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Abstract. Focussed Bayesian fusion reduces high computational costs
caused by Bayesian fusion by restricting the range of the Properties of
Interest which specify the structure of the desired information on its most
task relevant part. Within this publication, it is concisely explained how
Bayesian theory and the theory of statistical evidence can be combined
to derive meaningful focussed Bayesian models and to rate the validity
of a focussed Bayesian analysis quantitatively. Earlier results with regard
to this topic will be further developed and exemplified.
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1 Introduction

If the range Z of the Properties of Interest is large and if the involved probabil-
ity distributions are not efficiently representable, the solution of Bayesian fusion
tasks causes high computational costs [19]. Local Bayesian fusion approaches
[5, 18–20] reduce these costs by avoiding the complete calculation of the poste-
rior distribution. Local Bayesian fusion is inspired by criminal investigations [5].
With regard to the given fusion task, the information which has to be fused is
searched for clues, i.e., for elements of Z which are better supported by the avail-
able information than others are. Then, bearing in mind the available resources,
Bayesian fusion is concentrated on the identified most task relevant part U of Z.

Ignoring all elements of Z \U delivers a straightforward local Bayesian fusion
scheme [18] which we termed focussed Bayesian fusion [6]. Usually, it is not
possible to rate the validity of a focussed Bayesian model after the focussing has
been done [18]. Because of this, the availableness of reliable construction rules
for meaningful focussed Bayesian models is of prime importance at the research
on local Bayesian fusion.

Different criteria deliver construction rules which serve this requirement:
probabilistic error bounds [18], information theoretic quality indicators [19], and
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probability interval schemes [20]. All resulting rules deliver the same guidelines
for the design of meaningful focussed Bayesian models. Additionally, by each of
these rules, the validity of a focussed Bayesian analysis is ratable quantitatively
with regard to a certain aspect. This publication addresses probabilistic error
bounds which originate from the theory of statical evidence.

While probability in the sense of the Degree of Belief interpretation is an ad-
equate measure for every kind of uncertainty [15, 4], Likelihood ratios provide an
adequate quantitative statistical evidence measure [11, 17]. This has been formal-
ized by Hacking as the Law of Likelihood already in 1965 [14]. In several more
recent publications, questions concerning the reliability of observed statistical
evidence and (in connection with that) the concept of misleading statistical evi-
dence are discussed. Bounds for the probability of misleading statistical evidence,
i.e., for the probability that misleading statistical evidence of a certain strength
occurs are given, see for example [8, 16, 17]. By these bounds, the reliability of
statistical evidence becomes quantifiable.

The theory of statistical evidence is not conflicting to Bayesian theory [7],
rather it is implicitly an inherent part of it [12]–provided that a Degree of Belief
interpretation of probability is adopted. Using the theory of statistical evidence
explicitly for the task-specific design of Bayesian models seems to be self-evident.
However, by default, Bayesian models are created without respect to the values
which the observable quantities adopt in a given task3.

This paper is organized as follows: Sec. 2 is a short introduction into Bayesian
fusion. In Sec. 3, we demonstrate how focussed Bayesian fusion reduces the com-
putational complexity of Bayesian fusion. Probabilistic error bounds for focussed
Bayesian fusion derive themselves from the universal bound for the probability
misleading statistical evidence which is applicable to every probabilistic model.
In Sec. 4, we review this bound after introducing the necessary foundations from
the theory of statistical evidence. The application of the concepts from Sec. 4 to
focussed Bayesian fusion is done in Sec. 5 and examples for the corresponding
proceeding are given in Sec. 6. These examples are much more simpler as the
one to which we refer in Sec. 3 with regard to complexity reduction. We chose
them intentionally because they confirm the theoretical analysis done in Sec. 5
in an easily comprehensible manner.

2 Bayesian Fusion

Let z = (z1, . . . , zN ) ∈ Z = Z1 × . . . × ZN , N ∈ N, denote the Properties
of Interest and d = (d1, . . . , dS) ∈ D = D1 × . . . × DS , S ∈ N, denote the
information from several information sources. ds stands for the contribution of
information source s, s ∈ {1, . . . , S}. At a given fusion task, d adopts a value
according the observed information contributions while the “true” value of the
Properties of Interest is unknown. At Bayesian fusion, all available information
is transformed into a probabilistic representation in the sense of the Degree of

3 See for example the discussion in [4] about the generation of a dynamic frame of
discourse.
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Belief interpretation. For this, all involved quantities are assumed to be random.
The Bayesian theorem states how an initial Degree of Belief has to get modified
to include additional knowledge in an adequate manner: it holds

p(z|d) ∝ p(d|z) p(z) . (1)

It is an essential advantage of Bayesian methods that–beside the contributions
of the information sources which are included in the inference via the Likelihood
p(d|z)–the posterior distribution p(z|d) also reflects prior knowledge which is
included in the inference via the prior distribution p(z) [6].

If the information contributions are conditionally independent given z, it
holds p(d|z) =

∏S

s=1
p(ds|z). In this case, it suffices at Bayesian fusion to trans-

form each information contribution ds individually into a source specific Likeli-
hood p(ds|z), s ∈ {1, . . . , S}. Storage costs for the saving of p(d|z) get reduced. If
p(d|z) has to be approximated using training data, less of them will be necessary
to obtain a sufficiently good approximation. The possibility to realize Bayesian
fusion via a sequential fusion scheme [5] is another advantageous consequence.

3 Reduction of Computational Complexity by Focussing

The computationally complexity for the necessary operations to obtain the pos-

terior distribution at Bayesian fusion is O(|Z|) = O(ζN ), ζ = N

√

∏N

i=1
|Zi|, which

may be prohibitive in real world tasks. If the actual Bayesian fusion is concen-
trated on U ⊂ Z with |U | << |Z|, the computational complexity is reduced
considerably on O(|U |).

To clarify this practically, we refer to an example which has been given in
[20]: the task of Bayesian fusion is the determination of positions, driving direc-
tions and types of cars in a scene. For this, prior knowledge from a street map,
IMINT information corresponding to three images of the scene and HUMINT in-
formation are fused. The set of possible positions is discretized to approximately
1280 × 960 units. There are four possible driving directions (“south”, “north”,
“west”, “east”) and five possible car types. At Bayesian fusion, formula (1) has
to be evaluated for over 2 · 107 values of the Properties of Interest. In essence,
we applied the concept of statistical evidence as described in Sec. 5 to find an
adequate subset U of Z for focussed Bayesian fusion. Then, formula (1) has been
evaluated only for these values of the Properties of Interest which are included in
U . Here, |U | constituted less than 15 percent of |Z|. I.e., for the actual Bayesian
fusion, the range of the Properties of Interest has been cut substantially.

4 Statistical Evidence

If p(d|z∗) > p(d|z∗∗) holds for z∗, z∗∗ ∈ Z, the observation d provides statistical
evidence in support of z∗ vis-a-vis z∗∗ because d is more probable under the as-
sumption that the “true” value of the Properties of Interest is z∗ than it was z∗∗.
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In general, a low value of p(d|z∗) for a certain z∗ ∈ Z does not imply that d repre-
sents statistical evidence against z∗: the value of p(d|z) may be low for all z ∈ Z
and d may provide significant statistical evidence in support of z∗ compared
with each other possible value of the Properties of Interest [3]. A quantitative
measure of the statistical evidence which is provided by d can be obtained by
pairwise comparisons of Likelihood values: for z∗, z∗∗ ∈ Z, the Likelihood ratio
p(d|z∗)/p(d|z∗∗) measures the strength of the statistical evidence that is pro-
vided by d in support of z∗ vis-a-vis z∗∗ [14, 11, 17]. Instead of communicating
Likelihood ratios with respect to each possible pair of values of the Properties
of Interest, the statistical evidence from d can be represented more efficiently
by the use of the relative Likelihood function r(d|z) which results if p(d|z) gets
scaled to a maximum value of one. r(d|z) communicates the statistical evidence
from d in support of each z ∈ Z vis-a-vis arg maxz p(d|z) which is the best sup-
ported hypothesis concerning the “true” value of the Properties of Interest [7,
17]. An observation d provides misleading statistical evidence of the strength
p(d|z∗)/p(d|z∗∗) in support of z∗ vis-a-vis z∗∗ if p(d|z∗)/p(d|z∗∗) > 1 holds al-
though the “true” value of the Properties of Interest is z∗∗ [17]. Even though it
can be misleading, statistical evidence is a valuable concept: useful bounds for
the probability of observing misleading statistical evidence of at least a certain
strength exist. For z∗, z∗∗ ∈ Z, ǫ ∈ (0, 1), the universal bound delivers4

∫

∑

d∈E

p(d|z∗∗) ≤ ǫ , E := {d ∈ D | p(d|z∗∗)/p(d|z∗) ≤ ǫ} , (2)

see for example [8, 17]. I.e., under the assumption that the “true” value of the
Properties of Interest is z∗∗, the probability for the observation of a value of d
which delivers statistical evidence of at least the strength 1/ǫ in support of z∗

vis-a-vis z∗∗ is bounded by ǫ. The probability of observing misleading statistical
evidence is relevant at planning a statistical analysis.

5 Application at Focussed Bayesian Fusion

At focussed Bayesian fusion, Z gets restricted to U on the basis of a pre-
evaluation of the observed information prior to the actual Bayesian fusion. Need-
less to say that the resulting focussed posterior distribution will not represent
completely the knowledge about z which is provided by prior knowledge and by
d: by the focussing, some information will get lost [19]. Nevertheless, the quality
of the focussed posterior distribution can be sufficiently high if the restriction
of Z is done in a reasonable manner. The theory of statistical evidence helps to
reach this goal: Z gets restricted on the set of these values of the Properties of
Interest which are at most consistent with d at a certain level which is specified
by ǫ, ǫ ∈ [0, 1), [7] if we set

U := {z ∈ Z | r(d|z) > ǫ} . (3)

4 The symbol
∫
∑

means summation with respect to discrete and integration with
respect to continuous components of d.
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The choice of ǫ should be conform to the available resources. If U is defined
according to (3), (2) saves as error bound for focussed Bayesian fusion: the Degree
of Belief that the “true” value of the Properties of Interest is not included in U
is bounded by ǫ because it can be identified with the Degree of Belief that the
information contributions adopt values which lead to an ignoring of the “true”
value of the Properties of Interest at focussed Bayesian fusion.

The statistical evidence which is provided by one single information contribu-
tion ds, s ∈ {1, . . . , S}, is represented by r(ds|z)– a quantity which does not take
into account prior information and the other information contributions dt, t 6= s.
Hence, an isolated evaluation of the statistical evidence from each ds is possible.
This proceeding may be generally advantageous–but especially for the fusion of
heterogenous information sources which have to be evaluated using extremely
different kinds of expertise. Here, the analogy between criminal investigations
and local Bayesian fusion becomes again obvious: a forensic expert who analyzes
a specific kind of data with respect to the delinquent of one or more specific per-
sons has to provide an analysis of the statistical evidence from this data which
can subsequently be combined by an investigating detective or a court with the
respective prior odds [11] and possibly additional statistical evidence. It is not
the job of the forensic expert to analyze also the values of these quantities [2].
At focussed Bayesian fusion, it also makes sense to define U to consist of these
values of the Properties of Interest which are at most consistent with at least
one of the information contributions at a certain level, i.e.,

U := {z ∈ Z | r(ds|z) > ǫ for at least one s ∈ {1, . . . , S}} (4)

with an ǫ ∈ [0, 1) whose value should be conform to the given resources. Espe-
cially in the case of heterogenous information sources, the information contri-
butions may be conditionally independent. As consequence, the error bound for
focussed Bayesian fusion gets significantly sharpened to ǫS . This fact is easily
provable, e.g., by an adaption of the proof of (2) which is given in [8]. If the
conditional independence assumption does not hold, the bound ǫS is not valid.
However, it makes sense to assume that generally in this case, a more optimal
bound will be lesser than the poorer–also easily derivable–bound ǫ guarantees
[18].

Hence, the concepts from the theory of statistical evidence give basic guidance
for the determination of U and the probabilistic error bounds rate the validity
of the resulting focussed Bayesian model quantitatively.

As the example in [20] shows, it is usually not necessary to adapt the size of
U exactly to the available resources. However, if such an exact adaption should
be done, ideally, the precise scheme for the determination of U should be task
specific. We will demonstrate this theoreticly in the rest of this section and
practically in Sec. 6.

If the size of U is predefined, it is wrong to say that always all S information
contributions should be evaluated to determine U in an theoreticly optimal man-
ner. The condition “r(ds|z) > ǫ for at least one s” in (4) means that a value z of
the Properties of Interest gets ignored if its relative Likelihood with respect to
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all evaluated information contributions is not exceeding ǫ. If ǫ is fixed, regarding
only T < S information contributions for the definition of U will generally lead
to a smaller size of U . Because ǫ should be chosen as low as possible according
to the given resources, generally, a lower value ǫτ should be selected for ǫ if only
T < S instead of S information contributions are evaluated for defining U and,
as consequence, a lower error bound for focussed Bayesian fusion may result.

However, the use of T < S instead of S information contributions for the
definition of U is also not always favorable if the size of U is predefined. E.g.,
if in the case of the conditional independence of the information contributions,
the error bounds are ǫT

τ if T < S information contributions are evaluated and
ǫS
σ if all S information contributions are evaluated with ǫτ < ǫσ, it depends on

the specific values of ǫτ , ǫσ, S and T if also ǫT
τ < ǫS

σ holds.
Hence, if the size of U is predefined, the best determination scheme for U–

with regard to the error bounds–depends on given fusion task. As discussed
in the next two paragraphs, also the costs for the retrieval of the probabilistic
representations should be always considered in practice.

In principle, basing the determination of U on the evaluation of only T < S
information contributions saves resources: less criteria must be checked to decide
if a certain value z ∈ Z is ignorable. Knowledge corresponding to an information
contribution ds, s ∈ {1, . . . , S}, which is evaluated for the determination of U has
to be transformed into a full probabilistic representation in the sense that r(ds|z)
has to be determined for all z ∈ Z. In contrast, for information contributions
which are used solely at the subsequent actual focussed Bayesian fusion, the
Likelihood has to be determined only for z ∈ U .

On the other hand, if the transformation of all kind of information into a
full probabilistic representation consumes too much resources, the information
contributions may also get pre-evaluated in a suboptimal manner: also by such a
suboptimal pre-evaluation, a probabilistic representation in form of Likelihoods
may be obtained such that the theory of statistical evidence is applicable. For
example, in [20], a suboptimal pre-evaluation of all information contributions for
the determination of U is combined with a subsequent actual focussed Bayesian
fusion based on the actual probabilistic information representations. However,
we stress that by this proceeding, the resulting error bounds which are based on
probabilistic representations of lower quality, will be generally less reliable.

6 Exemplification of Focussed Bayesian Fusion

Here, focussed Bayesian fusion is applied exemplarily at naive Bayesian clas-
sification using two data sets from the UCI Machine Learning Repository [1]:
Pendigits (16 attributes, 10 classes) and Letter Recognition (16 attributes, 26
classes). The aim of the studies is an easily comprehensible demonstration of the
described theoretical results. It is not disclaimed that the number of classes in
the data sets may be too low therefor that the application of focussed Bayesian
fusion makes sense in reality and, of course, more sophisticated classifiers will
outperform our results.
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Strictly speaking, the final result of a Bayesian fusion task is the posterior
distribution. However, using decision theoretic concepts [4], subsequent decisions
can be made on the basis of p(z|d). In a Bayesian classification task, an appro-
priate decision is choosing the Maximum a Posteriori estimate arg maxz p(z|d)
which minimizes the expected posterior loss for a zero-one loss function [10]. The
naive Bayesian classifier simplifies a Bayesian classification task significantly by
assuming that the attributes ds, s ∈ {1, . . . , S}, are conditionally independent
given the class z. It is well known that this classifier often has a good perfor-
mance although the conditional independence does not hold and although it may
not be Bayes-optimal [10]: see e.g. [9, 13] and the references given therein.

Here, we implemented a simple form of the naive Bayesian classifier which
has been used in [9] for its empirical evaluation: attribute values were discretized
in 10 intervals of equal length, zeros in the probabilistic representations were
avoided using Laplace corrections. All reported accuracies are averaged over 20
runs. For each run, the data get randomly divided into training and test data.
The training data constitute 2/3 of all data. According to the calculated accu-
racies (Pendigits: ca. 87.81 %, Letter Recognition: ca. 70.77 %), the application
of the naive Bayesian classifier is not completely beside the point for the chosen
data sets and the stability of the accuracies in terms of sample standard devia-
tions (with respect to 20 runs) is also acceptable (Pendigits: ca. 0.58 %, Letter
Recognition: ca. 0.57 %).

In our first study, the decision which classes are ignored is based on the prob-
abilistic representations used for the naive Bayesian classification. The results
for Pendigits are depicted in Fig. 1. At rule 1, a class z ∈ Z gets ignored unless
it holds r(ds|z) > ǫ for at least one s ∈ {1, . . . , 16}. At rule 2, a class z ∈ Z gets
ignored unless it holds p(ds|z) > ǫ for at least one s ∈ {1, . . . , 16}. At rule 3, the
ignored classes are selected randomly. At rule 1 and rule 2, different thresholds
ǫ ∈ {i/100 | i ∈ {0, 1, 2, . . . , 99}} are applied. Although rule 2 performs better
than rule 3, the accuracies are conspicuously below these which are obtained by
the application of rule 1 which respects the theory of statistical evidence. Even
if ǫ is near to 1, rule 1 does not allow the ignoring of an unreasonable number
of classes (for ǫ = 0.99, ca. 33 % of the classes are ignored). The performance of
rule 1 is even better than the sharper probabilistic error bound (which assumes
the conditional independence of the attributes5) leads one to assume.

