Skip to main content

Impossibility of Finding Any Third Family of Server Protocols Integrating Byzantine Quorum Systems with Threshold Signature Schemes

  • Conference paper

Abstract

In order to tolerate servers’ Byzantine failures, a distributed storage service of self-verifying data (e.g., certificates) needs to make three security properties be Byzantine fault tolerant (BFT): data consistency, data availability, and confidentiality of the (signing service’s) private key. Building such systems demands the integration of Byzantine quorum systems (BQS), which only make data consistency and availability be BFT, and threshold signature schemes (TSS), which only make confidentiality of the private key be BFT. Two families of correct or valid TSS-BQS systems (of which the server protocols carry all the design options) have been proposed in the literature. Motivated by the failures in finding a third family of valid server protocols, we study the reverse problem and formally prove that it is impossible to find any third family of valid TSS-BQS systems. To obtain this proof, we develop a validity theory on server protocols of TSS-BQS systems. It is shown that the only two families of valid server protocols, “predicted” (or deduced) by the validity theory, precisely match the existing protocols.

Jingqiang Lin, Jiwu Jing and Qiongxiao Wang were supported by National Natural Science Foundation of China grant 70890084/G021102 and National Science & Technology Pillar Program of China grant 2008BAH22B01. Peng Liu was supported by AFOSR FA9550-07-1-0527 (MURI), ARO W911NF-09-1-0525 (MURI), NSF CNS-0905131, NSF CNS-0916469 and AFRL FA8750-08-C-0137.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvisi, L., Dahlin, M., et al.: Dynamic Byzantine quorum systems. In: Int’l. Conf. Dependable Systems and Networks, pp. 283–292 (2000)

    Google Scholar 

  2. Amir, Y., Coan, B., et al.: Customizable fault tolerance for wide-area replication. In: IEEE Symp. Reliable Distributed Systems, pp. 65–82 (2007)

    Google Scholar 

  3. Amir, Y., Danilov, C., et al.: Scaling Byzantine fault-tolerant replication to wide area networks. In: Int’l. Conf. Dependable Systems and Networks, pp. 105–114 (2006)

    Google Scholar 

  4. Bazzi, R.: Synchronous Byzantine quorum systems. Distributed Computing 13(1), 45–52 (2000)

    Article  MathSciNet  Google Scholar 

  5. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Computer Systems 20(4), 398–461 (2002)

    Article  Google Scholar 

  6. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)

    Google Scholar 

  7. Goodson, G., Wylie, J., et al.: Efficient Byzantine-tolerant erasure-coded storage. In: Int’l. Conf. Dependable Systems and Networks, pp. 135–144 (2004)

    Google Scholar 

  8. Herzberg, A., Jakobsson, M., et al.: Proactive public key and signature systems. In: ACM Conf. Computer Communications Security, pp. 100–110 (1997)

    Google Scholar 

  9. Iyengar, A., Cahn, R., et al.: Design and implementation of a secure distributed data repository. In: IFIP Int’l. Information Security Conference, pp. 123–135 (1998)

    Google Scholar 

  10. Jing, J., Wang, J., et al.: Research on server protocols of Byzantine quorum systems implemented utilizing threshold signature schemes (accepted to appear). Chinese Journal of Software

    Google Scholar 

  11. Kong, L., Subbiah, A., et al.: A reconfigurable Byzantine quorum approach for the Agile Store. In: IEEE Symp. Reliable Distributed Systems, pp. 219–228 (2003)

    Google Scholar 

  12. Lamport, L., Shostak, R., et al.: The Byzantine generals problem. ACM Trans. Programming Languages and Systems 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  13. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4), 203–213 (1998)

    Article  MATH  Google Scholar 

  14. Malkhi, D., Reiter, M.: Secure and scalable replication in Phalanx. In: IEEE Symp. Reliable Distributed Systems, pp. 51–60 (1998)

    Google Scholar 

  15. Marsh, M., Schneider, F.: CODEX: A robust and secure secret distribution system. IEEE Trans. Dependable and Secure Computing 1(1), 34–47 (2004)

    Article  Google Scholar 

  16. Martin, J.-P., Alvisi, L.: A framework for dynamic Byzantine storage. In: Int’l. Conf. Dependable Systems and Networks, pp. 325–334 (2004)

    Google Scholar 

  17. Martin, J.-P., Alvisi, L., et al.: Small Byzantine quorum systems. In: Int’l. Conf. Dependable Systems and Networks, pp. 374–383 (2002)

    Google Scholar 

  18. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE Trans. Parallel and Distributed Systems 9(9), 909–922 (1998)

    Article  Google Scholar 

  19. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: ACM Symp. Principles of Distributed Computing, pp. 51–59 (1991)

    Google Scholar 

  20. Reiter, M., Birman, K.: How to securely replicate services. ACM Trans. Programming Languages and Systems 16(3), 986–1009 (1994)

    Article  Google Scholar 

  21. Reiter, M., Franklin, M., et al.: The Ω key management service. In: ACM Conf. Computer and Communications Security, pp. 38–47 (1996)

    Google Scholar 

  22. Rhea, S., Eaton, P., et al.: Pond: the OceanStore prototype. In: USENIX Conf. File and Storage Technologies, pp. 1–14 (2003)

    Google Scholar 

  23. Subbiah, A., Ahamad, M., et al.: Using Byzantine quorum systems to manage confidential data. Technical Report GIT-CERCS-04-13, Georgia Institute of Technology (2004)

    Google Scholar 

  24. Subbiah, A., Blough, D.: An approach for fault tolerant and secure data storage in collaborative work environments. In: ACM Workshop on Storage Security and Survivability, pp. 84–93 (2005)

    Google Scholar 

  25. Wylie, J., Bigrigg, M., et al.: Survivable information storage systems. IEEE Computer 33(8), 61–68 (2000)

    Article  Google Scholar 

  26. Zhou, L., Schneider, F., et al.: COCA: A secure on-line certification authority. ACM Trans. Computer Systems 20(4), 329–368 (2002)

    Article  Google Scholar 

  27. Zhou, L., Schneider, F., et al.: APSS: Proactive secret sharing in asynchronous systems. ACM Trans. Information and System Security 8(3), 259–286 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lin, J., Liu, P., Jing, J., Wang, Q. (2010). Impossibility of Finding Any Third Family of Server Protocols Integrating Byzantine Quorum Systems with Threshold Signature Schemes. In: Jajodia, S., Zhou, J. (eds) Security and Privacy in Communication Networks. SecureComm 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16161-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16161-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16160-5

  • Online ISBN: 978-3-642-16161-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics