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Abstract We consider the computational complexity of coalitional solution concepts
in scenarios related to load balancing such as anonymous and congestion games. In
congestion games, Pareto-optimal Nash and strong equilibria, which are resilient to
coalitional deviations, have recently been shown to yield significantly smaller inef-
ficiency. Unfortunately, we show that several problems regarding existence, recogni-
tion, and computation of these concepts are hard, even in seemingly special classes
of games. In anonymous games with constant number of strategies, we can efficiently
recognize a state as Pareto-optimal Nash or strong equilibrium, but deciding existence
for a game remains hard. In the case of player-specific singleton congestion games,
we show that recognition and computation of both concepts can be done efficiently. In
addition, in these games there are always short sequences of coalitional improvement
moves to Pareto-optimal Nash and strong equilibria that can be computed efficiently.
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1 Introduction

A central theme of (algorithmic) game theory is the study and analysis of equilibria to
predict the outcomes of interacting rational agents. Insights about the nature of equi-
libria yield numerous benefits, e.g., for the design and implementation of regulations
such as laws in society or protocols in distributed systems. In strategic games the
most frequently studied concept of stability is the Nash equilibrium (NE)—a state, in
which no agent has an incentive to unilaterally deviate. The analysis of Nash equilib-
rium has occupied a central place in game theory since its beginning. More recently,
the computational complexity of Nash equilibrium has been analyzed to determine
whether the concept is reasonable from a computational point of view [1, 11].

Much of the attractiveness of Nash equilibrium stems from its elegance and sim-
plicity and (in the mixed case) from guaranteed existence. However, Nash equilibrium
is only resilient against unilateral deviations. It neglects the aspect of cooperation or
coordination between agents. Obviously, in many scenarios agents have an incen-
tive to cooperate, as cooperation often allows to dramatically improve the situation
of every participant. In these cases, the negligence of cooperation in Nash equilib-
rium significantly hurts the explanatory power and predictive value of the concept in
practice.

This shortcoming of Nash equilibrium has been addressed already in the 1950s,
most notably by Aumann [3] who introduced the strong equilibrium (SE)—a state,
from which no coalition of agents can jointly deviate and thereby strictly improve all
members of the coalition. Strong equilibria include the consideration of cooperation,
but this comes at the expense of guaranteed existence. Hence, using strong equilib-
ria we can make better predictions about the outcome in many but not all games. In
addition, strong equilibria have recently been shown to exhibit a significantly smaller
inefficiency in congestion and load balancing games [2, 7, 12]. Similar results have
been obtained for a weaker concept of Pareto-optimal Nash equilibria (PoNE) [19],
in which only unilateral deviations or deviations of the whole player set are allowed.
From a designer perspective, it thus appears attractive to design (distributed) algo-
rithms for cooperation between agents that allow to reach these states if they exist.
The analysis of the computational complexity of SE and PoNE has been posed as an
open problem in [7] and is the subject of this paper.

Related Work and New Results In this paper, we examine the computational com-
plexity of SE and PoNE in games related to congestion and load balancing. In par-
ticular, we consider problems of the following types. Existence: Does a given game
have a SE? Recognition: Is a given state of a game a SE? Computation: If a game
has a SE, can we compute it in polynomial time? We consider these problems for SE
and PoNE and other related variants. In general, our results shed light on the inherent
complexity of cooperation. While in some cases, we can give efficient algorithms,
most of our insights turn out to be hardness results.

In Sect. 3 we study anonymous games [4, 5], in which the cost of a player does
not depend on the identity of the other players. A notable case are games with a
constant number of strategies, in which the existence of pure NE can be decided effi-
ciently [6], and for mixed NE there exists an FPTAS [8, 9]. In this case, we can decide
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the recognition problem efficiently for SE and PoNE. Our algorithm uses computa-
tion of perfect matchings together with careful enumeration to find a coalition and a
profitable deviation if they exist. Deciding the existence problem for SE and PoNE for
a given anonymous game, however, is strongly NP-complete, even for a small con-
stant number of strategies. Note that this is in contrast to general graphical games,
where the existence problem is even ΣP

2 -complete and thus at the second level of the
polynomial hierarchy [13].

An important class of anonymous games are cases of load balancing, i.e., player-
specific singleton congestion games [21]. Previous work has shown existence [18]
for such games with non-decreasing cost functions. However, we are not aware of
any result providing efficient algorithms to compute SE or PoNE. We show in Sect. 4
how to obtain a SE in polynomial time and how to recognize a given state as a SE or
PoNE. Interestingly, our results imply that there always exist sequences of coalitional
improvement moves to SE and PoNE that are of polynomial length. We show how to
obtain these moves for the players efficiently.

In Sect. 5 we consider standard congestion games [22] with special structure. In
congestion games it has been shown that SE can be absent [17], and a characteri-
zation result has been given that describes structures of strategy spaces that always
allow SE for any set of non-decreasing latency functions. An extension of SE to cor-
related strategies has been considered in [23]. More recently, it has been shown that
in a bottleneck variant of congestion games SE exist [15], and that SE in symmetric
network and matroid games can be computed in polynomial time [14]. In standard
matroid and symmetric network games NE can be computed efficiently [1, 11]. In
addition, there is a plethora of work on the complexity of NE in standard, weighted
or integer-splittable congestion games [10, 20], or local-effect games [20].

We here treat standard congestion games and aim to draw a more detailed picture
beyond the characterization of [17]. Unfortunately, even when the strategy space has
simultaneously a symmetric network and matroid structure, the existence problem
for SE is strongly co-NP-hard. This is particularly interesting in light of the posi-
tive results in related work mentioned above. Additionally, we can even show weak
NP-hardness for such games that have only 2 players. This directly implies the hard-
ness result also for PoNE, and k-SE (in which only coalitions of size at most k are
allowed), for any k ≥ 2.

Finally, we conclude in Sect. 6 with some open problems and directions for further
research.

2 Definitions

Strategic Games A strategic game Γ = (N, (Si)i∈N, (ci)i∈N) has a finite set N =
{1, . . . , n} of players. Player i ∈ N has a set Si of strategies. A state s ∈ S = S1 ×
· · · × Sn is sometimes referred to as a strategy profile or profile. The cost function of
player i is ci : S → R, which maps each state s ∈ S to a real number. We here denote
by s−i = (s1, . . . , si−1, si+1, . . . , sn). A state s ∈ S is a k-strong equilibrium (k-SE) if
no subset of the players I ⊆ N with |I | ≤ k can benefit from jointly deviating from
their strategies. Formally, there is no tuple (s′, I ) ∈ S × 2N with s′ �= s and |I | ≤ k
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such that ∀i ∈ I we have ci(s
′) < ci(s) and ∀i ∈ N \ I it holds si = s′

i . A n-SE is
called strong equilibrium (SE), and a 1-SE is a Nash equilibrium (NE). A Pareto-
optimal Nash equilibrium (PoNE) is a NE s, in which there is no other state s′ with
ci(s

′) < ci(s) for every i ∈ N .

Anonymous Games An anonymous game is a tuple (N,E, (ci)i∈N), where E is a
set of resources and the strategy space of every player, i.e., Si = E for all i ∈ N . The
cost function of player i depends only on the numbers of players that have chosen
the strategies, but not their identities. More formally, for a state s = (s1, . . . , sn), we
define the load le(s) on resource e by le(s) = |{i | e = si}|, that is le(s) is the number
of players that selected resource e as strategy in s. We call the tuple (le(s))e∈E the
load profile of s. Let L be the set of all load profiles. The cost function of player i

is ci : E × L → R, which maps the strategy of player i and the load profile of s to
a real number. The function of player i depends only on numbers of other players
but not on their identity (i.e., which set of other players he shares his resource with).
However, two players i and j choosing the same resource e can suffer a different
cost, as ci and cj might map l(s) to a different cost value. An interesting subclass
are anonymous games with a constant-size strategy set in which the size of E is a
fixed constant, which we study in this paper. Another subclass of anonymous games
that we study are player-specific singleton congestion games. While we assume that
these games can have an arbitrary number of strategies, the crucial adjustment is that
the cost function of player i is ci(lsi (s)) ∈ R. Thus, it depends only on lsi (s) of the
resource chosen by player i. We assume that cost functions are non-decreasing.

Congestion Games A congestion game is a tuple (N,E, (Si)i∈N, (de)e∈E), where
E is a set of resources, Si ⊆ 2E is the strategy space of player i ∈ N , and de : N → Z

is a delay function associated with resource e ∈ E. As above, we define the load
on e ∈ E in state s as le(s) = |{i|e ∈ si}|. The cost (or delay) ci(s) of player i in
s is ci(s) = ∑

e∈si
de(le(s)). Note that symmetric congestion games can be seen as

another subclass of anonymous games (albeit with a number of strategies that is pos-
sibly exponential in |E|), in which the cost functions have a special structure. In
terms of SE and PoNE we can also equivalently view asymmetric congestion games
as anonymous games with strategy set

⋃
i∈N Si , where player i has a prohibitively

large cost when he chooses a strategy si �∈ Si .
Several classes of congestion games are distinguished in the literature based on

the combinatorial structure of the strategy spaces. In network congestion games, the
resources are edges in a graph and the strategy space of each player is given by the
set of paths between some source-sink pair of nodes [11]. If all players have the
same source-sink pair, the games are termed symmetric network congestion games.
In matroid congestion games the strategy space of each player is composed of the
bases of a matroid [1].

3 Anonymous Games

In this section we start by considering the case of anonymous games with a constant
number of strategies. In this case we can decide efficiently if a given state s is a SE.
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Theorem 1 A state s of an anonymous game with a constant number of strategies
can be recognized as a Pareto-optimal Nash or a strong equilibrium in polynomial
time.

Proof We show here that we can efficiently compute a profitable deviation if it exists.
For the given state s let l(s) denote the load profile of s. For a given (possibly dif-
ferent) load profile l we present an algorithm that checks in polynomial time if there
exists a profitable joint deviation from s to a state that has load profile l. The algo-
rithm repeatedly tries to compute a perfect matching in a bipartite graph. By running
this algorithm for s and all polynomially many load profiles l, the theorem follows.

For a given state s and a given load profile l, we construct a bipartite deviation
graph G and search for a perfect matching. The vertex set of graph G = (A ∪ B,F)

is defined by A = {vi | for all 1 ≤ i ≤ n} and B = {ve,j | for all e ∈ E and 1 ≤ j ≤ le}.
For each 1 ≤ i ≤ n and resource e ∈ E, we add all the edges (vi, ve,j ) for all 1 ≤ j ≤
le if and only if ci(e, l) < ci(si , l(s)). In addition, there are edges (vi, vsi ,j ) for every
player 1 ≤ i ≤ n and his current strategy si , for every 1 ≤ j ≤ lsi .

Note that a perfect matching in this graph yields an assignment of players to strate-
gies. From this we can derive a new state s′ by setting s′

i = e iff (vi, ve,j ) is in the
matching for some 1 ≤ j ≤ le. s′ represents an improvement for all players i with
si �= s′

i . Therefore, if there is a profitable coalitional deviation from s to a state s′
with l(s) �= l(s′), the algorithm finds at least one such deviation. Observe, that for
l = l(s) the algorithm may return s itself. To check if there is a deviation to a strategy
s′ �= s with l(s) = l(s′), we run the algorithm n times with s and l as input. How-
ever, in the i-th run, we force player i to change his strategy by removing all edges
(vi, vsi ,j ). Thus, if there is a profitable deviation to a state s′ �= s with l(s) = l(s′),
then there will exist a perfect matching in at least one of the runs, and thereby we will
find such a deviation. This proves the result for SE.

For Pareto-optimal Nash equilibria we first check if all unilateral deviations are
unprofitable. For deviations of the complete set of players to a state with load pro-
file l we use the above construction, but we add edges (vi, vsi ,j ) if and only if they
represent a strict improvement for player i, i.e., ci(si , l) < ci(si , l(s)). This implies
that for each load profile l we only have to examine exactly one graph for a perfect
matching. There is a perfect matching for some load profile l if and only if s is not a
PoNE. This proves the result for PoNE. �

We can decide for a given state whether it is a SE or not, which implies that the
existence problem for PoNE and SE is in NP. In fact, deciding the existence of SE
and PoNE is strongly NP-complete.

Theorem 2 It is strongly NP-complete to decide if an anonymous game with a con-
stant number of strategies has a Pareto-optimal Nash or strong equilibrium.

Proof We first prove the result for SE and present a reduction from 3SAT. Given
a formula ϕ with the variables x1, . . . , xn and clauses c1, . . . , cm, we construct an
anonymous game Γϕ with players X0

i , X1
i (for 1 ≤ i ≤ n), Ck

j (for 1 ≤ j ≤ m and

1 ≤ k ≤ 10j ), V k
i (for 1 ≤ i ≤ n and 1 ≤ k ≤ 10i + 10m), Prisoner1, and Prisoner2.
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Player Strategy Load profile Cost

Xb
i

1 ≤ i ≤ n

b ∈ {0,1}

On |On| = n and |Off| = n 2
On Otherwise 3
Off |On| = n and |Off| = n 1
Off Otherwise 3
False |False| ∈ {10j + 3 | for cj contains literal

xi and b = 0 or cj contains literal ¬xi and
b = 1}

1

False |False| = 10m + 10i + 2 1
False Otherwise 4

Ck
j

1 ≤ j ≤ m

1 ≤ k ≤ 10j

Verify 2
False |False| = 10j + 3 1
False Otherwise 3

V k
i

1 ≤ i ≤ n

1 ≤ k ≤ 10i + 10m

Verify 2
1 ≤ i ≤ n False |False| = 10m + 10i + 2 1

False Otherwise 3

Prisoner1,
Prisoner2

Cooperate |False| = 0 5
Cooperate |False| �= 0 and |Cooperate| = 2 2
Cooperate |False| �= 0 and |Cooperate| �= 2 4
Defect |False| = 0 5
Defect |False| �= 0 and |Defect| = 2 3
Defect |False| �= 0 and |Cooperate| �= 2 1

Fig. 1 Description of the cost functions in the game Γϕ . Strategies that are not listed here have cost of 6
and, therefore, are never played in equilibrium

The set of strategies is {On, Off, Verify, False, Wait, Cooperate, Defect}, costs are
shown in Fig. 1.

If ϕ is satisfiable, let b1, . . . , bn be a satisfying assignment. The following state is
a SE. For each 1 ≤ i ≤ n, the player X

bi

i plays On and the player X
1−bi

i plays Off. All
players Ck

j and V k
i play Verify and players Prisoner1 and Prisoner2 play Cooperate.

We show that there is no coalition that can improve by jointly deviating to another
state. The players X

1−bi

i are playing Off and have the minimal possible cost of 1.
Thus, they cannot be part of a deviating coalition. The players Prisoner1 and Prisoner2

can improve only if some other players move to False. We will show, this cannot
happen.

For the remaining players, i.e., X
bi

i , Ck
j , V k

i , the only possible profitable deviation
is to deviate to False. Clearly, if there is a deviation of a subset of these players, it must
result in 10j + 3 (for 1 ≤ j ≤ m) or 10m + 10i + 2 (for 1 ≤ i ≤ n) players on False.
We consider the former case. Assume there is a deviation of a coalition of some of
the players that results in 10j ′ + 3 many player on False. The coalition must contain

the players C1
j ′ , . . . ,C

10j ′
j ′ and the three players X

bi

i with xi appearing in clause cj ′ .
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However, let xi∗ be a variable that satisfies cj with xi∗ = bi∗ . Player X
b∗
i

i∗ does not
improve by deviation to False. Therefore, no such deviation can exist. Similarly, there
is no deviation of a coalition that yields 10m + 10i′ + 2 (for 1 ≤ i′ ≤ n) players on
False. This is only possible if both players X0

i′ and X1
i′ are on strategy On.

Now, assume ϕ is not satisfiable, and there is a strategy profile s that is a SE.
We first show that in s no player is on False. If some player is on False, the players
Prisoner1 and Prisoner2 play a game corresponding to the prisoners dilemma. This
game does not admit a SE and implies that in s no player can be on False.

Now since s is an equilibrium, there are exactly n players Xb
i on On and exactly n

players Xb
i on Off because otherwise they would have cost of 3. There is no 1 ≤ i′ ≤ n

with both players X0
i′ and X1

i′ being on strategy On. Otherwise, those two players

and the players V 1
i′ , . . . , V

10m+10i′
i′ could jointly change to False and decrease their

costs. Now, let X
b1
1 , . . . ,X

bn
n be the players on On. Since ϕ is not satisfiable, the

assignment b1, . . . , bn implied by the players on On creates at least one clause cj ′
that is not satisfied. Let xi′ , xi′′ , and xi′′′ be the three variables of this clause. Then,

the players X
bi′
i′ ,X

bi′′
i′′ ,X

bi′′′
i′′′ , and the players C1

j ′ , . . . ,C
10j ′
j ′ could jointly change to

False and decrease their costs. This is a contradiction to the assumption that s is a SE
and completes our reduction.

To show the same result for PoNE, we construct an anonymous game as described
above and modify the cost functions as follows: If there is one or more players on
False, the cost of each player not on False is 0.2 less than in the original game. If
exactly two players are on Cooperate, the cost of each other player is 0.1 less than in
the original game. For the case that the formula is satisfiable, it is easy to see that the
SE described in the proof above still is a SE in the modified game. In particular, it
is also a PoNE. On the other hand, if the formula is not satisfiable, every coalitional
deviation that we described above now decreases the costs of all players. Therefore,
no PoNE exists. �

Note that this implies that further restrictions on the games are necessary in order
to decide existence or compute a SE or PoNE efficiently. We consider games with
a constant number of player types, i.e., where each player has one out of a constant
number of different cost functions.

Corollary 3 In anonymous games with constant number of strategies that are
(1) symmetric or (2) have only a constant number of different player types we can
decide efficiently if Pareto-optimal Nash or strong equilibria exist and compute one
efficiently if it exists.

Note that for symmetric games the assignment of players in a load profile is ir-
relevant, hence we can use our algorithm from Theorem 1 above to check each of
the polynomial number of profiles for being a SE or PoNE. For a constant number of
player types, the number of essentially different assignments that can be derived from
a single load profile is a polynomial number. Again, by enumeration and application
of our algorithm we can decide existence and compute SE and PoNE efficiently.
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4 Player-Specific Singleton Congestion Games

In this section we treat player-specific singleton congestion games. For games with
non-decreasing cost functions it is known that SE always exist [18]. Here we provide
efficient algorithms to compute a SE and decide whether a given state is a SE or
PoNE. To the best of our knowledge these results have not been described in the
literature before.

Theorem 4 In player-specific singleton congestion games with non-decreasing cost
functions we can in polynomial time (1) decide whether a given state is a Pareto-
optimal Nash or strong equilibrium and (2) compute a strong equilibrium in polyno-
mial time.

Proof Obviously, a state s that is a SE or PoNE must be a NE. Consider a NE s and
the corresponding load profile l(s). Because cost functions are non-decreasing, every
profitable coalitional deviation must result in a state s′ with the same load profile
l(s). In particular, if the load profile changes to l(s′) �= l(s), there must be a resource
e with higher load le(s

′) > le(s). Consider a player moving to e. Any player moving
to e does not make a strict improvement, because otherwise he could move there
unilaterally—a contradiction to s being a NE. Hence, whenever we have a NE, there
must be a SE with the same load profile, a fact that was observed in [18]. Every
profitable coalitional deviation represents a circular switch of players and thereby
decreases the sum of player costs.

We use our algorithm presented for anonymous games in Theorem 1 to decide for
a given state s whether it is a SE or PoNE. Note that due to the arbitrary number of
strategies, there is a possibly exponential number of load profiles. We make sure that
s is a NE, then we only have to check one load profile—namely l(s)—to verify that
no coalitional deviation exists. In this way, we can efficiently check whether a state
is a SE or PoNE.

For the task of computing a SE, we note that there are efficient algorithms to com-
pute a NE in these games [21]. This allows us to obtain a NE s and load profile l(s)

in polynomial time. To compute a SE, we construct a bipartite deviation graph G for
state s and target profile l(s) as in the proof of Theorem 1. Here we also add costs to
the edges, and let the cost of edge (vi, ve,j ) be ci(le(s)), for all 1 ≤ j ≤ le(s). Now
consider any other state s′ with l(s), in which ci(s) = ci(s

′) for every player i with
si = s′

i and ci(s) > ci(s
′) for every i with si �= s′

i . For every such state we can find a
corresponding perfect matching in G. In particular, we construct a minimum cost per-
fect matching. This matching yields a state s′ and we now argue that s′ is indeed a SE.

Suppose for contradiction that there is a coalitional deviation from s′ to a state s′′.
s is a NE and ci(s) ≥ ci(s

′) ≥ ci(s
′′) for every i ∈ N , with at least one inequality

for a moving player. s′′ must also have load profile l(s), and a deviation from s′ is
a circular switch of players. This switch does not increase the cost of any player
but decreases the cost of the moving players. Therefore, the assignment s′′ is such
that ci(s) = ci(s

′′) for every player i with si = s′′
i and ci(s) > ci(s

′′) for every i

with si �= s′′
i . Note that s′′ corresponds to a perfect matching in G, and the sum of

costs
∑

i∈N ci(s
′′) <

∑
i∈N ci(s

′). This is a contradiction to s′ being derived from a
minimum cost perfect matching in G. �
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Fig. 2 Construction that proves
hardness of the existence and
recognition problems of SE in
congestion games

Interestingly, our proof shows that for every NE there is a single coalitional de-
viation that turns the state into a SE. Milchtaich [21] proved that from every state s

there is a sequence of unilateral deviations with length at most |E| · (n+1
2

)
that leads

to a NE. Our result implies that even SE can be reached via short sequences of im-
provement moves from every state of the game. In these sequences we only need one
coalitional move which is efficiently computable. A similar result can be derived for
PoNE, where we adjust the deviation graph to allow only coalitional improvement
moves where all players strictly improve.

Corollary 5 For every state s of a player-specific singleton congestion game with
non-decreasing cost functions there is a sequence of coalitional improvement moves
that leads to a strong equilibrium. Each move can be computed in polynomial time.
The length of the sequence is at most |E| · (n+1

2

) + 1.

5 Congestion Games

In this section, we consider the complexity of computing SE and PoNE in general
congestion games. The class of singleton congestion games is a special case of the
games we treated in the previous section, and for which we could establish a variety
of positive results. Here we extend the combinatorial structure of strategy spaces only
slightly to matroids. This allows to obtain a set of quite strong hardness results con-
cerning the existence and recognition of SE and PoNE. Note that all our results in this
section hold even for symmetric games, in which strategy spaces are simultaneously
matroids and networks.

Theorem 6 It is strongly co-NP-hard to decide (1) if a congestion game has a strong
equilibrium and (2) if a given state of a game is a strong equilibrium.