The results for Letter Recognition are comparable to these which have been
obtained for Pendigits. Here, ignoring ca. 19 % of the classes according to rule
1 leads to a extremely low worsening of the accuracy of less then 1 %. For the
highest considered threshold ǫ = 0.99, about 55% of the classes are ignored and,
by this, the accuracy gets lowered on ca. 65 %.

To demonstrate that the concepts of statistical evidence also apply if other
reasonable probabilistic models are used for the determination of U than the
one which is used for the actual focussed Bayesian fusion, we conducted a sec-
ond study for the Pendigits data at which the attributes correspond to (x, y)-

5 As noted in Sec. 5, it makes sense to assume that a more optimal bound lies between
the lower bound ǫ and this bound, here.
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Fig. 1. Change of accuracy of naive Bayesian classification for Pendigits when classes
are ignored according to rule 1, rule 2, and rule 3. For rule 1 and rule 2, each marker
represents a value which corresponds to a fixed threshold (averaged over 20 runs). I.e.,
for theses rules, each marker relates (for a fixed threshold ǫ) the average number of
classes which are ignored and the average correct classification rate over the 20 runs.

coordinates of hand-written digits. ds corresponds to a x-coordinate if s is odd
and to a y-coordinate if s is even, s ∈ {1, . . . , 16}. By the combination of parts
of the information which is delivered by d1, d5, and d7, a new attribute d̃x which
reports the kind of changes between some of the x-coordinates is created:

d̃x :=















0, d1 < d5 < d7

1, d1 < d5 and d7 ≤ d5

2, d5 ≤ d1 and d5 < d7

3, d7 ≤ d5 ≤ d1

. (5)

For the determination of U , d̃x is evaluated on the basis of the concepts of sta-
tistical evidence: at rule 4, a class z ∈ Z gets ignored unless it holds r(d̃x|z) > ǫ,
ǫ ∈ {i/100 | i ∈ {0, 1, 2, . . . , 99}}. The probabilistic information representation
which is used by rule 4 is neither equivalent to the exact Likelihoods nor to its
approximations which are used at naive Bayesian classification. However, rule 4
makes sense as Fig. 2 shows. Indeed, for larger values of ǫ, also here an absurdly
large number of classes is ignored and, as consequence, the accuracy stays not
longer acceptable. However, it is not astonishing that rule 1 (which considers all
relative Likelihood functions with respect to the original 16 attributes) outper-
forms rule 4 (which relates only three of them via one attribute d̃x) with regard
to this aspect. For a reasonable number of ignored classes, the accuracy of rule
4 may be acceptable high. In the cases in that not more than 20 % of the classes
are ignored, the accuracy reached with rule 4 even exceeds the accuracy which is
reachable using rule 1. Note that the newly created attribute d̃x comprises some
information with regard to the conditional dependencies between d1, d5, and d7.
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Fig. 2. Change of accuracy of naive Bayesian classification for Pendigits when classes
are ignored according to rule 1, rule 4, and rule 5. Each marker represents a value
which corresponds to a fixed threshold (averaged over 20 runs).

Parts of the information which is delivered by d2, d6, and d8 has been used to
create a new attribute d̃y analogously to d̃x. When we analyzed the performance
of both new attributes together, it became obvious that this is a case in that
focussed Bayesian fusion based on the analysis of a smaller number of information
contributions for the determination of U may be preferable if the size of U is
predefined. At rule 5, a class z ∈ Z gets ignored unless it holds r(d̃x|z) > ǫ or
r(d̃y|z) > ǫ. It becomes clear from Fig. 2 that rule 4 outperforms rule 5 if the size
of U is predefined and not absurdly large. The reason of this has been identified
in Sec. 5. The following exemplary numbers clarify it additionally: at rule 4, the
lowest value of ǫ for that at least three classes are ignored (on average) is 0.25.
Applying rule 5, the lowest value of ǫ for that at least three classes are ignored
(on average) is 0.59. Even the sharper probabilistic error bound leads to the
conclusion that the use of rule 4 is preferable in this situation.

7 Conclusion

The theory of statistical evidence provides concepts which are extremely valu-
able at the research on focussed Bayesian fusion. Their application outperforms
ad hoc solutions by far. It offers rules for the exact creation of focussed Bayesian
models and it provides error bounds by which the validity of a focussed Bayesian
fusion is ratable. There exists no unique recipe for the exact creation of focussed
Bayesian models if the size of U is predefined. However, the error bounds repre-
sent helpful mathematical tools for making this choice.
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