
Automatically Discovering Properties that
Specify the Latent Behavior of UML Models ! !!

Heather J. Goldsby and Betty H.C. Cheng
{hjg,chengb}@cse.msu.edu

Department of Computer Science and Engineering
Michigan State University, 3115 Engineering Building

East Lansing, Michigan 48824 USA

Abstract. Formal analysis can be used to verify that a model of the
system adheres to its requirements. As such, traditional formal analysis
focuses on whether known (desired) system properties are satisfied. In
contrast, this paper proposes an automated approach to generating tem-
poral logic properties that specify the latent behavior of existing UML
models; these are unknown properties exhibited by the system that may
or may not be desirable. A key component of our approach is Marple,
a evolutionary-computation tool that leverages natural selection to dis-
cover a set of properties that cover different regions of the model state
space. The Marple-discovered properties can be used to refine the mod-
els to either remove unwanted behavior or to explicitly document a desir-
able property as required system behavior. We use Marple to discover
unwanted latent behavior in two applications: an autonomous robot nav-
igation system and an automotive door locking control system obtained
from one of our industrial collaborators.

1 Introduction

One approach to ensuring that models used for model-driven development pro-
vide the desired behavior is to analyze them for adherence to system require-
ments [1–3]. This analysis, however, does not detect errors in latent behavior,
the unspecified and potentially unwanted behavior of the model; these errors
could then be propagated to the implementation and even deployed. Uchitel et.
al have proposed an approach for detecting one form of latent behavior called
implied scenarios as part of the process of synthesizing a model from scenar-
ios [4]. However, preexisting UML models cannot make use of this technique.
Three broad categories of approaches have been developed to produce proper-
ties that could be used for analysis: Requirements discovery approaches (e.g., [5])
! This work has been supported in part by NSF grants EIA-0000433, CNS-0551622,

CCF-0541131, IIP-0700329, CCF-0750787, Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744, Siemens Corporate Research, and a
Quality Fund Program grant from Michigan State University.

!! We gratefully acknowledge the feedback and insight provided by the reviewers of our
earlier work.

examine testing and deployment artifacts to detect missing or erroneous prop-
erties; process improvements have been proposed as part of these approaches.
Refinement-based approaches (e.g., [6]) infer properties from formally specified
goals or requirements. Lastly, specification generation techniques (e.g., [7–15])
infer properties from a representation of a system (e.g., a model or code) or a
derivative of the system (e.g., execution traces). Several previously developed
specification generation approaches are able to infer temporal logic properties
from a model [8, 12], code [14], or execution traces [9, 15]. For these approaches,
the developer identifies a part of the system behavior to explore, either by re-
stricting the exploration to a portion of the code [14], or by explicitly selecting
the states, events, and variables that are of interest [8, 9, 12, 15]. One ramification
of having the developer guide the exploration is that the unexplored portions
of the system may still conceal latent unwanted behavior. Ideally, developers
would like to maximize both automation of property discovery and coverage,
while minimizing the number of properties that must be examined.

In this paper, we propose an evolutionary-computation approach called
Marple1 to automatically generating properties that specify the latent behavior
of UML models comprising an instance (class) diagram and multiple state dia-
grams. Evolutionary computation methods, such as genetic algorithms and ge-
netic programming, have achieved considerable success, in some cases producing
human-competitive designs [16]. Each evolutionary algorithm experiment com-
prises a population of individuals. Over the course of many generations, where
each generation is subjected to natural selection, mutation, and crossover, the
evolutionary algorithm seeks to optimize according to a fitness function that
describes one or more objectives. For this approach, we use a recently developed
technique called novelty search, where the objective is not to find one optimal
solution, but rather to find a suite of sufficiently different solutions [17]. We use
novelty search to enable Marple to produce properties that maximize coverage
of the model’s behavior, while minimizing human effort.