Proof We reduce from 3-PARTITION. An instance is given by a multiset of integers
a1, . . . , a3m. Let b = 1

m

∑3m
i=1 ai . An instance I = (a1, . . . , a3m) ∈ 3-PARTITION if

and only if there exists a partition of A = {1, . . . ,3m} into m subsets A1, . . . ,Am

such that the sum
∑

i∈Aj
ai = b for all 1 ≤ j ≤ m. Without loss of generality, we

can assume that every integer b/2 > ai > b/4. Therefore, each subset Ai is forced to
consist of exactly three elements.

Given an instance I , we construct a congestion game ΓI as follows. The network
is G = (V ,E) with vertices V = {s, v1, . . . , v3m, t} and a series of parallel edges
as depicted in Fig. 2. There are m + 1 players. The source node of each player is
s and his target node is t . The strategies are all simple s-t-paths. Hence, the game
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is simultaneously a symmetric network congestion game and a matroid congestion
game.

The delay functions are defined as follows. Let M = 2b and 1 > ε > 0. The delay
of an edge a−

i is M − ai for one player and M for more than one player. Delay of an
edge a+

i is always M + ai . The delay of an edge a0
i is M for at most m − 1 players

and 2M for m or more players. Delay of edge b− is M − b − ε for at most m players
and M for more than m players. Delay of an edge b+ is always M + mb − ε.

If I ∈ 3-PARTITION, we show that no SE exists. Observe that for a single agent it is
never optimal to choose one of the edges a+

i or b+. Thus, no SE exists in which these
edges are used. Thus, in every SE every player has delay of (at least) (3m + 1)M .
However, there is a joint deviation of all players which yields delay of (3m+1)M −ε

for each of them. Let A1, . . . ,Am be a solution of the 3-PARTITION-instance I . Player
m + 1 choses edge b+ and edges a−

1 , . . . , a−
3m. Each player 1 ≤ j ≤ m chooses edge

b− and the following edges: For each 1 ≤ i ≤ 3m, if i ∈ Aj player j plays edge a+
i

otherwise he players a0
i . Then the delay of a player 1 ≤ i ≤ m is

(M − b − ε) +
∑

j∈Ai

(M + aj ) +
∑

j∈{1,...,3m}\Ai

M

= M − b − ε + 3M + b + (3m − 3)M

= (3m + 1)M − ε.

The delay of player m + 1 is

(M + mb − ε) +
3m∑

j=1

(M − aj )

= M + mb − ε + 3mM − mb

= (3m + 1)M − ε.

As argued above, the resulting state is not a SE either. Thus, no SE exists.
If I �∈ 3-PARTITION, all players choosing path b−, a−

1 , a−
2 , . . . , a−

3m is a SE. As-
sume for contradiction that there is a profitable deviation for a coalition. This implies
that the sum of their delays also improves. If players deviate by leaving from the
edges a−

i this sum cannot decrease. Therefore, a deviation must include a devia-
tion to the edge b+. Without loss of generality let this be player m + 1. Now, for
player m + 1 this deviation is only profitable if he stays on the edges a−

1 , . . . , a−
3m

while all other players are not on these edges. This implies for the remaining m play-
ers and each 1 ≤ i ≤ 3m that (at least) one player has to choose edge a+

i and (at
most) m − 1 players choose edge a0

i . For 1 ≤ j ≤ m let Aj = {i | player j is on a+
i }.

Hence, the deviation is profitable only if for all player 1 ≤ j ≤ m the following holds:∑
i∈Aj

ai ≤ b. Since we have that
⋃m

j=1 Aj = {1, . . . ,3m}, we obtain
∑

i∈Aj
ai = b

which is a contradiction to the assumption that I �∈ 3-PARTITION.
Obviously, the above implies that s with all players choosing path b−, a−

1 , a−
2 ,

. . . , a−
3m is a SE if and only if I �∈ 3-PARTITION. This proves co-NP-hardness of

deciding whether a given state is a SE. �
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Fig. 3 Construction that proves
hardness of the existence and
recognition problems of 2-SE
and PoNE in congestion games

Theorem 7 It is weakly co-NP-hard to decide (1) if a congestion game with two play-
ers has a strong equilibrium and (2) if a given state of a game is a strong equilibrium.

