Skip to main content

Pareto Efficiency and Approximate Pareto Efficiency in Routing and Load Balancing Games

  • Conference paper
Algorithmic Game Theory (SAGT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6386))

Included in the following conference series:

Abstract

We analyze the Pareto efficiency, or inefficiency, of solutions to routing games and load balancing games, focusing on Nash equilibria and greedy solutions to these games. For some settings, we show that the solutions are necessarily Pareto optimal. When this is not the case, we provide a measure to quantify the distance of the solution from Pareto efficiency. Using this measure, we provide upper and lower bounds on the “Pareto inefficiency” of the different solutions. The settings we consider include load balancing games on identical, uniformly-related, and unrelated machines, both using pure and mixed strategies, and nonatomic routing in general and some specific networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS, pp. 295–304 (2004)

    Google Scholar 

  2. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  3. Cohen, J.E.: Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games. Proceedings of the National Academy of Sciences of the United States of America 95(17), 9724–9731 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for biobjective shortest paths and other problems. SIAM Journal on Computing 39(4), 1340–1371 (2009), http://link.aip.org/link/?SMJ/39/1340/1

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubey, P.: Inefficiency of nash equilibria. Mathematics of Operations Research 11(1) (1986)

    Google Scholar 

  6. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Feldman, M., Tamir, T.: Approximate strong equilibrium in job scheduling games. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 58–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Hurwicz, L., Schmeidler, D.: Construction of outcome functions guaranteeing existence and pareto optimality of nash equilibria. Econometrica 46(6) (1978)

    Google Scholar 

  9. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: STACS, pp. 404–413 (1999)

    Google Scholar 

  10. Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the pareto front of multi-criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 69–83. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Loridan, P.: ε-solutions in vector minimization problems. Journal of Optimization Theory and Applications 43(2) (1984)

    Google Scholar 

  12. Maskin, E.: Nash equilibrium and welfare optimality. The Review of Economic Studies, Special Issue: Contracts 66(1) (1999)

    Google Scholar 

  13. Nash, J.F.: The bargaining problem. Econometrica 18(2) (1950)

    Google Scholar 

  14. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  15. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources (extended abstract). In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 86–92 (2000)

    Google Scholar 

  16. Roughgarden, T.: The price of anarchy is independent of the network topology. Journal of Computer and System Sciences, 428–437 (2002)

    Google Scholar 

  17. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers, Part II 1(36), 352–362 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aumann, Y., Dombb, Y. (2010). Pareto Efficiency and Approximate Pareto Efficiency in Routing and Load Balancing Games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds) Algorithmic Game Theory. SAGT 2010. Lecture Notes in Computer Science, vol 6386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16170-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16170-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16169-8

  • Online ISBN: 978-3-642-16170-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics