
Context-Aware Route Planning

Adriaan W. ter Mors, Cees Witteveen, Jonne Zutt, and Fernando A. Kuipers

Delft University of Technology, The Netherlands

Abstract. In context-aware route planning, there is a set of transporta-
tion agents each with a start and destination location on a shared infras-
tructure. Each agent wants to find a shortest-time route plan without col-
liding with any of the other agents, or ending up in a deadlock situation.
We present a single-agent route planning algorithm that is both optimal
and conflict-free. We also present a set of experiments that compare our
algorithm to finding a conflict-free schedule along a fixed path. In partic-
ular, we will compare our algorithm to the approach where the shortest
conflict-free schedule is chosen along one of k shortest paths. Although
neither approach can guarantee optimality with regard to the total set
of agent route plans — and indeed examples can be constructed to show
that either approach can outperform the other — our experiments show
that our approach consistently outperforms fixed-path scheduling.

1 Introduction

Consider a transportation problem in which each agent wants to reach its desti-
nation location in the shortest possible time, while avoiding collisions and dead-
locks involving other agents. This problem arises in the deployment of Auto-
mated Guided Vehicle Systems (AGVSs), for instance in manufacturing where
the vehicles carry materials between production stations, or at container termi-
nals such as Hamburg and Singapore, where they carry containers to and from
ships [1]. Another application domain of multi-agent transportation is taxi rout-
ing at airports [2, 3], where aircraft have to taxi, e.g. from a runway to a gate,
while avoiding close proximity with other aircraft.

Avoiding collisions and deadlocks can be achieved by constructing a set of
conflict-free route plans1. A route plan for a single agent specifies which infras-
tructure resources (such as roads and intersections) the agent will visit, and at
which times it will visit these resources. The set of agent route plans should
ensure that there are never more agents in a resource than its capacity allows.
Finding an optimal set of conflict-free route plans is an NP-hard problem [4],
and optimal centralized approaches have difficulty finding plans for more than
a handful of agents (four agents, in [5]). Fortunately, there exist ways to trade
off plan quality for reduced computation times.

1 Other ways of preventing collisions and deadlocks, such as assigning agents to non-
overlapping parts of the infrastructure, are described in the AGV survey paper by
Vis [1].

In context-aware route planning (CARP), agents plan one after another,
with agent n finding an optimal (shortest-time) route that does not create a
conflict with any of the n−1 existing plans (the context). Kim and Tanchoco [6]
presented a context-aware route planning algorithm with a worst-case complexity
of O(|A|4|R|2) (i.e., for a single agent), where A is the set of agents that already
have a plan and R is the set of roads and intersections from the infrastructure. A
further trade-off between plan quality and computation time can be achieved by
finding an optimal schedule along a fixed path. In fixed-path scheduling (FPS),
an agent has one or more pre-determined paths from its start location to its
destination location, and it will choose the path along which it can find the
shortest-time conflict-free schedule. Hatzack and Nebel [2] presented a fixed-path
scheduling algorithm which they applied in an airport taxi routing scenario, with
each agent always choosing the shortest path (i.e., the shortest-distance path)
from start to destination. Lee et al. [7] suggest finding a conflict-free schedule
along one of k shortest paths, determined using Yen’s algorithm [8]. The fixed-
path scheduling approach cannot guarantee individually optimal route plans,
because it may be faster to take a longer but less congested path.

In this paper we present a context-aware routing algorithm with a signifi-
cantly lower worst-case complexity of O(|A||R| log(|A||R|) + |A||R|2). Although
no complexity results have been published for fixed-path scheduling approaches,
we can convert our own CARP algorithm to an FPS algorithm, and the resulting
worst-case complexity is O(|A||R| log(|A||R|)). Hence, fixed-path scheduling is
faster, but it is not easy to rank both approaches in terms of plan quality, espe-
cially if we consider global plan cost, i.e., the cost of a set of agent plans. In this
paper we will therefore present a set of experiments that show the performances
of both methods on a variety of inputs.

This paper is organized as follows. In section 2, we present a model for the
multi-agent route planning problem. The main idea is that the infrastructure is
a graph of resources, each with a capacity that specifies how many agents may
simultaneously occupy a resource. In section 3 we will present our route planning
algorithm, which is based on the idea of performing a search through a graph
of free time windows. Section 4 describes experiments that try to determine
the relative performances of context-aware routing and fixed-path scheduling on
a variety of infrastructures, including a realistic airport taxi routing scenario.
Finally, section 5 concludes this paper.

