
Single-Parameter Combinatorial Auctions
with Partially Public Valuations

Gagan Goel, Chinmay Karande, and Lei Wang

Georgia Institute of Technology, Atlanta.
{gagang, ckarande, lwang}@cc.gatech.edu

Abstract. We consider the problem of designing truthful auctions, when the bidders’ val-
uations have a public and a private component. In particular, we consider combinatorial
auctions where the valuation of an agent i for a set S of items can be expressed as vif(S),
where vi is a private single parameter of the agent, and the function f is publicly known.
Our motivation behind studying this problem is two-fold: (a) Such valuation functions arise
naturally in the case of ad-slots in broadcast media such as Television and Radio. For an
ad shown in a set S of ad-slots, f(S) is, say, the number of unique viewers reached by
the ad, and vi is the valuation per-unique-viewer. (b) From a theoretical point of view,
this factorization of the valuation function simplifies the bidding language, and renders the
combinatorial auction more amenable to better approximation factors. We present a general
technique, based on maximal-in-range mechanisms, that converts any α-approximation non-
truthful algorithm (α ≤ 1) for this problem into Ω(α

logn
) and Ω(α)-approximate truthful

mechanisms which run in polynomial time and quasi-polynomial time, respectively.

1 Introduction

A central problem in computational mechanism design is that of combinatorial auctions, in which
an auctioneer wants to sell a heterogeneous set of items J to interested agents. Each agent i has
a valuation function vi(.) which describes her valuation vi(S) for every set S ⊆ J of items. In its
most general form, the entire valuation function is assumed to be private information which may
not be revealed truthfully by the agents. Maximizing the social welfare in a combinatorial auction
with an incentive-compatible mechanism is an important open problem. However, recent results
[5, 4] have established polynomial lower bounds on the approximation ratio of maximal-in-range
mechanisms - which account for a majority of positive results in mechanism design - even when
all the valuations are assumed to be submodular. On the other hand, in the non-game-theoretic
case, if all the agents’ valuations are public knowledge and hence truthfully known, then we can
maximize the social welfare to much better factors [6, 7, 16], under varying degree of restrictions
on the valuations. In this paper, we introduce a model that lies in between these two extremes.

We wish to explore the setting when some inherent property of the items induces a common
and publicly known partial information about the valuation function of the buyers. For instance,
in position auctions in sponsored search, the agents’ valuation for a position consists of a private
value-per-click as well as a public click-through rate, that is known to the auctioneer. Another
situation where such private/public factorization of valuations arises is advertisements in broadcast
media such as Television and Radio. Suppose we are selling TV ad-slots on a television network.
There are m ad-slots and n advertisers interested in them. Let us define a function f : 2[m] → Z+,
such that for any set S of ad-slots f(S) is the number of unique viewers who will see the ad if
the ad is shown on each slot in S1. If an advertiser i is willing to pay vi dollars per unique viewer
reached by her ad, then her total valuation of the set S is vif(S).

With this background, we define the following class of problems:
1 For a single ad-slot j, the function f({j}) is nothing but the television rating for that slot as computed
by rating agencies such as Nielsen. In fact, their data collection through set-top boxes results in a TV
slot-viewer bipartite graph on the sample population, from which f(S) can be estimated for any set S
of ad slots.

ar
X

iv
:1

00
7.

35
39

v1
 [

cs
.G

T
]

 2
0

Ju
l 2

01
0

Single-parameter combinatorial auctions with partially public valua-
tions: We are given a set J of m items and a global public valuation function2 f : 2J → R.
The function f can either be specified explicitly or via an oracle which takes a set S as input and
returns f(S). In addition, we have n agents each of whom has a private multiplier vi such that the
item set S provides vif(S) amount of utility to agent i. The goal is to design a truthful mechanism
which maximizes

∑
i vif(Si), where S1 · · ·Sn is a partition of J .

One can think of this model as combinatorial auctions with simplified bidding language. The
agents only need to specify one parameter vi as their bid. Moreover, our problem has deeper
theoretical connections to the area of single-parameter mechanism design in general. For single-
parameter domains such as ours, it is known that monotone allocation rules characterize the set of
all truthful mechanisms. An allocation rule or algorithm is said to be monotone if the allocation
parameter of an agent (f(Si) in our case) is non-decreasing in his reported bid vi. Unfortunately,
often it is the case that good approximation algorithms known for a given class of valuation
functions are not monotonic. It is an important and well-known open question in algorithmic
mechanism design to resolve whether the design of monotone algorithms is fundamentally harder
than the non-monotone ones. In other words, it is not known if, for single-parameter problems,
we can always convert any α-approximation algorithm into a truthful mechanism with the same
factor. We believe that our problem is a suitable candidate to attack this question as it gives a
lot of flexibility in defining the complexity of function f . From this discussion, it follows that the
only lower bound known for the approximation factor of a truthful mechanism in our setting is
the hardness of approximation of the underlying optimization problem.

Our Results and techniques We give a general technique which accepts any (possibly non-
truthful) α-approximation algorithm for our problem as a black-box and uses it to construct a
truthful mechanism with an approximation factor of Ω

(
α

logn

)
. We also give a truthful mechanism

with factor Ω(α) which runs in time O
(
nlog logn

)
. Both these results are corollaries obtained by

setting parameters appropriately in Theorem 1 to achieve desired trade-off between the approxima-
tion factor and the running time. Our results can also be interpreted as converting non-monotone
algorithms into monotone ones for the above model.

Our mechanisms are maximal-in-range, i.e., they fix a range R of allocations and compute the
allocation S ∈ R that maximizes the social welfare. The technical core of our work lies in careful
construction of this range.

While the black-box algorithm may be randomized, our mechanism does not introduce any fur-
ther randomization. Depending upon whether the black-box algorithm is deterministic or random-
ized, our mechanism is deterministically truthful or universally truthful respectively (See Section
2 for definitions). The approximation factor of our mechanism is deterministic (or with high prob-
ability or in expectation) if the black-box algorithm also provides the approximation guarantees
deterministically (or with high probability or in expectation).

Note that we don’t need to worry about how the public valuation function f is specified. This
is plausible since the function is accessed only from within the black-box algorithm. Hence, our
mechanism can be applied to any model of specification - whether it is specified explicitly or
through a value or demand oracle - using the corresponding approximation algorithm from that
model.

Submodular valuations arise naturally in practice from economies of scale or the law of di-
minishing returns. Hence, we make a special note of our results when the public valuation is
submodular. Using the algorithm of [16] as black-box, our results imply a Ω (1/ log n) and Ω(1)
approximation factors in polynomial time and quasi-polynomial time, respectively. We would like
to note that the standard greedy algorithm for submodular welfare maximization is not monotone

2 We do not make any explicit assumptions such as non-negativity or free disposal about the function f .
We provide a method to convert any non-truthful black-box algorithm into a truthful mechanism. This
black-box algorithm may make some implicit assumptions about f .

(See Appendix A for a simple example) and hence, not truthful. Similarly, the optimal approxima-
tion algorithm of [16] is also not known to be non-monotone. The best known truthful mechanism
for combinatorial auctions with entirely private submodular valuations [6] has Ω(1/

√
m) approx-

imation factor.

Future Directions As shown in [5, 4], it seems that designing a truthful mechanism with good
approximation factor for maximizing social welfare is a difficult problem. In light of this, our
work suggests an important research direction to pursue in combinatorial auctions- to divide the
valuation function into a part which is common among all the agents and can be estimated by the
auctioneer and a part which is unique and private to individual agents.

Also, it would be interesting to see if for submodular public functions (or even more specifically,
for coverage functions), which have concrete motivation in TV ad auctions, one can design a
constant factor polynomial time truthful mechanism.

Related Work When agents have a general multi-parameter valuation function, the best known
truthful approximation of social welfare in the value oracle model is Ω(

√
logm/m) [9]. Under

subadditive valuation functions, [6] gave Ω(1/
√
m)-approximate truthful mechanism. It is known

that no maximal-in-range mechanism making polynomially many calls to the value oracle can
have an approximation factor better than Ω(1/m1/6)[5] even for the case of submodular valuation
functions. A similar Ω(1/

√
m) hardness result for maximal-in-range algorithms based on NP *

P/poly appears in [4]. See [3] for a comprehensive survey of the results, and [15, 4] for other more
recent work. Previous work on the single-parameter case of combinatorial auctions have primarily
focused on the single-minded bidders. In this setting, any bidder i is only interested in single set
Si and has a valuation vi for it. Lehmann et al. [11] gave a truthful mechanism which achieves
an essentially best-possible approximation factor of Ω(1/

√
m). For other results in single-minded

combinatorial auction, see [13, 1]. When the desired set is publicly known and only the valuation is
private, [2] gave a general technique which converts any α-approximation algorithm into a truthful
mechanism with factor α/ log(vmax). This result is very much in spirit to our work, however the
model and the techniques used in the two papers are very different. Similarly, [10] present a general
framework which uses a gap-verifying linear program as black-box to construct mechanisms that
are truthful in expectation.

For the non-truthful optimization, we note that our problem is hard up to a constant factor
(see [12]) even when all the agents have private value equal to 1 and with common valuation
function being submodular. For designing monotone algorithms from non-monotone algorithms in
the Bayesian setting, see [8]. We also note that TV ad auctions are in use by Google Inc. (see
[14]), although currently they treat the valuations for a set of ad-slots as additive with budget
constraints, which yields a multi-parameter auction.

Organization: Section 2 provides a brief introduction to mechanism design with a few concepts
relevant to our work. Readers familiar with design of truthful mechanisms can skip to Section 3
in which we state some basic properties and assumptions about single parameter combinatorial
auctions with partially public valuations. Section 4 introduces our vector-fitting technique and in
Section 4.1, we conduct a warm-up exercise by analyzing a simple mechanism. Section 5 presents
our main result, a vector-fitting mechanism formalized by Theorem 1.

2 Preliminaries

In this section, we will outline the basic concepts in mechanism design relevant to our paper.

2.1 Truthfulness and Mechanism Design

Mechanism design attempts to address the game-theoretic aspect of optimization problems. Let
A be the set of alternatives, and ui(a) be the valuation of agent i if alternative a ∈ A is picked. In

a pure optimization setting, all the functions ui’s are assumed to be known to the auctioneer, and
a typical goal is to pick an alternative a ∈ A that maximizes

∑
i ui(a). But from a game-theoretic

perspective, the agents may have an incentive to lie about their valuation function ui, if it leads to
a better alternative for them. This kind of strategizing often results in arbitrary behaviour from
the agents, leading to a loss in the social welfare. Mechanism design tackles this issue by designing
algorithms such that truthfully reporting their true valuation function is the dominant strategy
for each agent, i.e. given any strategies by all the other agents, reporting one’s true function
maximizes the utility gained by this agent.

There are three notions of truthfulness that may be applicable:

1. Deterministic truthfulness: The mechanism must be deterministic and an agent maximizes
her utility by reporting her true valuation, for any valuations of all other agents.

2. Universal truthfulness: A universally truthful mechanism is a probability distribution over
deterministically truthful mechanisms.

3. Truthfulness in expectation: A mechanism is truthful in expectation if an agent maximizes
her expected utility by being truthful.

Every deterministically truthful mechanism is universally truthful and every universally truth-
ful mechanism is truthful in expectation. Hence, deterministic truthfulness is the strictest notion
of truthfulness. As noted earlier, our mechanism may be deterministically or universally truthful
depending upon whether the black-box α-approximation algorithm is deterministic or randomized.

2.2 Vickrey-Clarke-Grove and Maximal-in-range Mechanisms

The Vickrey-Clarke-Grove (VCG) mechanism is a pivotal result in the field of mechanism design
to maximize social welfare. It works as follows: let a∗ and a∗−i be the alternatives which maximizes∑
j vj(a) and

∑
j 6=i vj(a) respectively. Now define payment pi of agent i to be

∑
j 6=i vj(a

∗
−i) −∑

j 6=i vj(a
∗). It is now not difficult to see that with this payment function, it is in best interest of

every agent to report their true valuations, irrespective of what others report.
As useful as the VCG mechanism is, it cannot be applied in many scenarios where the un-

derlying problem is hard. Solving the optimization problem approximately doesn’t preserve the
truthfulness always. To overcome this, maximal-in-range variant of the VCG mechanism is a useful
technique which optimizes over a smaller range of allocations. That is, the set of allocations that
the mechanism may ever produce - the range - is chosen to be a small subset of the space of all
allocations. The range is chosen to balance the following trade-off: A larger range can yield better
approximation but require greater computational complexity. Note that such a range needs to be
defined combinatorially without any knowledge of the agents’ valuations.

For example, the Ω(1/
√
m)-approximate truthful mechanism from [6] is a maximal-in-range

mechanism.

3 Notations and Basic Properties

By boldface v, we will denote a vector of private multipliers of the agents, where vi is the multiplier
of agent i. For a constant β ≥ 0, let βv = (βv1, βv2, ..., βvn). By boldface S, we will denote the
vector of allocations, where Si is the set of items allocated to agent i. We will overload the function
symbol f to express the social welfare as: f(v,S) =

∑
i vif(Si). An allocation S is optimal for a

multiplier vector v if it maximizes f(v,S).
We begin by observing two simple properties of our problem and its solutions: symmetry

and scale-freeness. Our problem and its solutions are symmetric, i.e., invariant under relabeling
of agents in the following sense: Let v be any multiplier vector, S be any allocation and π be
any permutation of [n]. Let u and T be such that ui = vπ(i) and Ti = Sπ(i). Then clearly,
f(v,S) = f(u,T). The problem and its solutions are also invariant under scaling, since we have
f(βv,S) = β · f(v,S).

The above properties lead us to:

Observation 1 Without loss of generality, every multiplier vector v has non-increasing entries
v1 ≥ v2 ≥ ... ≥ vn such that

∑
i vi = 1.

Given a multiplier vector v, let A(v) be the optimal allocation for v and OPT(v) = f(v,A(v)).
Moreover, if f(v,S) ≥ α ·OPT(v) for some α ≤ 1 then the allocation S is said to be α-optimal
or α-approximate for v.

We note a simple property of A(v): Let v be a multiplier vector with v1 ≥ v2 ≥ ... ≥ vn.
Let S be any allocation. If T is a permutation of S such that f(T1) ≥ f(T2) ≥ ... ≥ f(Tn), then
f(v,T) ≥ f(v,S). In particular, if S = A(v) then f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Finally, we assume the existence of a poly-time black-box algorithm that computes an α-
approximate allocation B(v) for the multiplier vector v. We express the performance guarantees
of our truthful mechanisms in terms of α and other parameters of the problem. Although the
output allocation S of such an algorithm may not obey f(S1) ≥ f(S2) ≥ ... ≥ f(Sn), it is easy to
construct a non-decreasing permutation of S which only improves the objective function value, as
discussed above.

Observation 2 Without loss of generality, any allocation S output by the black-box algorithm
obeys f(S1) ≥ f(S2) ≥ ... ≥ f(Sn).

Henceforth, we enforce assumptions from Observation 1 and 2.

Definition 1 (u dominates w). We say that a multiplier vector u dominates w if there exists
an index i such that for k < i, uk ≥ wk and for k ≥ i, uk ≤ wk.
Lemma 1. If u dominates w, then f(u,S) ≥ f(w,S) for any allocation S satisfying f(S1) ≥
f(S2) ≥ ... ≥ f(Sn).
Proof. For k < i, let xk = uk − wk. Similarly for k ≥ i, yk = wk − uk. Then

i−1∑

k=1

xk −
n∑

k=i

yk =

n∑

k=1

uk −
n∑

k=1

wk = 0

which means
∑i−1
k=1 xk =

∑n
k=i yk. Since f(Sk1) ≥ f(Sk2) whenever k1 < i ≤ k2,

f(u,S)− f(w,S) =

i−1∑

k=1

xkf(Sk)−
n∑

k=i

ykf(Sk) ≥ 0

ut
Staircase Representation: Suppose we represent a multiplier vector v as a histogram, which
consists of n vertical bars corresponding to v1, ..., vn, in that order from left to right. Since multi-
plier vectors have non-increasing components, such a histogram looks like a staircase descending
from left to right (Refer to Figure 1 for an example). We will refer to it as the staircase represen-
tation of v and use it mainly as a visual tool.

v1 v2

vn
vj

v3

Fig. 1. The staircase representation of v = (v1, ..., vn).

4 Vector-Fitting Mechanisms

Consider the following candidate approach to single parameter combinatorial auctions with par-
tially public valuations: Fix a set U of some multiplier vectors. Using the black-box algorithm,
compute an α-approximate allocation B(v) for each vector v ∈ U and populate the range R =
{ B(v) : v ∈ U }. Run the maximal-in-range mechanism which given a multiplier vector v,
chooses the allocation S ∈ R that maximizes f(v,S).

Let’s consider the merits and demerits of this mechanism. If the input multiplier vector hap-
pens to be in U , then the mechanism will indeed return an output allocation that is at least
α-approximate. But we have no guarantees otherwise. If U consisted of all possible vectors, we
would have an α-approximate truthful mechanism that could be computationally infeasible due
to the size of U . We handle this trade-off with vector-fitting. The intuition behind vector-fitting is
as follows: If two multiplier vectors u and v are ‘very similar’ to each other, then B(u) and B(v)
should be ‘similar’ as well. In particular, B(u) should be a reasonably good allocation for v and
vice versa.

Our mechanism will be the same as the candidate mechanism outlined above, except that we
will construct the set of vectors U very carefully. For any input vector of multipliers v, we will
guarantee that a reasonably similar vector v′ can be found in U , and hence and allocation S′ is in
the range R with provably large objective value f(v,S′).

4.1 A Simple α
lnn

-factor Mechanism

In this section, we will conduct a warm-up exercise by applying the vector-fitting method to
construct a simple α

lnn -factor truthful mechanism. Recall that the vector-fitting method as outlined
in Section 4 starts with a set U of multiplier vectors. Our set U is defined as U = { uj : 1 ≤ j ≤ n }
where uj is defined as follows:

uji =
1

j
for 1 ≤ i ≤ j, zero elsewhere

As before, for each v ∈ U , we compute an α-approximate allocation B(v) and populate the
range R with it.

Let v be the input multiplier vector. Let rj =
∑j
k=1 vj for 1 ≤ j ≤ n be the prefix sums of v.

We define prefix vectors dj of v as:

dji =
vi
rj

for 1 ≤ i ≤ j, zero elsewhere

It is easy to verify that dj is a valid multiplier vector i.e., it has non-increasing components and
unit l1 norm.

v1 v2 vn

vn
n∑

i=1

f(Si)

(vj − vj+1)
j∑

i=1

f(Si)

(v3 − v4)
3∑

i=1

f(Si)

vjv3

Fig. 2. Expressing f(v,S) as horizontal cuts of the staircase.

Let S = A(v) be the optimal allocation for v and T be the allocation returned by our mecha-
nism. For notational convenience, define vn+1 = 0. We start with OPT(v) = f(v,S) and look at
how horizontal sections under the staircase of v contribute to it. See figure 2.

OPT(v) =

n∑

i

vif(Si)

= vn

n∑

i=1

f(Si) + (vn−1 − vn)
n−1∑

i=1

f(Si) + ... + (v1 − v2)f(S1) (1)

=

n∑

j=1

[
j(vj − vj+1)

j∑

i=1

f(Si)

j

]

=

n∑

j=1

[
j(vj − vj+1) · f(uj ,S)

]

≤
n∑

j=1

[
j(vj − vj+1) ·OPT(uj)

]

≤
n∑

j=1

[
α−1j(vj − vj+1) · f(uj ,B(uj))

]

≤
n∑

j=1

[
α−1j(vj − vj+1) · f(dj ,B(uj))

]
(2)

≤
n∑

j=1

[
j(vj − vj+1)

αrj
· f(v,B(uj))

]
(3)

≤
n∑

j=1

[
j(vj − vj+1)

αrj
· f(v,T)

]
(4)

=
f(v,T)

α

1 +

n∑

j=2

vj(rj − jvj)
rjrj−1

 (5)

Equation (1) decomposes f(v,S) as the horizontal cuts of the staircase of v (See Figure 2).
(2) follows from the previous step by applying a simple structural property formalized by Lemma
1 to dj and uj . Equation (3) follows from (6) below, which is a simple restatement.

j∑

i=1

vi
rj
· f(Si) ≤

1

rj

n∑

i=1

vif(Si) =
f(v,S)

rj
(6)

Equation (5) is derived from the previous expression by simply rearranging the terms. Since
vj ≤ rj/j and rj − jvj ≤ rj−1, we conclude that

1 +

n∑

j=2

vj(rj − jvj)
rjrj−1

≤
n∑

j=1

1

j
≤ lnn

and
f(v,T) ≥ α ·OPT(v)/ lnn

An example that achieves the bound: We can differentiate each term of the summation in
equation (5) to compute the values of vj for which the term is maximized, so as to make the bound
as loose as possible. Surprisingly, a single multiplier vector maximizes all the terms simultaneously!
This vector is defined as vj = (

√
j −√j − 1)/

√
n. Some calculations prove that for this multiplier

vector, the summation is indeed Ω(lnn).

5 The Main Result

In this section, we will use vector-fitting to obtain a general technique to convert a non-truthful
approximation algorithm for single parameter combinatorial auctions into a truthful mechanism.
This technique yields a range of trade-offs between the approximation factor and the running time
of the algorithm. We will prove the following theorem:

Theorem 1. There exists a truthful mechanism for maximizing welfare in a single parameter
combinatorial auction with partially public valuations that runs in time O((loga n)

logb n·poly(m,n))
and produces an allocation with total welfare at least 3α

4ab ·OPT(v) - where α is the approximation
factor of the black-box optimization algorithm and a, b > 1 are parameters of the mechanism.

Setting a = b = 2 we get: (Henceforth, all logarithms are to base 2)

Corollary 1. There exists a 3α
16 -factor truthful mechanism running time

O((nlog logn · poly(m,n)), i.e. quasi-polynomial time.

Similarly, setting a = 2 and b = log n we get:

Corollary 2. There exists a truthful mechanism with factor Ω
(

α
logn

)
and polynomial running

time.

When the public valuation f is submodular, we have α =
(
1− 1

e

)
and the above corollaries

yield factors Ω(1) and Ω
(

1
logn

)
respectively.

5.1 Constructing the Range R

Overview: Recall the staircase representation of a multiplier vector v, such as in Figure 1. De-
pending upon the entries of v, the steps of the staircase may have varying heights. We can construct
a discretization of the space of all multiplier vectors by restricting the values the height of any step
can take. That is, we populate the initial set U with all vectors whose components take values of
the form b−k for some constant b > 1 and for all k ≥ 0. Now given any input vector v, we can find
a vector u ∈ U such that ui is at most a multiplicative factor b away from vi. Thus, u can serve
as a vector ‘similar’ to v. We need more complex machinery to ensure that the size of U does not
blow up, and that the vectors in U still have unit norm.

Let a, b > 1 be suitably chosen parameters of the mechanism. Let Q = { b−k : 0 ≤ k < logb n }
be a set of values discretizing the interval (1n , 1] and q be the minimum element of Q. For a
multiplier vi ≥ q, we define bvic to be the largest element of Q that is no greater than vi. For a
multiplier vector v we define the floor of v, bvc as follows:
Definition 2 (Floor bvc). The floor bvc of a multiplier vector v is the vector u constructed by
Algorithm 1.

Algorithm 1: ConstructFloor
for i = 1 to n do

r ←

(
1−∑i−1

k=1 uk

)

(n− i+ 1)
;

/* r is the minimum permissible value of ui due to monotonicity. */

if vi ≥ q and bvic > r then
ui ← bvic;

else
for j = i to n do

uj ← r;
break

In short, to find the ‘floor’ of a multiplier vector, we successively round down the ‘large’
components into elements of Q, until we need to set all the remaining components equal due
the monotonicity and unit norm requirement or only ‘small’ components are remaining. When
represented as a staircase (Refer Figure 3), all the steps of bvc except the last one must have
height that belongs to Q.

1

b−1

b−2

q

1/n

v1 v2 vn

v
bvc

Rounded down

Equalized

Fig. 3. Vertical fitting of v.

Observation 3 The floor of a vector v is a valid multiplier vector itself, i.e. it has non-increasing
components and unit l1 norm. Moreover, v dominates bvc.

Proof. Refer to Appendix B. ut

Intuitively, the floor of a vector is (in a sense formalized by Lemma 2) ‘similar’ to the vector,
and the similarity is parametrized by b.

Lemma 2. For any multiplier vector v and allocation S, f(bvc,S) ≥ 3
4b · f(v,S).

Proof. Refer to Appendix C. ut

We will construct our preliminary set of vectors U ′ as

U ′ = { u : u = bvc for some multiplier vector v }

It turns out that U ′ is too large for our purposes. Hence we construct a subset U ⊆ U ′, which
is small enough. Referring back to the staircase representation of a multiplier vector (Figure 3),
we constructed U ′ by discretizing the ‘height’ of each step - by fitting the vectors vertically. Since
rounding down the components of v might lead to many components of u = bvc having the same
value, u also looks like a staircase, perhaps with ‘wider’ steps. Each step of u may have any integral
width - at most n.

We construct U from U ′ by further restricting how wide a step can be - by horizontal fitting
(See Figure 4). We allow each step (except the last) to be of width dake for some integer k ≥ 0
- where a > 1 is a suitably chosen parameter of the mechanism. To this end, we need to slightly
formalize the staircase representation of a multiplier vector, which till now we only used as a visual
aid. By a step of the staircase of v, we will mean a maximal interval [i1, ..., i2] ⊆ [1, ..., n] such that
vi1 = vi2 . All the indices i1 ≤ i ≤ i2 will be said to belong to the step, whereas i1 and i2 and the
first and last indices of the step. The height of the step is given by vi1 and the width by i2− i1+1.

Remark: Notice that just as a multiplier vector can be specified by the n-tuple (v1, ..., vn), it
can also be identified by specifying the height and width of each step of its staircase representation.
In fact, specifying all but the last step of a staircase fixes the last step due to the unit norm
requirement.

For a multiplier vector v, we define the core ←−v of v as:

Definition 3 (Core ←−v). The core ←−v of a multiplier vector v is the vector u constructed by
Algorithm 2.

Algorithm 2: ConstructCore
i1 ← 1; j1 ← 1;
while i1 ≤ n do

r ←
(
1−∑j1−1

i=1 ui

)
/(n− j1 + 1);

if vi1 > r then
Find the largest index i2 such that vi1 = vi2 ;

Find largest integer k such that dake ≤ (i2 − j1 + 1);
for i = j1 to j1 + dake − 1 do

ui ← vi1 ;
i1 ← i2 + 1;
j1 ← j1 + dake;

else
for i = j1 to n do

ui ← r;
break

Operation of Algorithm 2: Each iteration of the while loop processes one step of v and u. i1
and j1 hold the first index of the current step of v and u respectively. r is the minimum height of
the current step of u by monotonicity. If r ≥ vi1 , then the requirement for unit l1 norm forces us
to introduce the last step of the staircase of u. Otherwise, [i1, ..., i2] is the current step of v and
we set the width of the current step of u to be dake.

1

b−1

b−2

q

1/n

v1 v2 vn

Last step

←−v
v

Fig. 4. Horizontal fitting of v.

Observation 4 The core of a vector v is a multiplier vector itself, i.e. it has non-increasing
components and unit l1 norm. Moreover, v dominates ←−v .

Proof. Refer to Appendix D. ut

Lemma 3. For any multiplier vector v and allocation S, f(←−v ,S) ≥ f(v,S)/a.

Proof. Refer to Appendix E. ut

We now define our set of vectors U as follows: U = { ←−v : v ∈ U ′ }. We populate the range
R of allocations as R = { B(v) : v ∈ U } where B(v) is the α-approximate allocation returned
by the black box algorithm.

5.2 Proof of Theorem 1

We run the following maximal-in-range mechanism: Given an input multiplier vector v we return
the allocation T ∈ R that maximizes f(v,T). We need to prove that f(v,T) ≥ 3α

4ab ·OPT(v)

Let S = A(v) be the optimal allocation for v and
←−bvc be the core of the floor of v. Combining

Lemmas 2 and 3, we conclude that f(
←−bvc,S) ≥ 3

4ab · OPT(v). Since
←−bvc ∈ U , there exists an

allocation X ∈ R such that

f(
←−bvc,X) ≥ α ·OPT(

←−bvc) ≥ α · f(←−bvc,S) ≥ 3α

4ab
·OPT(v) (7)

Since v dominates bvc which in turn dominates
←−bvc (Refer to Observation 3 and 4), application

of Lemma 1 yields:
f(v,X) ≥ f(bvc,X) ≥ f(

←−bvc,X) (8)

Using equations (7) and (8),

f(v,T) ≥ f(v,X) ≥ f(
←−bvc,X) ≥ 3α

4ab
·OPT(v)

The running time of the mechanism is established by Lemma 4, which finishes the proof of Theorem
1.

Lemma 4. |R| = O
(
(loga n)

logb n
)

Proof. |R| is bounded by |U|. U consists of only those vectors which are cores of floors of some
multiplier vectors. We have seen that each step of the staircase of v ∈ U except the last must be
of width w = dake for some integer k. Moreover, there can be only |Q| = O(logb n) such steps
and at most one of each height. We have also remarked that specifying all but the last step of a
staircase fixes it. Therefore there can be at most O

(
(loga n)

logb n
)
distinct staircases in U . ut

References

[1] Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Éva Tardos. An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In SODA ’03: Proceedings of
the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 205–214, 2003.

[2] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-value combinatorial auctions and algorithmic
implementation in undominated strategies. J. ACM, 56(1):1–32, 2009.

[3] Liad Blumrosen and Noam Nisan. Algorithmic Game Theory, chapter 11. Cambridge University
Press, 2007.

[4] Dave Buchfuhrer, Shaddin Dughmi, Hu Fu, Robert Kleinberg, Elchanan Mossel, Christos Papadim-
itriou, Michael Schapira, Yaron Singer, and Chris Umans. Inapproximability for vcg-based combi-
natorial auctions. In SODA ’10: Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete algorithms, pages 518–536, 2010.

[5] Shahar Dobzinski and Noam Nisan. Limitations of vcg-based mechanisms. In STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pages 338–344, 2007.

[6] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combinatorial
auctions with complement-free bidders. In STOC ’05: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 610–618, 2005.

[7] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial
auctions with submodular bidders. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 1064–1073, 2006.

[8] Jason D. Hartline and Brendan Lucier. Bayesian algorithmic mechanism design. In STOC ’10:
Proceedings of the 42nd ACM symposium on Theory of computing, pages 301–310, 2010.

[9] Ron Holzman, Noa Kfir-dahav, Dov Monderer, and Moshe Tennenholtz. Bundling equilibrium in
combinatorial auctions. Games and Economic Behavior, 47(1):104–123, April 2001.

[10] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear program-
ming. In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 595–604, 2005.

[11] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. Truth revelation in approximately
efficient combinatorial auctions. J. ACM, 49(5):577–602, 2002.

[12] Vahab Mirrokni, Michael Schapira, and Jan Vondrak. Tight information-theoretic lower bounds for
welfare maximization in combinatorial auctions. In EC ’08: Proceedings of the 9th ACM conference
on Electronic commerce, pages 70–77, 2008.

[13] Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted combinatorial
auctions: extended abstract. Games and Economic Behavior, 64(2):612–631, 2008.

[14] Noam Nisan, Jason Bayer, Deepak Chandra, Tal Franji, Robert Gardner, Yossi Matias, Neil Rhodes,
Misha Seltzer, Danny Tom, Hal Varian, and Dan Zigmond. Google’s auction for tv ads. In ICALP
’09: Proceedings of the 36th Internatilonal Collogquium on Automata, Languages and Programming,
pages 309–327, 2009.

[15] Christos Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being truthful.
In FOCS ’08: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 250–259, 2008.

[16] Jan Vondrak. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of computing, pages 67–74,
2008.

A The Greedy Algorithm is not Monotone

The greedy algorithm in our setting works as follows: In each step it assigns one unallocated item
j to a buyer i, where the pair (i, j) is chosen so as maximize the marginal gain in the objective
function. That is, if buyer i had been allocated the set S of items before the current step, then
vi (f(S ∪ {j})− f(S)) is maximized.

We will construct an example that adheres to our formulation of the TV Ad auctions problem.
Consider an instance with two advertisers i1 and i2 and three ad-slots j1, j2, j3. Suppose there are
10 viewers k1, ..., k10. Viewers k1 to k5 watch slot j1, k6 to k10 watch slot j2 and k3 to k8 watch
slot j3. The public function f in this case is the coverage function: for a set S of slots f(S) is the
number of unique viewers who watch any slot in S. To prove that the greedy algorithm does not
make monotonic allocations in this example, consider two cases:

1. vi1 = 1 and vi2 = 1 + ε: In the first step, the greedy algorithm assigns the largest slot j3
(with six viewers) to i2. In the next two steps, it assigns both j1 and j2 to i1. Therefore, the
i1 receives the set {j3} of total allocation value (not counting the private multiplier) 6.

2. vi1 = 1 and vi2 = 1 − ε: In the first step, the greedy algorithm assigns the largest slot j3
(with six viewers) to i1. In the next two steps, it assigns both j1 and j2 to i2. Therefore, the
i1 receives the set {j1, j2} of total allocation value (not counting the private multiplier) 10.

Clearly, i2 receives a larger allocation at a lower private valuation. Therefore, the greedy
algorithm is not monotone.

B Proof of Observation 3

The procedure to compute u = bvc easily ensures the unit l1 norm. Now to prove monotonicity
by contradiction, assume that there exists i such that ui < ui+1. Since v satisfies monotonicity,
this can only happen if vi was strictly rounded down to ui and vi+1 was not. Therefore

1−
i−1∑

k=1

uk =

n∑

k=i

uk = ui +

n∑

k=i

uk = ui + (n− i)ui+1 > (n− i+ 1) · ui

This implies

bvic = ui <
1−∑i−1

k=1 uk
n− i+ 1

which is impossible since the right-hand side of the above inequality is the minimum value ui could
have been assigned.