Proof We essentially use the same construction as in Theorem 6. This time we reduce
from a version of SUBSETSUM−: An instance is given by a set of natural numbers
a1, . . . , am, and b. An instance I = (a1, . . . , am, b) ∈ SUBSETSUM− if and only if
there exists a vector (x1, . . . , xm) ∈ {−1,0,1}m with

∑m
i=1 xiai = b. It is easy to

show that this problem is weakly NP-complete.
Given an instance of SUBSETSUM− we construct a network congestion game as

above. The network is G = (V ,E) with V = {s, v1, . . . , vm, t} and a series of parallel
edges as depicted in Fig. 3. For the delay we use a large number M > 3

∑m
i=1 ai . The

delay of an edge ai is M − ai for one player and M for more than one player. The
delay of an edge a′

i is always M +ai . The delay of edge b is M −b− ε for one player
and M for more than one player. Delay of an edge b′ is always M + b − ε.

If I /∈ SUBSETSUM−, the state s in which both players choose the upper path,
i.e., the edges a1, . . . , am, and b is a SE. Note that both players have delay (m+1)M .
Obviously, there is no improving deviation for a single player. For a joint deviation,
observe that every improvement must include a deviation of one of the players to
edge b′. Adequate compensation of his higher delay incurred by using this edge is
only possible if the other player deviates to some of the edges a′

i . This, however, is
not possible due to the assumption.

If the instance I ∈ SUBSETSUM−, consider any other state than s. Note that each
player unilaterally has an incentive to switch to the upper path, hence no such state
can be a NE. Now let {x1, . . . , xm} ∈ {−1,0,1}m with

∑m
i=1 xiai = b. The following

state is a profitable deviation for both players from s. The first player chooses the
edges ai with xi = 0 or xi = 1 and a′

i for xi = −1. He also chooses edge b′. The
second player chooses the edges ai for xi = 0 or xi = −1 and a′

i for xi = 1. Finally,
he also chooses edge b. Then the delay of the first player is

∑

i:xi=1

(M − ai) +
∑

i:xi=0

M +
∑

i:xi=−1

(M + ai) + M + b − ε

= (m + 1)M −
n∑

i=1

xiai + b − ε

= (m + 1)M − ε.

A similar calculation shows that the delay of the second player is also (m +
1)M − ε. Finally, the above arguments imply that state s is a SE if and only if
I �∈ SUBSETSUM−. This proves the theorem. �
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This implies the same result for PoNE, as for two players SE and PoNE coincide.
Additionally, it implies the result for k-SE, for any k ≥ 2.

Corollary 8 It is weakly co-NP-hard to decide for a congestion game (1) if it has a k-
strong equilibrium, (2) if it has a Pareto-optimal Nash equilibrium, (3) if a given state
is a k-strong equilibrium, (4) if a given state is a Pareto-optimal Nash equilibrium,
for any k ≥ 2.

6 Conclusion

In this paper, we have initiated the study of computational complexity of coalitional
equilibrium concepts in anonymous and congestion games. Many of our results are
hardness proofs, with some notable exceptions for player-specific singleton conges-
tion games and recognition in anonymous games. In general, our paper opens up a
variety of issues for further research. An obvious direction is to explore if there are
approximate variants of SE or PoNE that exist and can be recognized and/or com-
puted efficiently. Additionally, the social cost of such equilibria and the convergence
times of natural dynamics are interesting issues for future work. More fundamentally,
it is an important and challenging problem to augment the concept of pure Nash equi-
librium with resilience to coalitional deviations in a meaningful way that avoids some
of the devastating hardness results presented, e.g., in this paper and [13].
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