Marple uses novelty search to discover a set of properties that describe a
UML model, where these properties describe behavior not explicitly stated in
the requirements and may, in fact, be unacceptable latent behavior. Specifically,
each individual within Marple represents a property created by instantiating
one of the five most commonly occurring specification patterns [18] in the form
of Linear Temporal Logic (LTL). Instantiating a pattern involves replacing the
placeholders with evolved boolean propositions, where a proposition is created
using attribute and operation information from a UML instance diagram of the
system. Because the propositions can include conjunctives and disjunctives, the
set of possible propositions is unlimited and too large for brute force search
methods to explore. During the evolutionary process, mutations and crossover
produce different LTL properties that may be satisfied by the UML model. The
novelty of a property is assessed using the Spin model checker [19]. Specifically,
the state space of the shortest witness trace (i.e., path that supports the prop-

1 Marple is named after Miss Marple, Agatha Christie’s detective who was famous
for detecting latent human behavior.

erty) through the Spin representation of the model is compared to the state
spaces of other properties. 2 If a novel region of the model state space is discov-
ered (i.e., a region of the state space that has not been explored by previously
evaluated properties), then the property is assigned a higher fitness value and
Marple searches the new region more thoroughly. However, if a property ex-
plores a previously explored region of the state space, then it is assigned a low
fitness value and Marple does not search the region as thoroughly. In this way,
Marple discovers properties that cumulatively describe the behavior of the
model. For readability purposes, the properties generated by Marple are pre-
sented to the developer in natural language [20] for assessment. The generated
properties can be used by the developer to refine the requirements specifications
(to explicitly sanction the latent behavior) or to modify the UML model (to
remove unwanted latent behavior).

Overall, our approach enables developers to automatically explore UML mod-
els for properties representing potentially unwanted latent behavior. We illus-
trate our approach by using Marple to discover the unwanted latent behavior
of models for an automobile door locking system obtained from one of our indus-
trial collaborators. To further validate our approach, we have also applied it to
a robot navigation system [21] and sought feedback from our industrial collab-
orators. The remainder of the paper is organized as follows. Section 2 presents
relevant background information. Section 3 describes Marple and describes re-
sults from our door locking case study. Section 4 describes how we validated the
performance of Marple. Section 5 discusses related work. Finally, in Section 6,
we present conclusions and discuss future work.

2 Background

In this section, we provide background information on the property specification
patterns used for this approach, genetic programming, and novelty search.

2.1 Property Specification Patterns

Dwyer et al. identified several property specification patterns [18] that are com-
monly used to analyze systems for assurance needs. For our approach, we enable
Marple to instantiate the five most common patterns (Absence, Universal-
ity, Existence, Precedence, and Response), using the global scope of applicabil-
ity. 3 Additionally, to facilitate assessment by human developers, we use a previ-
ously developed structured English grammar [20] for the specification patterns
to present relevant properties in natural language. Figure 1 depicts the natural
language representations of these patterns, where p and q are placeholders for
propositional expressions.
2 Spin provides configuration options for generating the shortest path, which is how

we produce the shortest witness trace.
3 Marple can also be used to generate properties using other scopes. However, for

brevity, we only present the global scope.

Pattern
Name

Natural Language

Absence Globally, it is never the case that p holds.
Existence Globally, p eventually holds.
Universality Globally, it is always the case that p holds.
Precedence Globally, it is always the case that if p holds, then q previously

held.
Response Globally, it is always the case that if p holds, then q eventually

holds.

Fig. 1. Global Specification Patterns

2.2 Genetic Programming

Genetic programming is an evolution-inspired approach to discovering computer
programs that solve a problem. A genetic programming experiment comprises a
population of individuals, where each individual is a program tree. Figure 2(a)
depicts one such program tree that represents the function: x + (sin(x) * 5).
Each node in the tree can be a function that takes one or more parameters
that are represented as subtrees (e.g., +, *, sin), or a terminal that does not
take any parameters and may represent either a variable or a constant (e.g., x,
5). At the start of the experiment, a population of individuals is created using a
random assortment of the available functions and terminals. Each individual has
an associated fitness that represents how closely it approximates the solution,
e.g., the desired symbolic regression formula (x*x*x).