To see that v dominates u = bvc, observe that if the index i does not belong to the last step of
u, then vi must have been rounded down to ui, and therefore, ui ≤ vi. Now consider the smallest
i such that ui > vi. Then i must belong to the last step of u, and hence uj = ui > vi ≥ vj for any
j ≥ i. ut

C Proof of Lemma 2

Define u = bvc. Let p be the highest index such that vp is rounded down by the procedure that
constructs u, i.e. up = bvpc and up > r = up+1. Since,

∑p
i=1 ui ≤

∑p
i=1 vi, it is clear that p < n.

Now for i ≤ p, we have ui = bvic ≥ vi/b. Consider two cases about vp+1:
Case 1 - vp+1 ≥ q: In this case, up+1 = r ≥ bvp+1c ≥ vp+1/b. For i ≥ p + 1, we have

vi ≤ vp+1 and ui = up+1 implying ui ≥ vi/b. Therefore,

f(u,S) =

n∑

i=1

uif(Si) ≥
1

b

n∑

i=1

vif(Si) =
1

b
· f(v,S)

Case 2 - vp+1 < q: Let h =

p∑

i=1

vi and H =

(
p∑

i=1

vif(Si)

)
/f(v,S). From the monotonicity

of S, we conclude that

H · f(v,S) =

p∑

i=1

vif(Si) ≥ h · f(v,S)

and hence H ≥ h.
Since ui ≤ vi for all i ≤ p, and both u and v must have unit l1 norm, we have

∑
i>p ui ≥∑

i>p vi = (1 − h). Hence, ui ≥ 1−h
n for i > p. By definition, vi < q ≤ b

n for i > p. Together,
these imply ui ≥ (1− h)vi/b. Finally, using H ≥ h, we conclude

∑

i>p

uif(Si) ≥
1− h
b

∑

i>p

vif(Si)

 ≥ 1−H

b
[(1−H)f(v,S)]

Combining these pieces together, we get:

f(bvc, S) =
p∑

i=1

uif(Si) +
∑

i>p

uif(Si)

≥ 1

b

p∑

i=1

vif(Si) +
(1−H)2

b
· f(v,S)

=
H + (1−H)2

b
· f(v,S) ≥ 3

4b
· f(v,S)

ut

D Proof of Observation 4

The algorithm to construct u = ←−v itself easily ensures the unit norm. To prove monotonicity by
contradiction, assume that there exists i such that ui < ui+1. This can only happen is i+1 is the
first index of the last step of u and i is the last index of the penultimate step. Let j be the first
index of the penultimate step. Then

1−
j−1∑

k=1

uk =

n∑

k=j

uk = (i− j + 1)ui + (n− i)ui+1 > (n− j + 1) · ui

This means

uj = ui <

(
1−

j−1∑

k=1

uk

)
/(n− j + 1)

which is impossible since the right-hand side of the above inequality is the minimum value uj
could have been assigned.

To see that v dominates u = ←−v , observe that if the index i does not belong to the last step
of u, then ui = vj for some j ≥ i, and hence ui = vj ≤ vi. Now consider the smallest i such that
ui > vi. Then i must belong to the last step of u. Therefore, uj = ui > vi ≥ vj for all j ≥ i. ut

E Proof of Lemma 3

Suppose the staircase of v has s1 steps and that of u = ←−v has s2 steps. Then the following four
properties follow directly from the algorithm:

1. s2 ≤ s1
2. For 1 ≤ i < s2, the i’th step of v is at most a times as wide as the i’th step of u and both

have the same height.
3. For 1 ≤ i ≤ s2, let i1 and j1 be the first indices of the i’th steps of v and u respectively. Then
i1 ≥ j1.

4. If [j, ..., n] is the last step of u then ui ≥ vi for i ≥ j.

To prove the lemma, we will compare the the contributions of corresponding steps of the
staircases of v and u to the objective functions.

For i < s2, let [i1, ..., i2] be the i’th step of v, [j1, ..., j2] be the i’th step of u and h = vi1 = uj1
be their common height. We have

j2∑

k=j1

ukf(Sk) = h

j2∑

k=j1

f(Sk) ≥ h

ii+j2−j1∑

k=i1

f(Sk)

by the third property. The monotonicity of S and the second property then imply

j2∑

k=j1

ukf(Sk) ≥
1

a

i2∑

k=i1

vkf(Sk)

So the i’th step of v contributes at most a times value to f(v,S) as the i’th step of u contributes
to f(u,S), where i < s2.

Finally by the fourth property, the step s2 of u contributes more to f(u,S) than the corre-
sponding contribution of steps s2, ..., s1 of v to f(v,S) combined. The result therefore follows. ut

	Single-Parameter Combinatorial Auctions with Partially Public Valuations