2 Model

We assume a set A of agents that each have to find a quickest-time path from
one location in the infrastructure to another. We model the infrastructure as a
resource graph GR = (R,ER), where resources in R can be roads, intersections,
or interesting locations that the agents can visit. An agent can directly go from
resource r ∈ R to resource r′ ∈ R if the pair (r, r′) is in the successor relation
ER ⊆ R×R. A resource r has a capacity c(r), denoting the maximum number of
agents that can simultaneously make use of the resource, and a duration d(r) > 0

which represents the minimum time it takes for an agent to traverse the resource.
An agent’s plan consists of a sequence of resources, and a corresponding sequence
of intervals in which to visit them.

Definition 1 (Route Plan). Given a start resource r, a destination resource
r′, and a start time t, a route plan is a sequence π = (〈r1, τ1〉, . . . , 〈rn, τn〉),
τi = [ti, t′i), of n plan steps such that r1 = r, rn = r′, t1 ≥ t, and ∀j ∈ {1, . . . , n}:
(i) interval τj meets interval τj+1 (j < n), (ii) |τj | ≥ d(rj), (iii) (rj , rj+1) ∈ ER.

The first constraint states that the exit time of the jth resource in the plan must
be equal to the entry time into resource j + 1. The second constraint requires
that the agent’s occupation time of a resource is at least sufficient to traverse
the resource in the minimum travel time. The third constraint states that if two
resources follow each other in the agent’s plan, then they must be adjacent in
the resource graph. The cost of a single agent’s plan is defined as the difference
between the start time and the end time. For the cost of a set of agent plans,
we define two measures. The makespan is the difference between the earliest
starting time and the latest finish time; the joint agent plan cost is simply the
sum of the individual agents’ plan costs.

In sequential route planning, an agent must respect the plans of all the agents
that came before it. From the set of existing agent plans, we can infer how many
agents will be in each of the resources for each point in time.

Definition 2 (Resource load). Given a set Π of agent plans and the set
of all time points T , the resource load λ is a function λ : R × T → N that
returns the number of agents occupying a resource r at time point t ∈ T :
λ(r, t) = |{〈r, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}|

An agent may only make use of a resource in time intervals when the resource
load is less than the capacity of the resource. In such a free time window, an
agent can enter a resource without creating a conflict with any of the existing
agent plans.

Definition 3 (Free time window). Given a resource-load function λ, a free
time window on resource r is a maximal interval w = [t1, t2) such that: (i)
∀t ∈ w : λ(r, t) < c(r), (ii) (t2 − t1) ≥ d(r).

The above definition states that for an interval to be a free time window, there
should not only be sufficient capacity at any moment during that interval (condi-
tion (i)), but it should also be long enough for an agent to traverse the resource
(condition (ii)). Within a free time window, an agent must enter a resource,
traverse it, and exit the resource. Because of the (non-zero) minimum travel
time of a resource, an agent cannot enter a resource right at the end of a free
time window, and it cannot exit the window at the start of one. We therefore
define for every free time window w an entry window τentry(w) and an exit win-
dow τexit(w). The sizes of the entry and exit windows of a free time window
w = [t1, t2) on resource r are constrained by the minimum travel time of the
resource: τentry(w) = [t1, t2 − d(r)), and τexit(w) = [t1 + d(r), t2).

An agent that wants to go from resource r to (adjacent) resource r′ should
find a free time window for both of these resources. By definition 1 of a route
plan, the exit time out of r should be equal to the entry time into r′. Hence, for
a free time window w′ on r′ to be reachable from free time window w on r, the
entry window of w′ should overlap with the exit window of w.

Definition 4 (Free time window graph). The free time window graph is
a directed graph GW = (W,EW), where the vertices w ∈ W are the set of free
time windows, and EW is the set of edges specifying the reachability between
free time windows. Given a free time window w on resource r, and a free time
window w′ on resource r′, it holds that (w,w′) ∈ EW if: (i) (r, r′) ∈ ER, and
(ii) τexit(w) ∩ τentry(w′) 6= ∅.

The free time window graph encodes the relevant information of the plans of the
first n−1 agents (allowing agent n to plan its route), but it does not contain any
information on the possible movements of agents n + j, j ≥ 1. To ensure that
agent n will not make a plan that will make it impossible for any subsequent
agent to find a plan, we need to make some simplifying assumptions regarding
the start and destination locations of each agent: these locations must either
have sufficient capacity to hold all the agents that might need it, or we need
to assume that agents arrive and depart from the infrastructure, like airplanes
landing on and taking off from an airport.