A genetic program consists of many generations of individuals. During each
generation, the fitness of the individuals is evaluated. Then individuals with
high fitness scores are selected to be used to create the subsequent generation.
An individual may be selected for mutation, where one or more nodes within
the program tree are changed to another node prior to being placed within the
next generation. For example, Figure 2(b) depicts how the tree in (a) could
have been mutated by replacing the multiply function (*) with the divide func-
tion (/) effectively changing the formula to be: x + (sin(x) / 5); shading denotes
the point of change. An individual could also be selected for crossover, where
a subtree is exchanged with a subtree from another selected individuals. For
example, Figure 2(c) depicts how the tree in (a) could have been modified by
crossover replacing the sin(x) subtree with the constant 7. Because the highly
fit individuals are preferentially selected to be used as the raw material to cre-
ate subsequent generations, over time, the solutions discovered by the genetic
programming experiment optimize according to the fitness function.

In this paper, we use genetic programming as the basis for our representation
of LTL properties, where each program tree represents one property and the
terminals represent concepts defined by the UML model.

(c)

x

sin 5

+

*

x

x

sin 5

+

/

x

x

5

+

*

 7

(a) (b)

Fig. 2. Examples of a genetic program tree, where (a) is a tree, (b) is the same
tree after a mutation, and (c) is the same tree after crossover. The shaded nodes
represent the location of the change.

2.3 Evolutionary Computation and Novelty Search

In general, evolutionary computation is a search technique used to explore large
and complex search spaces for solutions that optimize a fitness function. How-
ever, the application of a fitness function can sometimes be shortsighted leading
to evolutionary computation approaches becoming “stuck” on sub-optimal solu-
tions that represent local minima, rather than discovering the more complex and
better solution. Lehman and Stanley originally developed novelty search, where
fitness is a measure of how rare the behavior of an individual is, as a method for
discovering more complex and better solutions [17]. Specifically, novelty search
uses the following fitness formula:

ρ(x) =
1
k

k∑

i=0

dist(x, ui)

where ρ(x) is the novelty measurement for individual x; k is the number of
nearest neighbors used for the novelty calculation; and dist(x, ui) is the dis-
tance between individual x and its ith nearest neighbor, ui. To calculate ρ(x)
the distance between x and all other individuals in the current population and
the archive of previously discovered novel individuals is computed. The novelty
metric is then computed by taking the mean of the distance to the k nearest
neighbors. If the novelty value was greater than ρmin, then the individual is en-
tered into the archive. In this way, individuals that explored previously unseen
areas of the search space were assigned a higher fitness. This technique has pro-
duced a neural net that enabled a robot to more effectively navigate the maze,
as compared to neural nets created using evolutionary computation techniques
that sought to maximize fitness, rather than novelty [17].

While in previous work novelty search was used to discover better solutions
than other evolutionary computation techniques, in this paper, we use novelty
search to discover a suite of properties that cumulatively attempt to cover the
state space of a model.

3 Approach

At a high level, our approach uses novelty search to mine a model for prop-
erties that may represent either known sanctioned behavior or unknown latent
behavior. Three steps are used for running Marple:
1. The developer configures Marple for a specific model.
2. The developer runs Marple to produce a set of properties.
3. The developer reviews the properties and uses the information to improve

the model.
In this section, we provide further detail about this process using a door locking
model obtained from industry as a running example.

3.1 Case Study

We illustrate our approach by applying it to an automobile door-locking system
that was obtained from our industrial collaborators. Figure 3 depicts an object
diagram for the system. The door-locking system is a distributed embedded
system responsible for controlling the centralized door locks in a car. The door-
locking system comprises two control units, placed in the driver and passenger
doors, respectively. The units control the sensors and actuators located on the
respective sides of the car. To lock and unlock the doors, the locks on the driver
or passenger door may be used by inserting and turning a key in the key cylinder.
All doors in the car will be locked or unlocked simultaneously. In addition, doors
can be locked and unlocked from within the car, using a button located on each
door. For safety reasons, unlocking always has priority over locking, so that in
case of emergencies the car can be exited quickly.

communicate
DrivDoorLock

DrivDoorKey

DrivLockButton

DrivDoorSensor

PassBatteryVoltageSensorDrivBatteryVoltageSensor

DrivDoorController PassDoorController

Environment

IgnitionSensor

InteriorLightController

PassDoorLock

PassDoorKey

PassLockButton

PassDoorSensor

monitors monitors

InteriorLight
controls

monitors

communicate

controls controls

monitors

monitors

monitors

monitors

monitors

monitors

Fig. 3. Door Locking System Object Diagram

3.2 Step 1: Configuring Marple

To use Marple, a developer needs to provide: (1) a UML model that includes an
object diagram and a set of state diagrams, where each state diagram describes
the behavior of one object, and (2) a textual representation of the attributes and
methods of the model. These attributes and methods are used as building blocks
to create propositional expressions that replace the placeholders in the specifica-
tion patterns. For example, Figure 4 depicts a snippet of the text file used to cre-
ate the propositional expressions. For each operation, a propositional expression
representing the operation being called is created. For each boolean attribute, a
terminal where the attribute is true and another terminal where the attribute is
false is created. For example, basic propositions DrivDoorController.doorStatus
== 0 and DrivDoorController.doorStatus == 1 are among the propositions cre-
ated for line 4. For each provided value of an integer, we create terminals where
the attribute is equal to the value and when the attribute is not equal to the
value. For example, basic propositions DrivDoorController.batteryVoltage == 6
and DrivDoorController. batteryVoltage != 6 are among the propositions cre-
ated for line 2. The door locking system has 143 unique basic propositional
expressions. Within Marple these basic expressions are then combined using
conjunctives and disjunctives to form more complex propositional expressions.

1 classname DrivDoorController
2 attribute batteryVoltage int 6 9
3 attribute keyStatus int 0 1 2
4 attribute doorStatus boolean 0 1
5 attribute lockButtonStatus int 0 1 2
6 attribute iterations int 0 1 2 3 4
7 attribute initSuccess boolean 0 1
8 attribute voltageSuccess boolean 0 1
9 operation setBatteryVoltage
10 operation setKeyStatus
11 operation setDoorStatus
12 operation setLockButtonStatus

Fig. 4. An elided portion of the text file used to create model-specific terminals.

3.3 Step 2: Marple

Given the inputs provided by the user as part of Step 1, Marple automatically
produces a suite of LTL properties specified in natural language that cumu-
latively capture the requirements and latent behavior of the model. Here we
describe: (1) how Marple internally represents properties, including how prop-
erties are mutated and crossed-over and (2) how the fitness function that governs
the behavior of the evolutionary algorithm works.

Internal Property Representation. Essentially, each individual within a Marple
experiment represents a property as a Genetic Program. When Marple starts,
it randomly creates a population of these trees representing different properties.
Figure 5 depicts two such individuals and the natural-language representation
of the property that they specify. To enable Marple to evolve such trees, we
created a set of function nodes that are used to create properties for all possible
models and a set of terminals that are propositional expressions and are model
specific. Specifically, we provided function nodes for Absence, Existence, Uni-
versality, Precedence, and Response properties. Each tree had to be rooted
with one of these nodes. Each of these nodes took a specific number of subtrees
that correspond to the number of placeholders for propositional expressions.
Next, we created two additional function nodes and and or, which are used to
create more complex propositional expressions. For example, Figure 5(a) is an
Absence property that contains a subtree with an or node.

or

DrivDoorController.setLockButton()DrivDoorController.iterations==4

Absence

DrivDoorController.setKeyStatus()

Response

Environment.batteryVoltage==9

Globally, it is never the case that
 (DrivDoorController.iterations == 4 or
 Environment.batteryVoltage == 9) holds.

 DrivDoorController.setLockButton() holds, then
 DrivDoorController.setKeyStatus() eventually holds.

Globally, it is always the case that if

(a) (b)

Fig. 5. Two properties generated by Marple. Property (a) represents unwanted
latent behavior. Property (b) represents acceptable latent behavior.

