ {0, ..., x}.
Note that, for each j ∈ F (A),

A′ ⊆ XF (A) ⊆ Xj . (32)

It follows that
F (A′) ⊇ F (A). (33)

Thus, since F (A) 6= ∅, F (A′) 6= ∅. To show that A′ = XF (A′) ∩ {0, ...,maxA′}:

A′ ⊆ XF (A′) ∩ {0, ...,maxA′} {immediate}
⊆ XF (A) ∩ {0, ...,maxA′} {by (33)}
⊆ XF (A) ∩ {0, ..., x} {because maxA′ ≤ x}
= A′ {by the choice of A′}.

14



List ∅ into (Z`)`∈N. Then, for each A ∈ Fin−{∅}, act according to the following
conditions.

• Cond. (a) [A is not exemplary ∧ A− is not exemplary]. Do nothing for
A.

• Cond. (b) [A is not exemplary ∧ A− is exemplary]. For each k, list A ∪
(Yk + maxA+ 1) into (Z`)`∈N.

• Cond. (c) [A is exemplary ∧ F (A) ⊂ F (A−)]. List XF (A) into (Z`)`∈N,
and, by letting J = F (A), set ζ(J) to the index used to list this set.

• Cond. (d) [A is exemplary ∧ F (A) = F (A−)]. List A− into (Z`)`∈N.

Figure 3: The construction of (Z`)`∈N in the proof of Theorem 6.

� (Claim 6.2)

Let (Yk)k∈N be any Friedberg numbering. An effective numbering (Z`)`∈N
is constructed in Figure 3. Claims 6.3 and 6.5 below establish that (Z`)`∈N
is a Friedberg numbering. In conjunction with (Z`)`∈N, a partial computable
function ζ from Fin−{∅} to N is constructed. Claim 6.6 below establishes that,
for each J ∈ Fin−{∅}, ζ(J) is set at most once. It is clear from the construction
of ζ that it is 1-1, i.e., (∀J, J ′ ∈ Fin − {∅})[ζ(J)↓ = ζ(J ′) ⇒ J = J ′].

Claim 6.3. (Z`)`∈N is a numbering of CE .

Proof of Claim. Let S ∈ CE be fixed. If S = ∅, then S is listed into (Z`)`∈N
at the beginning of the construction of (Z`)`∈N. So, suppose that S 6= ∅. Let
{s0 < s1 < · · · } = S. If there exists an i such that {s0, ..., si} is not exemplary,
then, clearly, for the least such i, S is listed into (Z`)`∈N by cond. (b) when
A = {s0, ..., si}. So, suppose that

(∀i)[{s0, ..., si} is exemplary]. (34)

Clearly, F ({s0}) is finite, and, by (34), F ({s0}) 6= ∅. Thus, there exists a
greatest m such that F ({s0, ..., sm}) ⊂ F ({s0, ..., sm−1}). If XF ({s0,...,sm}) = S,
then S is listed into (Z`)`∈N by cond. (c) when A = {s0, ..., sm}. So, suppose
that XF ({s0,...,sm}) 6= S. If there exists an i such that si 6∈ XF ({s0,...,sm}), then
{s0, ..., si} is not exemplary, contradicting (34). So, there must exist a least
x ∈ XF ({s0,...,sm}) − S. If there exists an i such that si > x, then {s0, ..., si}
is not exemplary, again contradicting (34). So, it must be the case that, for
each i, si < x. Let n be such that {s0, ..., sn} = S. Clearly, {s0, ..., sn, x} is
exemplary and F ({s0, ..., sn, x}) = F ({s0, ..., sn}). Thus, S is listed into (Z`)`∈N
by cond. (d) when A = {s0, ..., sn, x}. � (Claim 6.3)

Claim 6.4. For each A0, A1 ∈ Fin − {∅}, if A0 6= A1, then the sets listed into
(Z`)`∈N for A0 are distinct from those listed into (Z`)`∈N for A1.
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Proof of Claim. By way of contradiction, suppose otherwise, as witnessed by
A0 and A1. Without loss of generality, suppose that the condition that applies
for A0 in Figure 3 is alphabetically no larger than that which applies for A1,
e.g., if cond. (c) applies for A0, then either cond. (c) or cond. (d) applies for A1.
Consider the following cases.

Case [cond. (a) applies for A0]. Since cond. (a) does not list any sets into
(Z`)`∈N, this case immediately leads to a contradiction.

Case [cond. (b) applies for both A0 and A1]. Then, there exist k0 and k1 such
that

A0 ∪ (Yk0 + maxA0 + 1) = A1 ∪ (Yk1 + maxA1 + 1). (35)

Without loss of generality, suppose that maxA0 ≤ maxA1. Then, by (35),

A0 = A1 ∩ {0, ...,maxA0}. (36)

Since A0 6= A1, it must be the case that maxA0 < maxA1. Thus,

maxA0 ≤ maxA−1 ∧ A0 = A−1 ∩ {0, ...,maxA0}. (37)

Since cond. (b) applies for A1, A−1 is exemplary. Thus, Claim 6.1 and (37) imply
that A0 is exemplary. But then cond. (b) cannot apply for A0 — a contradiction.

Case [cond. (b) applies for A0 and cond. (c) applies for A1]. Then, there ex-
ists a k such that

A0 ∪ (Yk + maxA0 + 1) = XF (A1). (38)

Note that(
A0 ∪ (Yk + maxA0 + 1)

)
∩ {0, ...,maxA0} = A0 is not exemplary. (39)

On the other hand, by Claim 6.2,

XF (A1) ∩ {0, ...,maxA0} is exemplary. (40)

Formulae (38)-(40) are contradictory.

Case [cond. (b) applies for A0 and cond. (d) applies for A1]. Similar to the
previous case.

Case [cond. (c) applies for both A0 and A1]. Then,

XF (A0) = XF (A1). (41)

Since A0 and A1 are exemplary and A0 6= A1, it must be the case that either
A0 ⊆ A−1 or A1 ⊆ A−0 . Without loss of generality, suppose that A0 ⊆ A−1 . Since
F (A1) ⊂ F (A−1 ), there exists a j ∈ F (A−1 ) such that maxA1 ∈ XF (A1) − Xj .

Since A0 ⊆ A−1 , F (A0) ⊇ F (A−1 ), and, thus, XF (A0) ⊆ Xj . But then maxA1 ∈
XF (A1) −XF (A0), contradicting (41).
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Case [cond. (c) applies for A0 and cond. (d) applies for A1]. Then,

XF (A0) = A−1 . (42)

Since A−1 ⊆ XF (A0),

F (A−1 ) ⊇ F (A0). (43)

Thus,
A1 ⊆ XF (A1) {immediate}

= XF (A−1 ) {because F (A1) = F (A−1 )}
⊆ XF (A0) {by (43)}
= A−1 {by (42)}

— a contradiction.

Case [cond. (d) applies for both A0 and A1]. Then, A−0 = A−1 . Without loss
of generality, suppose that maxA0 ≤ maxA1. Then, since A0 6= A1,

maxA0 < maxA1 ∧ maxA0 6∈ A1. (44)

On the other hand,

maxA0 ∈ XF (A0) {immediate}
= XF (A−0 ) {because F (A0) = F (A−0 )}
= XF (A−1 ) {because A−0 = A−1 }
= XF (A1) {because F (A1) = F (A−1 )}.

(45)

But (44) and (45) contradict the fact that A1 is exemplary. � (Claim 6.4)

Claim 6.5. (Z`)`∈N is 1-1.

Proof of Claim. Follows from Claim 6.4. � (Claim 6.5)

Claim 6.6. For each J ∈ Fin−{∅}, ζ(J) is set at most once in the construction
of (Z`)`∈N.

Proof of Claim. By way of contradiction, let J ∈ Fin − {∅} be such that
ζ(J) is set more than once in the construction of (Z`)`∈N. Then, clearly, there
exist A0, A1 ∈ Fin − {∅} such that A0 6= A1, F (A0) = J = F (A1), and both
XF (A0) and XF (A1) are listed into (Z`)`∈N. Furthermore, since F (A0) = F (A1),
XF (A0) = XF (A1). But this contradicts Claim 6.4. � (Claim 6.6)

To complete the proof of the theorem, it suffices to show that L can be
It-identified using (Z`)`∈N as the hypothesis space. For ease of presentation,
suppose that Z0 = ∅. Recall that ζ is a 1-1, partial computable function from
Fin −{∅} to N. Thus, ζ−1 is a partial computable function from N to Fin −{∅}.
For each x, let Gx : Fin → Fin be such that, for each J ∈ Fin ,

Gx(J) = {j ∈ J | x ∈ Xj}. (46)
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(a) For each i, execute stage 0 below.

• Stage 0. Include N + i and {i} in L. Go to stage 1.

• Stage 1. Let (M,p) be the ith pair in ((M,p)i′)i′∈N. Search for a
k ≥ i such that

M∗p
(
(i · · · · · k) · (k + 1)

)
↓ = M∗p

(
(i · · · · · k) · k

)
= M∗p (i · · · · · k).

If such a k is found, then include {i, ..., k} and {i, ..., k+ 1} in L, and
terminate the construction (for i). If no such k is found, then search
indefinitely.

(b) For each i, execute stage 0 below.

• Stage 0. Set Xstart(i) = N + i, and, for each j ∈ {start(i) +
1, ..., start(i+ 1)− 1}, set Xj = {i}. Go to stage 1.

• Stage 1. In a dovetailing manner, monitor and act according to the
following conditions.

– Cond. [in the construction of L above, a k is found for i].
Set Xstart(i)+2 = {i, ..., k} and Xstart(i)+3 = {i, ..., k + 1}.

– Cond. [i ∈ Xj , where j < start(i)]. Set Xstart(i)+j+4 = Xj .

Figure 4: (a) The construction of L in the proof of Theorem 9. (b) The construction of
(Xj)j∈N in the proof of Theorem 9. The function start is defined in (51).

Let M ∈ PC1,1 be such that, for each ` > 0 and x:

M(0,#) = 0; (47)

M(0, x) = (ζ ◦ F )({x}); (48)

M(`,#) = `; (49)

M(`, x) = (ζ ◦Gx ◦ ζ−1)(`). (50)

It is straightforward to show that (M, 0, (Z`)`∈N) It-identifies L.
� (Theorem 6)

Recall from Section 1 that PatΣ is the class of pattern languages over Σ,
where Σ is an arbitrary alphabet. It is straightforward to show that, for each Σ,
there exists an effective numbering of PatΣ that is both uniformly decidable and
computably finitely thick. Thus, one has the following corollary of Theorem 6.

Corollary 8 (of Theorem 6). For each alphabet Σ, PatΣ is FrIt-identifiable.

The proof of Theorem 9 below exhibits a class of languages L that is uni-
formly decidable and computably finitely thick, but L 6∈ It. Thus, one could not
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arrive at the conclusion of Theorem 6 if one were to merely require that: there
exists a uniformly decidable effective numbering of L, and a possibly distinct
computably finitely thick effective numbering of L.

Theorem 9. There exists a class of languages L that is uniformly decidable
and computably finitely thick, but L 6∈ It.

Proof. Let ((M,p)i′)i′∈N be an algorithmic enumeration of all pairs of type
PC1,1 × N. Let start : N→ N be such that, for each i,

start(i) = 2i+2 − 4. (51)

Note that, for each i,

start(i+ 1)− start(i) = start(i) + 4. (52)

The class L is constructed in Figure 4(a). An effective numbering (Xj)j∈N, which
is easily seen to be of L, is constructed in Figure 4(b). This effective numbering
(Xj)j∈N is used to show that L is computably finitely thick. It is straightforward
to construct an effective numbering witnessing that L is uniformly decidable.

The following are easily verifiable from the construction of (Xj)j∈N.

• For each L ∈ L and i ∈ L, there exists a j < start(i)+4 such that Xj = L.

• For each i and j < start(i), if i ∈ Xj , then there exists a j′ ∈ {start(i)+4,
..., start(i+ 1)− 1} such that Xj′ = Xj .

• For each j ∈ {start(i), ..., start(i+ 1)− 1}, i ∈ Xj .

Given these facts, if one lets f : N→ N be such that, for each i,

Df(i) = {start(i), ..., start(i+ 1)− 1}, (53)

then f clearly witnesses that (Xj)j∈N is computably finitely thick.
It remains to show that L 6∈ It. By way of contradiction, suppose otherwise,

as witnessed by (M,p, (Xj)j∈N) ∈ PC1,1 ×N× EN . Let i be such that (M,p) is
the ith pair in ((M,p)i′)i′∈N. Since (N + i) ∈ L, there exists a k0 ≥ i such that

(∀k > k0)
[
M∗p
(
(i · · · · · k0) · k

)
↓ = M∗p (i · · · · · k0)

]
. (54)

Note that if one lets k1 = k0 + 1, then k1 satisfies

M∗p
(
(i · · · · · k1) · (k1 + 1)

)
↓ = M∗p

(
(i · · · · · k1) · k1

)
= M∗p (i · · · · · k1). (55)

Thus, some k1 satisfying (55) is discovered in stage 1 of the construction of L for
i (though, k1 is not necessarily k0+1). Furthermore, {i, ..., k1} and {i, ..., k1+1}
are in L. Note that

t0 = (i · · · · · k1) · k∞1 ; (56)

t1 = (i · · · · · k1) · (k1 + 1)∞ (57)

are, respectively, texts for {i, ..., k1} and {i, ..., k1 + 1}. But, by (55), M∗p con-
verges to the same hypothesis on each of these texts — a contradiction.

� (Theorem 9)
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4. Friedberg, Injective, Class Injective, Order Independent, and Ex-
tensional Iterative Learning

This section examines the Friedberg, injective, class injective, order inde-
pendent, and extensional iterative learning models (FrIt, InjIt, ClassInjIt,
OrdIndIt, and ExtIt, respectively). Recall from Definition 1 that, for each
(M,p, (Xj)j∈N) ∈ PC1,1 × N× EN and L:

• (M,p, (Xj)j∈N) FrIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is a Friedberg numbering;

• (M,p, (Xj)j∈N) InjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and
(Xj)j∈N is 1-1;

• (M,p, (Xj)j∈N) ClassInjIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L,
(Xj)j∈N is 1-1, and {Xj | j ∈ N} = L;

• (M,p, (Xj)j∈N) OrdIndIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L,
and, for each L ∈ L, there exists a j such that, for each t ∈ Txt(L), M∗p
converges on t to j;

• (M,p, (Xj)j∈N) ExtIt-identifies L ⇔ (M,p, (Xj)j∈N) It-identifies L, and,
for each σ0, σ1 ∈ Seq(L)− {λ},

[XM∗p (σ−0 ) = XM∗p (σ−1 ) ∧ last(σ0) = last(σ1)] ⇒ XM∗p (σ0) = XM∗p (σ1).

(58)

In terms of the classes of languages identifiable by these models and by It, they
are clearly related as follows.

OrdIndIt

⊆

ClassInjIt ⊆ InjIt ⊆ ExtIt ⊆ It

⊆

FrIt

In this section, we establish that ClassInjIt 6⊆ FrIt (Proposition 10), that
FrIt 6⊆ ClassInjIt (Proposition 11 and Theorem 12), that InjIt 6⊆ (FrIt ∪
ClassInjIt) (Proposition 14), that InjIt = OrdIndIt (Theorem 15), and that
ExtIt 6⊆ InjIt (Theorem 16).12 That It 6⊆ ExtIt is shown in Section 5 (Theo-
rems 22 and 23).

Proposition 10 just below establishes that ClassInjIt 6⊆ FrIt.

Proposition 10. ClassInjIt 6⊆ FrIt.

12According to an anonymous referee of the conference version of this paper [MZ10], it was
already known to Liepe & Wiehagen that It 6⊆ OrdIndIt.
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Proof. Recall that Fin is the collection of all finite subsets of N. Jain & Stephan
observed that Fin 6∈ FrIt [JS08, Remark 25]. However, it is easily seen that
Fin ∈ ClassInjIt. � (Proposition 10)

Proposition 11 just below establishes that FrIt 6⊆ ClassInjIt.

Proposition 11. FrIt 6⊆ ClassInjIt.

Proof. Let K be such that

K =
{
{x} | x ∈ K

}
. (59)

It is straightforward to show that K ∈ FrIt. On the other hand, since no
hypothesis space represents K exactly, K 6∈ ClassInjIt. � (Proposition 11)

Our proof of Proposition 11 might lead one to wonder: does every class
of languages L ∈ FrIt − ClassInjIt have the property that no hypothesis
space represents L exactly? Theorem 12 just below establishes that this is,
in fact, not the case. In particular, the class Coinit from Example 4(d) satisfies
Coinit ∈ FrIt−ClassInjIt. Furthermore, there exists a hypothesis space (Yk)k∈N
such that (Yk)k∈N represents Coinit exactly.

Theorem 12. Recall from Example 4(d) that

Coinit = {N + e | e ∈ N}. (60)

Coinit satisfies (a) and (b) below.

(a) There exists an effective numbering (Yk)k∈N such that {Yk | k ∈ N} =
Coinit .

(b) Coinit ∈ FrIt−ClassInjIt.

Proof. The proof of part (a) is straightforward. Furthermore, as per Exam-
ple 4(d), one can arrange that the effective numbering (Yk)k∈N is both uni-
formly decidable and computably finitely thick. Thus, by Theorem 6 above,
Coinit ∈ FrIt.

It remains to show that Coinit 6∈ ClassInjIt. By way of contradiction,
suppose otherwise, as witnessed by (M,p, (Xj)j∈N) ∈ PC1,1 × N × EN . Then,
there exists an e such that

Xp = N + e. (61)

Furthermore, since p is the unique index satisfying (61), it follows that

(∀x ≥ e)[M(p, x) = p]. (62)

Let t be such that
t = (e+ 1) · (e+ 2) · · · · . (63)

Note that t is a text for (N + e + 1) ∈ Coinit . However, by (61)
and (62), (M,p, (Xj)j∈N) does not identify N + e + 1 from t — a contradic-
tion. � (Theorem 12)
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Note that the ClassInjIt-learning model has the following, somewhat un-
usual property. It is possible for a class L to be not ClassInjIt-identifiable,
whilst a class L ′ ⊇ L is ClassInjIt-identifiable. For example, as per the
proofs of Propositions 10 and 11 above, K is not ClassInjIt-identifiable, whilst
Fin ⊇ K is ClassInjIt-identifiable. Given these facts, one might wonder:
does every InjIt-identifiable class have a ClassInjIt-identifiable superclass?
At present, this question is open.

Problem 13. (a) and (b) below.

(a) Is it the case that, for each L ∈ InjIt, there exists an L ′ ∈ ClassInjIt
such that L ⊆ L ′?

(b) If the answer to (a) is “no”, then is it the case that, for each L ∈ FrIt,
there exists an L ′ ∈ ClassInjIt such that L ⊆ L ′?

Proposition 14 just below establishes that InjIt 6⊆ (FrIt ∪ClassInjIt).

Proposition 14. InjIt 6⊆ (FrIt ∪ClassInjIt).

Proof. A witnessing class is Fin∨K . It is straightforward to show that Fin∨K ∈
InjIt. The proof that Fin ∨ K 6∈ FrIt is similar to the proof that Fin 6∈ FrIt.
Finally, the existence of a hypothesis space representing Fin ∨ K exactly would
imply the existence of an analogous hypothesis space for K . Thus, Fin ∨ K 6∈
ClassInjIt. � (Proposition 14)

Theorem 15 just below establishes that InjIt = OrdIndIt.

Theorem 15. InjIt = OrdIndIt.

Proof. Clearly, InjIt ⊆ OrdIndIt. Thus, it suffices to show that OrdIndIt ⊆
InjIt. Let (M,p, (Xj)j∈N) ∈ PC1,1 × N× EN be fixed, and let L be the largest
class of languages that (M,p, (Xj)j∈N) OrdIndIt-identifies. (It is easily seen
from Definition 1(e) that L is well-defined.) We show that L is InjIt-identifiable.
If L ⊆ Fin , then L is clearly InjIt-identifiable. So, suppose that L 6⊆ Fin .

The remainder of the proof is in several parts. First, we construct a hy-
pothesis space (Yj)j∈N. This hypothesis space (Yj)j∈N is almost 1-1 in the sense
that, for each j and j′, if Yj = Yj′ 6= ∅, then j = j′ (see Claim 15.3 below).
From (Yj)j∈N, we construct a second hypothesis space (Z`)`∈N. This hypothesis

space (Z`)`∈N is truly 1-1. Finally, we construct an M̃ ∈ PC1,1, and show that

(M̃, 0, (Z`)`∈N) InjIt-identifies L.
For each j and n, let Xn

j ∈ Fin be such that

Xn
j = {x | x is listed in Xj in at most n steps}. (64)

For each L, let tL : N→ N# be such that, for each i,

tL(i) =

{
i, if i ∈ L;
#, otherwise.

(65)

Note that the predicate λA ∈ Fin , j ∈ N [M∗p converges on tA to j] is partial
computable. For each j and n, let P (j, n) ⇔ by letting A = Xn

j , (a)-(c) below
are satisfied.
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(a) M∗p converges on tA to j.

(b) (∀x ∈ A)[M(j, x) = j].

(c) For each σ ∈ Seq(A) such that |σ| < n, there exists a j′ such that (i)
and (ii) below.

(i) M∗p (σ) = j′.
(ii) j 6= j′ ⇒ (∃x ∈ Xj)[M(j′, x)↓ 6= j′].

Note that P is partial computable. Let (Yj)j∈N be such that, for each j,

Yj =
⋃
{Xn

j | P (j, n)}. (66)

Claim 15.1. For each j, if Yj is infinite, then Yj = Xj .

Proof of Claim. Easily verifiable from (66). � (Claim 15.1)

Claim 15.2. Suppose that j satisfies (a)-(c) below.

(a) Xj 6= ∅.
(b) Xj ∈ L.

(c) M∗p converges on tXj
to j.

Then, Yj = Xj .

Proof of Claim. Suppose that j satisfies (a)-(c) in the statement of the
claim. First, consider the case that Xj is finite. Then, using the fact that
(M,p, (Xj)j∈N) OrdIndIt-identifies L, it can be shown that there exists an n
such that P (j, n) and Yj = Xn

j = Xj . Next, consider the case that Xj is infinite.
Then, using the fact that (M,p, (Xj)j∈N) OrdIndIt-identifies L, it can simi-
larly be shown that there exist infinitely many n such that P (j, n). It follows
that Yj is infinite. Thus, by Claim 15.1, Yj = Xj . � (Claim 15.2)

Claim 15.3. For each j and j′, if Yj = Yj′ 6= ∅, then j = j′.

Proof of Claim. Suppose that j and j′ are such that Yj = Yj′ 6= ∅. Consider
the following cases.

Case [Yj and Yj′ are finite]. Let A = Yj = Yj′ . Then, by the construction of
Yj and Yj′ , M

∗
p converges on tA to j and j′. Thus, it must be the case that

j = j′.

Case [Yj and Yj′ are infinite]. By way of contradiction, suppose that j 6= j′.
Choose n0 such that P (j′, n0), and let A0 = Xn0

j′ . By part (a) of P (j′, n0), M∗p
converges on tA0 to j′, i.e., there exists an i0 such that

(∀i ≥ i0)
[
M∗p (tA0

[i]) = j′
]
. (67)

Choose n1 such that A0 ⊆ Xn1
j , i0 < n1, and P (j, n1). By part (c) of P (j, n1),

there exists a j′′ such that (i) and (ii) below.

(i) M∗p (tA0 [i0]) = j′′.

(ii) j 6= j′′ ⇒ (∃x ∈ Xj)[M(j′′, x)↓ 6= j′′].
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By (67) and (i) just above, j′ = j′′. Thus, by (ii) just above and the assumption
that j 6= j′ (= j′′), there exists an x0 such that

x0 ∈ Xj

= Yj {by Claim 15.1 and the case}
= Yj′ {by assumption}
= Xj′ {by Claim 15.1 and the case}

and M(j′, x0)↓ 6= j′. Choose n2 such that x0 ∈ Xn2

j′ and P (j′, n2). By part (b)
of P (j′, n2), M(j′, x0) = j′ — a contradiction. � (Claim 15.3)

For each j and s, let Y sj ∈ Fin be such that

Y sj = {x | x is listed in Yj in at most s steps}. (68)

Recall that L 6⊆ Fin . Thus, there exists some infinite language L∞ ∈ L. Let
σ be any locking sequence for (M,p, (Xj)j∈N) on L∞. Let f : N3 → N be any
1-1, computable function such that rng(f) = L∞. Let (Z`)`∈N be such that, for
each j and s:

Z0 = ∅; (69)

Z〈j,s〉+1 =

{
Yj , if s is least such that Y sj 6= ∅;
content(σ) ∪ {f(j, s,m) | m ∈ N}, otherwise.

(70)

Claim 15.4. Suppose that j satisfies (a)-(c) in the statement of Claim 15.2,
and that s is least such that Y sj 6= ∅. Then, Z〈j,s〉+1 = Xj .

Proof of Claim. Immediate by Claim 15.2 and (70). � (Claim 15.4)

Claim 15.5. For each j, s, j′, and s′, if Z〈j,s〉+1 = Z〈j′,s′〉+1, then j = j′ and
s = s′.

Proof of Claim. Suppose that j, s, j′, and s′ are such that Z〈j,s〉+1 =
Z〈j′,s′〉+1. Consider the following cases.

Case [s is least such that Y sj 6= ∅ ∧ s′ is least such that Y s
′

j′ 6= ∅]. Then,

Yj = Z〈j,s〉+1 = Z〈j′,s′〉+1 = Yj′ . (71)

Thus, by Claim 15.3, j = j′. Furthermore, since s and s′ are least such that
Y sj 6= ∅ and Y s

′

j′ 6= ∅, s = s′.

Case [s is least such that Y sj 6= ∅ ∧ s′ is not least such that Y s
′

j′ 6= ∅]. Then,

Yj = Z〈j,s〉+1 = Z〈j′,s′〉+1 = content(σ) ∪ {f(j′, s′,m) | m ∈ N}. (72)

We show that this case leads to a contradiction. Choose n0 such that
content(σ) ⊆ Xn0

j , |σ| < n0, and P (j, n0). By part (c) of P (j, n0), there exists
a j′′ such that (i) and (ii) below.

(i) M∗p (σ) = j′′.
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(ii) j 6= j′′ ⇒ (∃x ∈ Xj)[M(j′′, x)↓ 6= j′′].

Since σ is a locking sequence for (M,p, (Z`)`∈N) on L∞, Xj′′ = L∞. On the
other hand, by (72), Yj ⊂ L∞. Thus, j 6= j′′. Furthermore, by (ii) just above,
there exists an x such that

x ∈ Xj

= Yj {by Claim 15.1 and (72)}
⊆ L∞ {by (72)}

and M(j′′, x) 6= j′′. But this contradicts the choice of σ.

Case [s is not least such that Y sj 6= ∅ ∧ s′ is least such that Y s
′

j′ 6= ∅]. Sym-
metric to the previous case.

Case [s is not least such that Y sj 6= ∅ ∧ s′ is not least such that Y s
′

j′ 6= ∅].
Then,

content(σ)∪{f(j, s,m) | m ∈ N} = Z〈j,s〉+1 = Z〈j′,s′〉+1 = content(σ)∪{f(j′, s′,m) | m ∈ N}.
(73)

Note that content(σ) contributes only finitely many elements to each of Z〈j,s〉+1

and Z〈j′,s′〉+1. Thus, for (73) to hold, it must be the case that j = j′ and
s = s′. � (Claim 15.5)

Claim 15.6. For each ` and `′, if Z` = Z`′ , then ` = `′.

Proof of Claim. Suppose that ` and `′ are such that Z` = Z`′ . Clearly, if
Z` = Z`′ = ∅, then ` = 0 = `′. On the other hand, if Z` = Z`′ 6= ∅, then it must
be the case that ` 6= 0 6= `′. Thus, by Claim 15.5, ` = `′. � (Claim 15.6)

Let M̃ ∈ PC1,1 be such that, for each j, s ∈ N and x ∈ N#:

M̃(0, x) =

0, if x = #;
〈M(p, x),0 〉+ 1, if [x 6= # ∧ M(p, x)↓];
↑, otherwise;

(74)

M̃(〈j, s〉+ 1, x) =


〈j, s 〉+ 1, if [M(j, x) = j ∧ Y sj 6= ∅];
〈j, s+ 1〉+ 1, if [M(j, x) = j ∧ Y sj = ∅];
〈M(j, x),0 〉+ 1, if [M(j, x)↓ 6= j];
↑, otherwise.

(75)

Clearly, (M̃, 0, (Z`)`∈N) identifies ∅. On the other hand, suppose that
(M̃, 0, (Z`)`∈N) is fed a text for a language in L − {∅}. Then, intuitively, M̃
simulates M as follows. Suppose that M outputs some hypothesis j. Then,
M̃ iterates through hypotheses 〈j, s〉 + 1, with s = 0, 1, ..., until either: M
switches to some hypothesis other than j, or a least s is found such that
Y sj 6= ∅. If M never switches to another hypothesis, then, by Claim 15.2,
such an s must eventually be found. Furthermore, by Claim 15.4, for this s,
Z〈j,s〉+1 = Xj . Given these facts and Claim 15.6, (M̃, 0, (Z`)`∈N) clearly InjIt-
identifies L. � (Theorem 15)

Theorem 16 just below establishes that ExtIt 6⊆ InjIt.

25



Theorem 16. ExtIt 6⊆ InjIt.

Proof. Let L0 be as follows.

L0 =
{

2N
}

∪
{
{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We,
{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2X | e ∈ N ∧ (a)-(c) below

}
.

(a) (∀e′ ∈ X)[We′ = X].
(b) If We = X, then We and X are finite.
(c) If We 6= X, then 2We ⊆ {0, 2, ..., 2e} and X is infinite.

(76)

Note that L0 is a kind of self-describing class. This, in turn, makes it pos-
sible to ExtIt-identify L0. The proof that L0 is not InjIt-identifiable can be
sketched as follows. By way of contradiction, suppose otherwise, as witnessed by
(M,p, (Xj)j∈N) ∈ PC1,1 ×N× EN . Using Case’s 1-1 Operator Recursion Theo-
rem [Cas74, Cas94],13 we construct an infinite computably enumerable sequence
(ei)i∈N such that one of the following three cases holds.

• The first case is: M∗p never makes a mind-change on

(0 · 2 · · · · · 2e0) · (2e0 + 1)m, (77)

for any m. In this case, it will turn out that We0 = ∅. It will then follow
that (M,p, (Xj)j∈N) does not identify

{0, 2, ..., 2e0} ∪ {2e0 + 1}, (78)

which will be in L0, leading to a contradiction. (See Claim 16.2 below.)

• The second case is: M∗p makes the just described mind-change, for some
m; but, after seeing (2e0 + 1)m, M∗p never makes a mind-change on

(0 · 2 · · · · · 2e0) · (2e0 + 1)m · (2e1 · 2e2 · · · · · 2en), (79)

for any n. In this case, it will turn out that We0 = ∅ and (∀i ≥ 1)[Wei =
{ei | i ≥ 1}]. It will then follow that (M,p, (Xj)j∈N) does not identify at
least one of the languages in (80) and (81) just below.

{0, 2, ..., 2e0} ∪ {2e0 + 1}. (80)

{0, 2, ..., 2e0} ∪ {2e0 + 1} ∪ {2ei | i ≥ 1}. (81)

Furthermore, both languages will be in L0, leading to a contradiction. (See
the case “stage 1 is not exited” following the proof of Claim 16.2 below.)

13Intuitively, the 1-1 Operator Recursion Theorem allows one to construct a computably
enumerable sequence of pairwise-distinct ϕ-programs (ei)i∈N such that each program ei knows
all programs in the sequence and its own index i.
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• The third case is: M∗p makes both of the just described mind-changes.
In this case, it will turn out that, for some such n, (∀i ≤ n)[Wei =
{e1, ..., en}]. It will then follow that either (M,p, (Xj)j∈N) does not iden-
tify

{0, 2, ..., 2e0} ∪ {2e0 + 1} ∪ {2e1, ..., 2en}, (82)

which will be in L0, or (Xj)j∈N is not 1-1. Either way leads to a contra-
diction. (See the case “stage 1 is exited” following the proof of Claim 16.2
below.)

We now show formally that L0 ∈ ExtIt. Let f : N2 → N be a computable,
1-1 function such that, for each e and e′:

Wf(0, 0 ) = 2N; (83)

Wf(e+1, 0 ) = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We; (84)

Wf(e+1, e′+1) = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We′ . (85)

(It does not matter what Wf(·,·) is for the remaining pairs.) For each e, e′ ∈ N
and x ∈ N#, let M̃ be as follows. We use “unchanged” as a synonym for M̃ ’s
first argument.

M̃
(
f(0, 0 ), x

)
=

{
f(e+ 1, 0), where x = 2e+ 1;
unchanged, otherwise;

(86)

M̃
(
f(e+ 1, 0 ), x

)
=

f(e+ 1, e′ + 1), where x = 2e′

and 2e′ > 2e+ 1;
unchanged, otherwise;

(87)

M̃
(
f(e+ 1, e′ + 1), x

)
= unchanged. (88)

It is straightforward to show that (M̃, f(0, 0), (Wi)i∈N) It-identifies L0. That
(M̃, f(0, 0), (Wi)i∈N) ExtIt-identifies L0 follows from Claim 16.1 just below.

Claim 16.1. (M̃, f(0, 0), (Wi)i∈N) is extensional with respect to L0, in the sense
of Definition 1(f).

Proof of Claim. Suppose that σ0, σ1 ∈ Seq(L)− {λ} are such that

WM̃∗p (σ−0 ) = WM̃∗p (σ−1 ) ∧ last(σ0) = last(σ1). (89)

It must be shown that
WM̃∗p (σ0) = WM̃∗p (σ1). (90)

If M̃∗p (σ−0 ) = M̃∗p (σ−1 ), then (90) follows immediately. Similarly, if WM̃∗p (σ0) =

WM̃∗p (σ−0 ) and WM̃∗p (σ1) = WM̃∗p (σ−1 ), then (90) follows immediately. So, suppose

that

M̃∗p (σ−0 ) 6= M̃∗p (σ−1 ) ∧ [WM̃∗p (σ0) 6= WM̃∗p (σ−0 ) ∨ WM̃∗p (σ1) 6= WM̃∗p (σ−1 )]. (91)
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Clearly, the only way that (89) and (91) can occur is if, for some e, e′, and e′′,
with 2e′ > 2e+ 1 and 2e′′ > 2e+ 1,

M̃∗p (σ−0 ) = f(e+1, e′+1) ∧ M̃∗p (σ−1 ) = f(e+1, 0) ∧ last(σ0) = last(σ1) = 2e′′,
(92)

or (92) with σ0 and σ1 reversed. If σ0 and σ1 are reversed, then the proof is
symmetric. So, suppose (92). Note that (92) implies

M̃∗p (σ0) = f(e+ 1, e′ + 1) ∧ M̃∗p (σ1) = f(e+ 1, e′′ + 1). (93)

Let L ∈ L be such that σ0 ∈ Seq(L). By the first conjunct of (92),

{2e+ 1, 2e′} ⊆ content(σ−0 ). (94)

Furthermore,

{0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We′

= Wf(e+1,e′+1) {by (85)}
= WM̃∗p (σ−0 ) {by the first conjunct of (92)}
= WM̃∗p (σ−1 ) {by the first conjunct of (89)}
= Wf(e+1,0) {by the second conjunct of (92)}
= {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We {by (84)}.

(95)

Given (94) and (95), a straightforward analysis of (76) reveals that L must be
a language for which We = X. Furthermore, (i)-(iii) below.

(i) L is the only language in L for which 2e+ 1 ∈ L.

(ii) L = {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We.

(iii) (∀e′′ ∈We)[We′′ = We].

By the second conjunct of (92),

2e+ 1 ∈ content(σ−1 ). (96)

Thus: by (i) above, σ1 ∈ Seq(L); by (ii) above, e′′ ∈We; and by (iii) above,

We′′ = We. (97)

Finally,

WM̃∗p (σ0) = Wf(e+1,e′+1) {by the first conjunct of (93)}
= WM̃∗p (σ−0 ) {by the first conjunct of (92)}
= WM̃∗p (σ−1 ) {by the first conjunct of (89)}
= Wf(e+1,0) {by the second conjunct of (92)}
= {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We {by (84)}
= {0, 2, ..., 2e} ∪ {2e+ 1} ∪ 2We′′ {by (97)}
= Wf(e+1,e′′+1) {by (85)}
= WM̃∗p (σ1) {by the second conjunct of (93)}.
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• Stage 0. Search for an m ≥ 1 such that

M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m+1

)
↓ = M∗p

(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m

)
.

If such an m is found, then set σ1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m, and go
to stage 1. If no such m is found, then search indefinitely.

• Stage 1. For larger and larger values of n, do (a) and (b) below.

(a) Make it the case that We1 = · · · = Wen = {e1, ..., en}.
(b) If there exists an i ∈ {1, ..., n} such that M∗p (σ1 · 2ei)↓ 6= M∗p (σ1) in

at most n steps, then make it the case that We0 = {e1, ..., en}, and
terminate the construction. If no such i exists, then proceed with
the next value of n.

(Note that if no i is ever found in part (b) of stage 1 above, then (∀i ≥
1)[Wei = {ei | i ≥ 1}].)

Figure 5: The construction of (ei)i∈N in the proof of Theorem 16.

� (Claim 16.1)

It remains to show that L0 6∈ InjIt. By way of contradiction, suppose
otherwise, as witnessed by (M,p, (Xj)j∈N) ∈ PC1,1 × N × EN . Then, there
exists a k0 such that

(∀e ≥ k0)
[
M∗p
(
(0 · 2 · · · · · 2k0) · 2e

)
↓ = M∗p (0 · 2 · · · · · 2k0)

]
. (98)

By the 1-1 Operator Recursion Theorem, there exists a computably enumerable
sequence of pairwise-distinct ϕ-programs (ei)i∈N such that

(∀i)[ei ≥ k0], (99)

and such that the behavior of (ei)i∈N is as in Figure 5.

Claim 16.2. Stage 0 is exited.

Proof of Claim. By way of contradiction, suppose that stage 0 is not exited.
Then, We0 = ∅. Let L be as follows.

L = {0, 2, ..., 2e0} ∪ {2e0 + 1}. (100)

Note that L is a language in L0. Furthermore,

t = (0 · 2 · · · · · 2e0) · (2e0 + 1)∞ (101)

is a text for L. But, since stage 0 is not exited, M∗p does not converge to a
single hypothesis on this text — a contradiction. � (Claim 16.2)
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For the remainder of the proof of the theorem, let m0 be the m discovered in
stage 0. By Claim 16.2, such an m0 exists. Let σ1 be as it would be set in
stage 0, i.e.,

σ1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m0 . (102)

Consider the following cases.

Case [stage 1 is not exited]. Then, We0 = ∅ and (∀i ≥ 1)[Wei = {ei | i ≥ 1}].
Furthermore, for each i ≥ 1,

[M∗p (σ1 · 2ei) = M∗p (σ1)] ∨ [M∗p (σ1 · 2ei)↑]. (103)

Let L0 and L1 be as follows.

L0 = {0, 2, ..., 2e0} ∪ {2e0 + 1}. (104)

L1 = {0, 2, ..., 2e0} ∪ {2e0 + 1} ∪ {2ei | i ≥ 1}. (105)

Note that each of L0 and L1 is a language in L0. Furthermore,

t0 = (0 · 2 · · · · · 2e0) · (2e0 + 1)∞; (106)

t1 = (0 · 2 · · · · · 2e0) · (2e0 + 1)m0 · 2e1 · 2e2 · · · · (107)

are, respectively, texts for L0 and L1. But, by (103), either M∗p converges to
the same hypothesis on each of these texts, or M∗p diverges on t1. Either way,
(M,p, (Xj)j∈N) does not InjIt-identify L0 — a contradiction.

Case [stage 1 is exited]. Then, for some n0, (∀i ≤ n0)[Wei = {e1, ..., en0
}].

Furthermore, for some i0 ∈ {1, ..., n0},

M∗p (σ1 · 2ei0)↓ 6= M∗p (σ1). (108)

Let L be as follows.

L = {0, 2, ..., 2e0} ∪ {2e0 + 1} ∪ {2e1, ..., 2en0
}. (109)

Note that L is a language in L0. Furthermore,

t0 = (0 · 2 · · · · · 2e0) · (2e1 · 2e2 · · · · · 2en0) · (2e0 + 1)∞; (110)

t1 = (0 · 2 · · · · · 2e0) · (2e1 · 2e2 · · · · · 2en0) · (2e0 + 1)m0 · (2ei0)∞ (111)

are each texts for L. Let j0 be such that

M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
= j0. (112)

Note that, for each m ≥ m0,

M∗p
(
(0 · 2 · · · · · 2e0) · (2e1 · 2e2 · · · · · 2en0

) · (2e0 + 1)m
)

= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m

)
{by (98) and (99)}

= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
{by the choice of m0}

= j0 {by (112)}.
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Thus, on t0, M∗p converges to j0. Let j1 be the hypothesis to which M∗p converges
on t1. Note that

M(j0, 2ei0)

= M
(
M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
, 2ei0

)
{by (112)}

= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0 · 2ei0

)
{immediate}

6= M∗p
(
(0 · 2 · · · · · 2e0) · (2e0 + 1)m0

)
{by (108)}

= j0 {by (112)}.

Thus, it must be the case that j0 6= j1. But this contradicts the fact that
(M,p, (Xj)j∈N) InjIt-identifies L. � (Theorem 16)

We conclude this section with the following remark.

Remark 17. The fact that It 6⊆ InjIt (as opposed to It 6⊆ ExtIt or ExtIt 6⊆
InjIt) can be shown directly using either of the next two pre-existing results.

• It 6⊆ OrdIndIt (see footnote 12 above).

• There exists a class of languages that can be It-identified, but that
cannot be so identified strongly non-U-shapedly [CK10, Theorem 5.4] (see
also [Bei84, Wie91, CM08]).

5. Iterative Learning by Enumeration Operator

This section examines the iterative learning by enumeration operator model
(EOIt). Recall that EOIt is similar to It, except that the computational
component of the learner is modeled as an enumeration operator, as opposed to
a partial computable function. Our main results of this section are the following.

• EOIt 6⊆ It (Proposition 20).

• It 6⊆ (ExtIt ∪EOIt) (Theorem 22).

• (It ∩EOIt) 6⊆ ExtIt (Theorem 23).

• (FrIt ∩ClassInjIt) 6⊆ EOIt (Theorem 24).

• ExtIt 6⊆ (InjIt ∪EOIt) (Proposition 26(a)).

• InjIt 6⊆ (FrIt ∪ClassInjIt ∪EOIt) (Proposition 26(b)).

• ClassInjIt 6⊆ (FrIt ∪EOIt) (Proposition 26(c)).

• FrIt 6⊆ (ClassInjIt ∪EOIt) (Proposition 26(d)).

This section also includes two other results: Theorem 18 and Proposition 21.
The purpose of Theorem 18 is to correct an error in the conference version of
this paper. The purpose of Proposition 21 is to fulfill the diagram in Figure 1.

The conference version of this paper incorrectly claimed that every com-
putably finitely thick class of languages can be EOIt-identified [MZ10, Theo-
rem 12]. Theorem 18 just below establishes that this claim was incorrect.
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For each i, execute stage 0 below.

• Stage 0. Include N + i and {i} in L. Go to stage 1.

• Stage 1. Let M be the ith element of (Mi′)i′∈N. Search for a k ≥ i such
that

M ∗{i}(i · · · · · k) 6⊆ {i, ..., k}.

If such a k is found, then include {i, ..., k} in L, and terminate the con-
struction (for i). If no such k is found, then search indefinitely.

Figure 6: The construction of L in the proof of Theorem 18.

Theorem 18. There exists a uniformly decidable, computably finitely thick
class of languages L such that L 6∈ EOIt.

The proof of Theorem 18 relies on Lemma 19 just below.

Lemma 19. For each (M , X) ∈ EO1,1 × CE , and each ρ, σ, τ ∈ Seq,

M ∗X(ρ) ⊆ M ∗X(σ) ⇒ M ∗X(ρ · τ) ⊆ M ∗X(σ · τ). (113)

Proof. A straightforward induction using essentially the monotonicity of M .
� (Lemma 19)

Proof of Theorem 18. Let (Mi′)i′∈N be an algorithmic enumeration of EO1,1.
The class L is constructed in Figure 6. It is straightforward to construct an
effective numbering witnessing that L is uniformly decidable. That L is com-
putably finitely thick can be shown using a technique similar to that used in
the proof of Theorem 9 above (see Figure 4(b), specifically).

To show that L 6∈ EOIt: by way of contradiction, suppose otherwise, as
witnessed by (M , X) ∈ EO1,1 × CE . Let i be such that M is the ith element of
(Mi′)i′∈N. Since {i} ∈ L, there exists an m0 such

M ∗X(im0) = {i}. (114)

Furthermore, since (N + i) ∈ L, there exists some k0 ≥ i that is discovered in
stage 1 of the construction of L for i. Thus,

M ∗{i}(i · · · · · k0) 6⊆ {i, ..., k0}, (115)

and {i, ..., k0} is in L. Let σ be such that

σ = i · · · · · k0. (116)

Let t be such that
t = im0 · σ∞. (117)
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Note that t is a text for {i, ..., k0}. It follows that there exists an n0 such that

(∀n ≥ n0)
[
M ∗X(t[n]) = {i, ..., k0}

]
. (118)

Without loss of generality, suppose that n0 −m0 is divisible by |σ|. By (114)
and (118),

M ∗X(im0) = {i} ⊆ {i, ..., k0} = M ∗X(t[n0]). (119)

Note that

M ∗{i}(σ) = M ∗X(im0 · σ) {by (114)}
⊆ M ∗X(t[n0] · σ) {by (119) and Lemma 19}
= M ∗X(t[n0 + |σ|]) {by (117)}
= {i, ..., k0} {by (118)}.

(120)

But (115) and (120) are contradictory. � (Theorem 18)

Proposition 20 just below establishes that EOIt 6⊆ It.14

Proposition 20. EOIt 6⊆ It.

Proof. Let L1 be the following class of languages.

L1 =
{
K ∪ {x} | x ∈ N

}
. (121)

It is well known that L1 6∈ It (see, e.g., [JORS99, Proposition 4.7]). On the
other hand, it is easily seen that L1 ∈ EOIt. � (Proposition 20)

Proposition 21 just below establishes that several of the classes appearing
earlier in this paper are EOIt-identifiable.

Proposition 21. Let L0 be as in the proof of Theorem 16. Then,

{PatΣ,Fin ,K ,Fin ∨ K , Coinit ,L0} ⊆ EOIt. (122)

Proof. By a straightforward adaptation of Lange & Wiehagen’s pattern lan-
guage learning algorithm [LW91], it can be shown that PatΣ ∈ EOIt. It is
similarly straightforward to show that {Fin ,K ,Fin ∨ K , Coinit} ⊆ EOIt.

To show that L0 ∈ EOIt: Let Ψ : P(N)→ P(N) be such that, for each X,

Ψ(X) = X ∪
⋃
{2We | 2e+ 1 ∈ X}

∪
⋃
{2We′ | 2e′ ∈ X ∧ (∃e)[2e+ 1 ∈ X ∧ 2e+ 1 < 2e′]}.

(123)

14For the reader familiar with TxtEx-learning [Gol67, JORS99]: note that the proof of
Proposition 20 also establishes that EOIt is not contained in TxtEx. On the other hand, it
is easily seen that EOIt is contained in TxtBc [CL82, JORS99].
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Clearly, Ψ ∈ EO1,0. Let M̃ : P(N)× N# → P(N) be such that, for each X and
e:

M̃ (X,# ) = X; (124)

M̃ (X, 2e ) = Ψ(X ∪ {2e}); (125)

M̃ (X, 2e+ 1) = Ψ({0, 2, ..., 2e} ∪ {2e+ 1}) ∪
{
X, if 2e+ 1 ∈ X;
∅, otherwise.

(126)

Clearly, M̃ ∈ EO1,1. Furthermore, it is straightforward to show that (M̃ , 2N)
EOIt-identifies L0. � (Proposition 21)

Theorem 22 just below establishes that It 6⊆ (ExtIt ∪EOIt).

Theorem 22. It 6⊆ (ExtIt ∪EOIt).

Proof. For each i ≥ 1, let Ai and Bi be as follows.

Ai = {x | x < 4i} ∪ {4i}. (127)

Bi = {x | x < 4i} ∪ {4i+ 1}. (128)

Let L2 be such that

L2 = {2N, 2N + 1} ∪ {Ai, Bi | i ∈ N}. (129)

To show that L2 ∈ It, we describe informally a learner that It-identifies L2.
Suppose that the first non-# element that the learner sees is even. (The case
when the first such element is odd is handled similarly.) Then, the learner
hypothesizes 2N until, if ever, it sees an odd element. From then on, the learner
keeps track of the largest odd element seen, whilst ignoring all even elements.
Let x be the largest odd element seen, and let i be least such that x ≤ 4i + 1.
Note that, for each i ≥ 1:

Ai∩2N+1 = ({x | x < 4i}∪{4i} )∩2N+1 = {x ∈ 2N+1 | x ≤ 4i−1}; (130)

Bi∩2N+1 = ({x | x < 4i}∪{4i+ 1})∩2N+1 = {x ∈ 2N+1 | x ≤ 4i+1}. (131)

Thus, if x < 4i + 1, then the learner hypothesizes Ai; whereas, if x = 4i + 1,
then the learner hypothesizes Bi. Clearly, such a learner It-identifies L2.

To show that L2 6∈ ExtIt: by way of contradiction, suppose otherwise, as
witnessed by (M,p, (Xj)j∈N) ∈ PC1,1×N×EN . Let σ and τ be locking sequences
for (M,p, (Xj)j∈N) on 2N and 2N+ 1, respectively. Let i ≥ 1 be least such that
(content(σ) ∪ content(τ)) ⊆ Ai. Let t be such that

t = (0 · 1 · · · · · 4i) ·#∞. (132)

Note that each of σ · t and τ · t is a text for Ai. Thus, there exists an n > 4i
such that

XM∗p (σ·t[n]) = Ai = XM∗p (τ ·t[n]). (133)
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Let t0 and t1 be as follows.

t0 = σ · (4i+ 4) · t[n] · 4i · (4i+ 1) · (4i+ 2) · (4i+ 3) ·#∞. (134)

t1 = τ · (4i+ 5) · t[n] · 4i · (4i+ 1) · (4i+ 2) · (4i+ 3) ·#∞. (135)

Note that t0 is a text for Ai+1, and that t1 is a text for Bi+1. Furthermore, by
the choices of σ and τ :

M∗p
(
σ · (4i+ 4)

)
= M∗p (σ); (136)

M∗p
(
τ · (4i+ 5)

)
= M∗p (τ). (137)

It follows that

XM∗p (σ·(4i+4)·t[n]) = Ai = XM∗p (τ ·(4i+5)·t[n]). (138)

Thus, since (M,p, (Xj)j∈N) ExtIt-identifies L2, (M,p, (Xj)j∈N) must converge
to hypotheses for the same language on t0 and t1. But this contradicts the fact
that t0 and t1 are texts for distinct languages in L2.

The proof that L2 6∈ EOIt is similar to the proof that L2 6∈ ExtIt.
� (Theorem 22)

Theorem 23 just below establishes that (It∩EOIt) 6⊆ ExtIt. Let L2 be as in
the proof of Theorem 22, and let N×L2 be shorthand for {N×L | L ∈ L3}. The
class L3 constructed in the proof of Theorem 23 is a proper subclass of N× L2.
It is straightforward to verify that, like L2, N × L2 ∈ It − (ExtIt ∪ EOIt).
Intuitively, L3 includes sufficiently much of N×L2 so that L3 6∈ ExtIt, while L3

excludes sufficiently much of N× L2 so that L3 ∈ EOIt.

Theorem 23. (It ∩EOIt) 6⊆ ExtIt.

Proof. Let ((M,p)i′)i′∈N be an algorithmic enumeration of all pairs of type
PC1,1 × N. A class L3 is constructed in Figure 7.

To show that L3 ∈ It: Let L2 be as in the proof of Theorem 22. Let
r : N# → N# be such that: r(#) = #, and, for each x, (∃i)[x = 〈i, r(x)〉].
(Thus, on {#}, r is the identity, and, on N, r is the second projection with
respect to 〈·, ·〉.) Note that, for each L ∈ L3, L 6= ∅ and r(L) ∈ L2. Thus, an
It-learner for L3 can be made to work as follows. Suppose that the learner is
fed t ∈ Txt(L3). Then, upon seeing the first non-# element of t, the learner
extracts the unique i such that content(t) ∩ {〈i, x〉 | x ∈ N} 6= ∅. Thereafter,
the learner for L3 simulates a learner for L2 on r ◦ t. Whenever the learner for
L2 outputs a hypothesis for a set X, the learner for L3 outputs a hypothesis for
{〈i, x〉 | x ∈ X}. Clearly, such a leaner It-identifies L3.

To show that L3 ∈ EOIt: Let (Ei)i∈N and (Oi)i∈N be such that, for each i:

Ei =

{〈i, 0〉, 〈i, 2〉, ..., 〈i, 4j0 − 2〉}, where j0 ≥ 1 is least such that at least one of (a)-(c)
in Figure 7 hold for i, if such a j0 exists;

{〈i, x〉 | x ∈ 2N}, otherwise;
(139)

Oi =

{〈i, 1〉, 〈i, 3〉, ..., 〈i, 4j0 − 1〉}, where j0 ≥ 1 is least such that at least one of (a)-(c)
in Figure 7 hold for i, if such a j0 exists;

{〈i, x〉 | x ∈ 2N + 1}, otherwise.
(140)
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For each i, do the following. Let (M,p) be the ith pair in ((M,p)i′)i′∈N. Let
j0 ≥ 1 be least , if any, such that at least one of (a)-(c) below hold.

(a) M∗p (〈i, 0〉 · 〈i, 2〉 · · · · · 〈i, 4j0 + 4〉)↑.

(b) M∗p (〈i, 1〉 · 〈i, 3〉 · · · · · 〈i, 4j0 + 5〉)↑.

(c) M∗p (〈i, 0〉 · 〈i, 2〉 · · · · · 〈i, 4j0 + 4〉) = M∗p (〈i, 0〉 · 〈i, 2〉 · · · · · 〈i, 4j0 − 2〉)
∧ M∗p (〈i, 1〉 · 〈i, 3〉 · · · · · 〈i, 4j0 + 5〉) = M∗p (〈i, 1〉 · 〈i, 3〉 · · · · · 〈i, 4j0 − 1〉).

If such a j0 exists, then, for each j ≥ j0, include Ai,j and Bi,j in L3, where:

Ai,j = {〈i, x〉 | x < 4j} ∪ {〈i, 4j〉};
Bi,j = {〈i, x〉 | x < 4j} ∪ {〈i, 4j + 1〉}.

If no such j0 exists, then include {〈i, x〉 | x ∈ 2N} and {〈i, x〉 | x ∈ 2N + 1} in
L3.

Figure 7: The construction of L3 in the proof of Theorem 23.

Note that each of Ei and Oi is computably enumerable, uniformly in i. Fur-
thermore, it is easily verifiable that, for each L ∈ L3 and i, (i) and (ii) below.

(i) L ∩ {〈i, x〉 | x ∈ 2N } 6= ∅ ⇒ Ei ⊆ L.

(ii) L ∩ {〈i, x〉 | x ∈ 2N + 1} 6= ∅ ⇒ Oi ⊆ L.

Let M : P(N)× N# → P(N) be such that, for each X, i, and j:

M (X,# ) = X; (141)

M (X, 〈i, 2j〉 ) = X ∪ Ei ∪ {〈i, 2j〉}; (142)

M (X, 〈i, 2j + 1〉) = X ∪Oi ∪ {〈i, 2j + 1〉}. (143)

Clearly, M ∈ EO1,1. Using (i) and (ii) above, it is straightforward to show that
(M , ∅) EOIt-identifies L3.

Finally, to show that L3 6∈ ExtIt: by way of contradiction, suppose other-
wise, as witnessed by (M,p, (Xj)j∈N) ∈ PC1,1 × N × EN . Let i be such that
(M,p) is the ith pair in ((M,p)i′)i′∈N. First, consider the case that no j0 exists
as in Figure 7 for i. Then, {〈i, x〉 | x ∈ 2N} and {〈i, x〉 | x ∈ 2N + 1} are in L3.
However, it is easily seen that M∗p makes infinitely many mind-changes on either
〈i, 0〉 · 〈i, 2〉 · · · · or 〈i, 1〉 · 〈i, 3〉 · · · · — a contradiction. So, for the remainder of
the proof of the theorem, suppose that such a j0 exists. Thus, for each j ≥ j0,
Ai,j and Bi,j are in L3, where Ai,j and Bi,j are as in Figure 7. Consider the
following cases, based on (a)-(c) in Figure 7.

Case [M∗p (〈i, 0〉 · 〈i, 2〉 · · · · · 〈i, 4j0 + 4〉)↑]. Then, clearly, one can construct a
text for Ai,j0+1 on which M∗p diverges — a contradiction.

Case [M∗p (〈i, 1〉 · 〈i, 3〉 · · · · · 〈i, 4j0 + 5〉)↑]. Similar to the previous case.
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Case [ M∗p (〈i, 0〉 · 〈i, 2〉 · · · · · 〈i, 4j0 + 4〉) = M∗p (〈i, 0〉 · 〈i, 2〉 · · · · · 〈i, 4j0 − 2〉)
∧ M∗p (〈i, 1〉 · 〈i, 3〉 · · · · · 〈i, 4j0 + 5〉) = M∗p (〈i, 1〉 · 〈i, 3〉 · · · · · 〈i, 4j0 − 1〉)].

Then, it can be shown that (M,p, (Xj)j∈N) does not identify either Ai,j0+1 or
Bi,j0+1 in much the same way that the learner in the proof of Theorem 22 was
shown to not identify either the content of the text in (134) or the content of
the text in (135). Again, this leads to a contradiction. � (Theorem 23)

Theorem 24 just below establishes that (FrIt ∩ClassInjIt) 6⊆ EOIt.

Theorem 24. (FrIt ∩ClassInjIt) 6⊆ EOIt.