If an individual property is selected for mutation, then one of its nodes or ter-
minals is randomly exchanged with another node or terminal. Because Marple
respects the type of a given node (e.g., a node representing an absence property
will only be replaced with a node representing a different type of property),
the produced property will always be syntactically correct. For example, after
mutation, the property Figure 5 (a) may turn into property Globally, it is never
the case that DrivDoorController.batteryVoltage == 9 holds., which changes the
boolean expression from a disjunctive expression to a basic proposition. Another
possible property that could be constructed by mutating the property depicted
in Figure 5 (a) is Globally, it is always the case that DrivDoorController.iterations
== 4 or Environment.batteryVoltage==9 holds, which changes the type of prop-
erty being specified from an absence property to a universality property.

If two properties are selected for crossover, then subtrees of the properties
are exchanged. For example, if properties (a) and (b) in Figure 5 are selected for
crossover, then the resulting properties might be:

– Globally, it is never the case that DrivDoorController.setLockButton() holds.
– Globally, it is always the case that if (DrivDoorController.iterations == 4

or Environment.batteryVoltage == 9) holds, then DrivDoorCon-
troller.setKeyStatus() eventually holds.

where the underlined portions of the properties represent the parts that have
been exchanged through crossover.

Fitness Function. The central aspect of measuring the novelty of a property is
the distance metric that measures how similar (or different two properties) are.
In this case, we use the novelty search function described in Section 2.3 and
define distance as the difference between the state spaces covered by the witness
traces of the respective properties, where a witness trace is the shortest path
of execution through a model that satisfies a property. Specifically, first, we use
the Spin model checker [19] to verify the property holds. Then, if it does, we
invert the property to produce a witness property. For example, the witness prop-
erty of the property described in Figure 5 is: Globally, it is eventually the case
that (DrivDoorController.iterations ==4 or Environment.batteryVoltage == 9)
holds. Execution paths that violate the witness property are execution that sat-
isfy the original property.

g

a

c

f

d

b

e

Fig. 6. Visualization of nov-
elty metric

This distance measurement has several asso-
ciated benefits. First, if the property does not
hold for the model, then the set of states is
empty. If the property is trivially true (e.g.,
the situation where the proposition x is always
false and thus the property Globally, it is al-
ways the case that if x holds, then y eventually
holds. is vacuously true), then the set of states
is also empty. In this way, the distance met-
ric compresses uninteresting properties together
and enables us to discover more novel properties
that explore different areas of the state space.

We then perform novelty search using the
distance metric in order to discover latent model
behavior. Figure 6 provides a graphical depic-
tion of how novelty search works. For this ex-
ample, we are assessing the novelty of property
a. Each circle represents the state space of a property. If two circles overlap, then
they share a common set of states (e.g., c and e, a and c). The distance between
two circles is the set difference between their states. To compute the novelty
of a property, we examine all possible pairs of properties both in the property
and also in the archive of all previously generated properties. In this case, if k
were equal to 2, then the nearest neighbors of property d would be properties

b and a. The novelty of property d is the mean of the difference between d and
b and the difference between d and a. Because we are interested in a suite of
properties that cumulatively describe the behavior of the model, rather than a
single penultimate property, each generated property is added to the archive.

3.4 Step 3: Assessing the properties.

At the end of a run, Marple returns the contents of the archive, which rep-
resents all of the generated properties, to the developer. These properties are
provided in natural language, using Spider, a previously developed tool [20],
to facilitate understanding. The properties may represent either requirements,
latent acceptable behavior, or latent unacceptable behavior.

To assist the developer in analyzing the properties, we use a two-step ap-
proach to using the properties to uncover latent behavior:

1. Inspect and assess the absence, universality, and existence properties gener-
ated by Marple. These types of properties are able to detect subtle errors,
such as whether or not an attribute ever changed values or a method was
called. Within this step, we begin by assessing the properties with novelty
values greater than zero, since these represent the minimal set of discovered
properties that effectively explore the state space and as such provide an
overview of the behavior of the model. If a property specifies potentially
unwanted behavior, we then zoom in by looking at other properties that
use the same attribute and class names, as these properties may specify the
same behavior in a manner more intuitive to understand.

2. Inspect and assess the precedence and response properties generated by
Marple. These properties are able to detect timing errors or unwanted
relationships among model elements. We repeat the magnification process
by first focusing on the novel properties and then zooming in on behaviors
of interest.

To illustrate this approach, we use the results from one run of Marple, which
produced 351 properties, 167 of which were verified as describing the model, of
which 63 had a novelty value greater than zero.

Figure 7 depicts five absence and existence properties generated by Marple
for the door-locking model. By visually inspecting these properties, we were
able to classify properties 2 and 5 as representing acceptable model behavior.
However, properties 1, 3, and 4 represent unwanted latent behavior – all of these
properties specify that certain attribute values were never used.

Next, we visually inspected the model in an attempt to discover the source
of the unwanted behavior. While examining the state diagram for the DrivDoor-
Controller we noted a subtle, but important error: The DrivDoorController was
missing a transition that connected the start state to the initialization state. Fig-
ure 8 depicts an elided version of the state diagram for the DrivDoorController.

1. Absence Property: Globally, it is never the case that (Environ-
ment.batteryVoltage==9 or DrivDoorController.iterations==4) holds.

2. Existence Property: Globally, (DrivDoorController.batteryVoltage != 9
or DrivDoorController.initSuccess==1) eventually holds .

3. Absence Property: Globally, it is never the case that DrivDoorCon-
troller.initSuccess==1 holds.

4. Absence Property: Globally, it is never the case that DrivBatteryVoltage-
Sensor.voltage==9 holds.

5. Existence Property: Globally, PassDoorController.setKeyStatus() even-
tually holds.

Fig. 7. Five absence and existence properties generated by Marple

RunSleep

PowerOff Initialize

Fig. 8. The elided version of
the DrivDoorController state
diagram. The dotted line
transition represents a miss-
ing transition that caused un-
wanted latent behavior.

Specifically, to illustrate the error, the elided di-
agram depicts only the initialization state and
the compound states. The bolded transitions
were included in the model. The dotted line
transition represents the missing transition. Be-
cause the DrivDoorController was missing this
transition, it did not initialize properly and thus
did not initialize other components. The Pass-
DoorController also contained this error. We
consider this error to be subtle and difficult to
detect, given it strongly influenced the behavior
of the controllers and yet this model had been
developed and analyzed by a member of our lab
for adherence to requirements.

Given serious unwanted latent behavior was
detected early in the process, the model was cor-
rected and the analyses rerun. However, if the
absence, universality, and existence properties were acceptable, then we would
expand our analysis to include the precedence and response properties.

4 Validation

While we have described the process of using Marple and have provided evi-
dence that in one case Marple was able to detect unwanted latent behavior, To
further validate our approach, we compare Marple’s ability to discover proper-
ties that describe the door locking system to a control experiment that did not
use novelty search.

The control version of Marple did not use novelty information for the
evolutionary search process – properties were randomly selected for mutation,
crossover, and survival. To ensure the generality of the control experiments, in
addition to assessing Marple’s performance on the door locking system, we also

evaluated it on a model of an autonomous robot navigation case study, origi-
nally developed by Park et al. [21], and later revised and modeled by us [22].
To account for the stochastic nature of the evolutionary process, for each model,
we ran 30 control runs and 30 Marple runs.

We then examined the central question of whether Marple is better able to
identify novel properties than the control. Table 1 depicts the results. The first
row is the total number of generated candidate properties, where these properties
may have been either true or false for the model. For both systems, Marple
generated over 35% more candidate properties than the control. The second
row is the number of properties that were verified to describe the behavior of
the model. Here, Marple produced more than twice as many properties that
described the behavior of the model than the control. On average, over 45% of
the properties generated by Marple were verified as describing the model. In
contrast, less than 30% of the properties generated by the control were verified.
The last row is the number of properties whose witness traces included at least
one previously unvisited state. These properties represent 30-40% of the verified
properties generated by Marple and indicate that Marple is exploring novel
regions of the state space. Overall, these results demonstrate that Marple is
an effective strategy for exploring the behavior of a model. In general, these
runs took approximately 8 hours. This time period enables a developer to run
Marple overnight and have results in the morning.

Door-Locking System Robot Navigation System
Control Marple Control Marple

Candidate
Properties 214.78 294.20 205.31 287.14
Properties 59 134 56 141
Novel Properties - 43.27 - 59.27

Table 1. The mean number of properties generated by the control and Marple
runs for the door-locking system and robot navigation system.

We solicited feedback from our industrial collaborators regarding the proper-
ties identified and the overall process. First, they confirmed that the time frame
for generating properties (essentially overnight) and the number of properties
generated was reasonable. Second, the format in which the generated properties
were presented (i.e., structured natural language) was an effective format for de-
velopers to review and determine whether the properties represented sanctioned
or unwanted behavior. Third, the assessment process that we proposed was useful
and viable. In general, the feedback was that Marple provided a much needed
means for detecting unwanted behavior in models of high assurance systems.

5 Related Work

In general, specification generation techniques produce properties by instantiat-
ing property patterns that contain placeholders with propositions that specify
valid properties. Three major categories of related work are: static inference, dy-
namic inference, and temporal logic query checking. Static inference approaches
infer properties from code specifications by analyzing program text (e.g., [7, 14])
or by analyzing the code using a modular model checker [11]. Dynamic infer-
ence approaches infer likely properties, called invariants, from execution traces
generated by code specifications (e.g., [9, 10, 15]). Temporal logic query checking
(e.g., [8, 12]) finds the strongest formulae adhered to by the model that satisfy
the temporal logic query, which is a temporal logic formula with placeholders.

Next, we discuss the specification generation techniques that generate tem-
poral logic properties [8, 9, 12, 14, 15]. Perracotta [15], a dynamic inference ap-
proach, generates eight variations of the temporal logic response pattern from
imperfect execution traces, where the developer instruments the program to
monitor events and states of interest that constitute the possible propositions.
Chang et al. [9] proposed a dynamic inference approach that generates temporal
logic properties from a set of inference templates built using the Propel pat-
terns [23]. Event traces are used to refine the inference templates to eliminate
properties that are not satisfied by the program’s event traces. Propositions
based on developer-selected events are used to instantiate the property tem-
plates. Weimer and Necula proposed a static inference approach [14] to detecting
bugs in source code. Their approach generates properties that specify the behav-
ior of the error-handling code. Temporal logic query checking approaches [8, 12]
automatically find solutions to a temporal logic query. Specifically, to find the
strongest formula, the query checker replaces the placeholders with combinations
of developer-specified propositions.

In general, these approaches rely on developer knowledge (i.e., selected propo-
sitions to use and/or a selection of code) to determine the part of the system
behavior to explore for properties. In essence, these approaches specify behav-
ioral properties that refine the developer’s understanding of a developer-specified
segment of system behavior. Our approach can be used in a complementary
fashion in that it identifies latent properties referring to propositions and/or
properties not explicitly identified by the developer and that might otherwise
remain concealed. For example, Marple could be used to identify unwanted
latent behavior, and temporal logic query checking could be used to refine de-
veloper knowledge by identifying the strongest relationship among the Marple
discovered propositions.

6 Conclusions and Future Work

In this paper, we have presented an approach to automatically generating prop-
erties that specify the unwanted behavior of UML models. Our approach relies on
Marple, an evolutionary computation technique, to generate properties that are

presented to the developer in natural language. Specifically, Marple generates
properties by instantiating specification patterns with propositions developed
using information in the UML class diagram. Regarding the scalability of this
approach, as with most industrial uses of model checking and formal analysis,
Marple is intended to be used on subsets of systems, particularly those of a crit-
ical nature. We have used Marple to detect latent properties of several models
provided by our industrial partners in order to demonstrate its ability to work
on models of industrial scale. Parallelizing the novelty search algorithm, chang-
ing the number of individuals within the population, or changing the number of
generations that the algorithm runs could reduce the analysis time, and we will
explore this optimization strategy in future work. Our approach is complemen-
tary to other specification generation techniques because it is able to identify
unwanted latent behavior in portions of the model that may otherwise remain
unexplored with the other approaches.

Our future work will explore extending Marple to use specification patterns
that include additional scopes, as well as specification patterns for real-time
properties and other types of properties [20, 23]. These extensions will enable
Marple to detect additional sources of latent behavior. Lastly, we are investi-
gating using Marple to detect feature interaction properties and automatically
generate test cases for the corresponding code [24].

References

1. McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with
formal languages. In: Proceedings of the IEEE International Conference on Soft-
ware Engineering (ICSE01), Toronto, Canada (May 2001)

2. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: Proceedings
of the 14th IEEE International Conference on Automated Software Engineering,
Washington, DC, USA, IEEE Computer Society (1999) 255

3. Tanuan, M.C.: Automated Analysis of Unifed Modeling Language (UML) Specifi-
cations. Master’s thesis, University of Waterloo, Canada (2001)

4. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. SIGSOFT Softw. Eng. Notes 26(5) (2001) 74–82

5. Lutz, R.R., Mikulski, I.C.: Requirements discovery during the testing of safety-
critical software. In: ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering. (2003)

6. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering.
PhD thesis, Louvain-la-Neuve, Belgium (2001)

7. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code: from usage scenarios to specifications. In: ESEC-FSE ’07, New York,
NY, USA, ACM (2007) 25–34

8. Chan, W.: Temporal-logic queries. In: CAV ’00: Proceedings of the 12th Interna-
tional Conference on Computer Aided Verification, London, UK, Springer-Verlag
(2000) 450–463

9. Chang, R.M., Avrunin, G.S., Clarke, L.A.: Property inference from program exe-
cutions. Technical Report UM-CS-2006-26, University of Massachusetts (2006)

10. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27(2) (2001) 99–123

11. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
FME ’01: Proceedings of the International Symposium of Formal Methods Europe
on Formal Methods for Increasing Software Productivity, London, UK, Springer-
Verlag (2001) 500–517

12. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool
for model exploration. IEEE Transactions on Software Engineering 29(10) (2003)
898–914

13. Jeffords, R., Heitmeyer, C.: Automatic generation of state invariants from require-
ments specifications. SIGSOFT Softw. Eng. Notes 23(6) (1998) 56–69

14. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). (2005) 461–476

15. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal
API rules from imperfect traces. In: ICSE ’06: Proceedings of the 28th international
conference on Software engineering, New York, NY, USA, ACM (2006) 282–291

16. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, M., Yu, J., Lanza, G.: Genetic
Programming IV: Routine Human-Competitive Machine Intelligence. Springer
(2003)

17. Lehman, J., Stanley, K.: Exploiting open-endedness to solve problems through
the search for novelty. In Bullock, S., Noble, J., Watson, R., Bedau, M.A., eds.:
Artificial Life XI: Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems, MIT Press, Cambridge, MA (2008)
329–336

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering. (1999) 411–420

19. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley (2004)

20. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of
the International Conference on Software Engineering (ICSE05), St Louis, MO,
USA (May 2005)

21. Kim, M., Kim, S., Park, S., Choi, M.T., Kim, M., Gomaa, H.: UML-based service
robot software development: a case study. In: ICSE ’06: Proceeding of the 28th
international conference on Software engineering. (2006) 534–543

22. Goldsby, H.J., Cheng, B.H.C., McKinley, P.K., Knoester, D.B., Ofria, C.A.: Digital
evolution of behavioral models for autonomic systems. In: Proceedings of the 5th
International Conference on Autonomic Computing (ICAC 2008), Chicago, Illinois
(June 2008)

23. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach sup-
porting property elucidation. In: ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, New York, NY, USA, ACM (2002) 11–21

24. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product
line testing. In: ROSATEA ’06: Proceedings of the ISSTA 2006 workshop on Role
of software architecture for testing and analysis, New York, NY, USA, ACM (2006)
53–63

	Text9: Proceedings of the ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS 2010), (Oslo, Norway), October 2010.