The proof of Theorem 24 relies on Lemma 19 above, and on Lemma 25 just
below.

Lemma 25. There exists a Friedberg numbering (Xj)j∈N satisfying

(∀j)[1 ≤ |Dj | ≤ 3 ⇒ Xj = Dj ]. (144)

Proof. Let (Yk)k∈N be any Friedberg numbering. Note that each of the following
sets is computably enumerable.

(i) {k | Yk = ∅ ∨ |Yk| > 3}.
(ii) {j | Dj = ∅ ∨ |Dj | > 3}.

Thus, to construct a numbering (Xj)j∈N as in the statement of the lemma, one
can arrange that (Xj)j∈N satisfy (144) explicitly, and that, for each k listed
in (i), there is some unique j listed in (ii) such that Xj = Yk. Such a numbering
(Xj)j∈N is clearly a Friedberg numbering. � (Lemma 25)

Proof of Theorem 24. Let (Xj)j∈N be a Friedberg numbering as asserted to
exist by Lemma 25, and let (Yk)k∈N be any Friedberg numbering satisfying:
Y0 = ∅. Let (Z`)`∈N be such that, for each j and k, Z〈j,k〉 = (2Xj) ∪ (2Yk + 1).
It is straightforward to show that (Z`)`∈N is a Friedberg numbering. Let L4 be
the following class of languages.

L4 = {Z〈j,maxDj〉 | 1 ≤ |Dj | ≤ 3}. (145)

Note that, for each j such that 1 ≤ |Dj | ≤ 3,

Z〈j,maxDj〉 = (2Xj) ∪ (2YmaxDj + 1)
= (2Dj) ∪ (2YmaxDj

+ 1).
(146)

It is straightforward to show that L4 ∈ FrIt (e.g., using (Z`)`∈N as the hypoth-
esis space), and that L4 ∈ ClassInjIt. It remains to show that L4 6∈ EOIt. By
way of contradiction, suppose otherwise, as witnessed by (M , X) ∈ EO1,1 × CE .
Recall that Y0 = ∅. Let k0 = 0, and let L0 = {2k0}. Note that

L0 = {2k0} = {2k0} ∪ (2∅+ 1) = {2k0} ∪ (2Yk0 + 1). (147)

Thus, L0 ∈ L4. It follows that there exists an m0 such that

M ∗X
(
(2k0)m0

)
= L0. (148)
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Let k1 be such that Yk1 = N, and let L1 = {2k0, 2k1} ∪ (2N + 1). Note that
L1 ∈ L4. It follows that there exists an n0 such that

(∀n ≥ n0)
[
M ∗X

(
(2k0)m0 · 2k1 · 1 · 3 · · · · · 2n+ 1

)
= L1

]
. (149)

Let k2 and n1 be such that (a)-(c) below.

(a) k1 < k2.

(b) n0 ≤ n1.

(c) Yk2 = {0, ..., n1}.

Clearly, such k2 and n1 exist. Let L2 = {2k0, 2k1, 2k2}∪{1, 3, ..., 2n1 +1}. Note
that L2 ∈ L4, and that L1 6⊆ L2. Let σ be such that

σ = 2k1 · 1 · 3 · · · · · 2n1 + 1, (150)

let t be any text for L2, and let t′ be such that

t′ = σ · t(0) · σ · t(1) · · · · . (151)

Note that t′ is a text for L2. It follows that there exists an i0 such that

(∀i ≥ i0)[M ∗X(t′[i]) = L2]. (152)

Without loss of generality, suppose that i0 is divisible by |σ| + 1. By (148)
and (152),

M ∗X
(
(2k0)m0

)
= L0 ⊆ L2 = M ∗X(t′[i0]). (153)

Furthermore, by (149) and the fact that n0 ≤ n1,

L1 ⊆ M ∗X
(
(2k0)m0 · σ

)
. (154)

From (153), (154), and Lemma 19, it follows that

L1 ⊆ M ∗X(t′[i0] · σ) = M ∗X(t′[i0 + |σ|]). (155)

But since L1 6⊆ L2, (152) and (155) are contradictory. � (Theorem 24)

Proposition 26 just below completes the diagram in Figure 1.

Proposition 26. (a)-(d) below.

(a) ExtIt 6⊆ (InjIt ∪EOIt).

(b) InjIt 6⊆ (FrIt ∪ClassInjIt ∪EOIt).

(c) ClassInjIt 6⊆ (FrIt ∪EOIt).

(d) FrIt 6⊆ (ClassInjIt ∪EOIt).

Proof. Recall from the proof of Theorem 16 that L0 ∈ ExtIt− InjIt, and from
the proof of Theorem 24 that L4 ∈ (FrIt ∩ ClassInjIt) − EOIt. Witnessing
classes for (a)-(d) in the statement of the proposition are as follows.

(a) L0 ∨ L4 ∈ ExtIt− (InjIt ∪EOIt).
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(b) Fin ∨ K ∨ L4 ∈ InjIt− (FrIt ∪ClassInjIt ∪EOIt).

(c) Fin ∨ L4 ∈ ClassInjIt− (FrIt ∪EOIt).

(d) K ∨ L4 ∈ FrIt− (ClassInjIt ∪EOIt).

In each case, the proof of the positive part is straightforward; whereas, the proof
of the negative part is slightly more involved. We give some of the details below.

(a) It is straightforward to show that if L0 ∨ L4 were InjIt-identifiable, then
L0 would be OrdIndIt-identifiable. Thus, by Theorem 15, L0 would be InjIt-
identifiable. But since this would contradict Theorem 16, L0 ∨ L4 6∈ InjIt.
Similarly, it is straightforward to show that if L0 ∨ L4 were EOIt-identifiable,
then L4 would also be EOIt-identifiable, contradicting Theorem 24. Thus,
L0 ∨ L4 6∈ EOIt.

(b) The proof that Fin∨K∨L4 6∈ FrIt is similar to the proof that Fin 6∈ FrIt. The
existence of a hypothesis space representing Fin ∨ K ∨ L4 exactly would imply
the existence of an analogous hypothesis space for K . Thus, Fin ∨ K ∨ L4 6∈
ClassInjIt. That Fin ∨ K ∨ L4 6∈ EOIt is argued as in part (a).

(c) That Fin ∨ L4 6∈ FrIt is argued as in part (b). That Fin ∨ L4 6∈ EOIt is
argued as in part (a).

(d) That K ∨ L4 6∈ ClassInjIt is argued as in part (b). That K ∨ L4 6∈ EOIt is
argued as in part (a). � (Proposition 26)

6. Conclusion

In this paper, we considered ways of preventing iterative learners from em-
ploying coding tricks, which we defined (informally) as: any use by an iterative
learner of the syntax of a hypothesis to determine what elements that learner
has or has not yet seen. One means of preventing some such coding tricks is to
require that the hypothesis space used be a Friedberg numbering. Of interest,
in this regard, are those classes of languages that are both uniformly decidable
and computably finitely thick, and for which there exists a single effective num-
bering witnessing both properties simultaneously. As we showed in Section 3,
any such class can be iteratively identified using a Friedberg numbering as the
hypothesis space (Theorem 6).

In addition to iterative learning (It-learning) and Friedberg iterative learn-
ing (FrIt-learning), we considered several other learning models, namely: in-
jective iterative learning (InjIt-learning), class injective learning (ClassInjIt-
learning), order independent iterative learning (OrdIndIt-learning), exten-
sional iterative learning (ExtIt-learning), and iterative learning by enumera-
tion operator (EOIt-learning). We showed, for example, that injective iterative
learning is equivalent to order independent iterative learning (Theorem 15), but
that these models are otherwise, pairwise inequivalent (Sections 4 and 5).

There are at least three directions in which research might proceed. First,
one could ask: is our definition of coding trick the right one? For example,
as we showed in Section 5, there exists a class of languages that cannot be
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EOIt-identified, but that can be FrIt and ClassInjIt-identified (Theorem 24).
Using our definition, one could argue that any learner for such a class employs
coding tricks. However, this would seem to include a great many learners (see
the discussion near the end of Section 1). Second, recall that in the EOIt-
learning model, the computational component of a learner is modeled as an
enumeration operator, as opposed to a partial computable function. As far
as we are aware, this fact distinguishes EOIt-learning from any learning model
considered previously. As such, the properties of learners in this model should be
further investigated (see also footnote 14 above). Finally, there is the remaining
open problem of whether every InjIt or FrIt-identifiable class of languages is
contained in a ClassInjIt-identifiable class (Problem 13).
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