3 Route planning algorithms

In classical shortest path planning, e.g. using Dijkstra’s algorithm, if a node v
is on the shortest path from node s to node t, then a shortest path to v can
always be expanded to a shortest path to t. This implies that once we have
found a shortest path to v, then no other paths to this node need be considered.
In context-aware route planning, it is not the case that a shortest route to an
intermediate resource can always be expanded to the destination, as illustrated
in figure 1. In figure 1 we see an agent A1 that wants to go from r1 to r5, and an
agent A2 with source-destination pair r5, r3. All resources have unit capacity.
Let us assume that A2 has already made a plan, and now A1 wants to find a
plan. If the minimum traversal times of all resources are the same, then A1 could
reach r2 before A2 needs it. However, this shortest partial plan to r2 cannot be
expanded, because then the agents would meet head on. Agent A1 must therefore
find an alternative route to r2, which is to wait in r1 until A2 has reached r3.
Hence, multiple route plans to an intermediate resource must be considered. A
naive approach that would try all different routes to an intermediate resource
would require exponential time to execute. The idea behind our algorithm is
that we only need to consider shortest partial plans to the free time windows on
a resource: if we have a partial plan that arrives at resource r at time t that lies
within free time window w, then all other partial plans to r that arrive at time
t′, (t′ ≥ t) ∧ (t′ ∈ w), can be simulated by waiting in resource r from time t to
time t′. This waiting is possible because no conflict will be introduced as long
as the agent exits r before the end of w.

2
1

r1 r2 r4 r5

r3

Fig. 1. If A1 respects the plan of A2, then the earliest route to r2 cannot be expanded.

Our route planning algorithm performs a search through the free time window
graph that is similar to A*: In each iteration, we remove a partial plan from an
open list of partial plan plans with a lowest value of f = g + h, where g is
the actual cost of the partial plan, and h is a heuristic estimate of reaching the
destination resource. We cannot directly apply an algorithm like A* to GW ,
because the existence of a pair (w,w′) ∈ EW does not guarantee that a partial
plan, ending in w, can be expanded to free time window w′. The reachability of
w′ from w implies that there exists a time point t ∈ (τexit(w) ∩ τentry(w′)), not
that all time points in τexit(w) are also in τentry(w′). Hence, when expanding a
plan that ends in window w = [t1, t2) at time t to free time window w′, we must
verify that [t, t2) ∩ τentry(w′) 6= ∅. We will write ρ(r, t) to denote the set of free
time windows (directly) reachable from resource r at earliest exit time t.

Algorithm 1 Plan Route
Require: start resource r1, destination resource r2, start time t; free time window

graph GW = (W, EW)
Ensure: shortest-time, conflict-free route plan from (r1, t) to r2.
1: if ∃w [w ∈W | t ∈ τentry(w) ∧ r1 = resource(w)] then
2: mark(w, open)
3: entryTime(w)← t

4: while open 6= ∅ do
5: w ← argminw′∈open f(w′)
6: mark(w, closed)
7: r ← resource(w)
8: if r = r2 then
9: return followBackPointers(w)

10: texit ← g(w) = entryTime(w) + d(resource(w))
11: for all w′ ∈ {ρ(r, texit) \ closed} do
12: tentry ← max(texit, start(w′))
13: if tentry < entryTime(w′) then
14: backpointer(w′)← w
15: entryTime(w′)← tentry

16: mark(w′, open)

17: return null

In line 1 of algorithm 1, we check whether there exists a free time window on
the start resource r1 that contains the start time t. If there is such a free time
window w, then in line 2 we mark this window as open, and we record the entry
time into w as the start time t. In line 5, we select the free time window w on
the open list with the lowest value of f(w). As in the original A* algorithm, the
function f(w) = g(w) + h(w) is a combination of the actual cost g(w) of the
partial plan to w, plus a heuristic estimate h(w) to reach the destination from
w. If the resource r associated with w equals the destination resource r2, then
we have found the shortest route to r2, for the following reason: all other partial
plans on Q have a higher (or equal) f -value, and if the heuristic is consistent2,
expansion of these partial plans will never lead to a plan with a lower f -value.
We return the optimal plan in line 9 by following a series of backpointers.

If r is not the destination resource, we prepare to expand the plan. First,
in line 10, we determine the earliest possible exit time out of r as the cost of
the partial plan: g(w) = entryTime(w) + d(r). Then, in line 11, we iterate over
all reachable free time windows that are not closed. When expanding free time
window w to free time window w′, we determine the entry time into w′ as the
maximum of the earliest exit time out of resource r, and the earliest entry time
into w′. We only expand the plan from w if there has been no previous expansion
to free time window w′ with an earlier entry time (initially, we assume that the
entry times into free time windows are set to infinity). In line 14, we set the
backpointer of the new window w′ to the window w from which it was expanded.
Then, we record the entry time into w′ as tentry, and we mark w′ as open. Finally,
in case no conflict-free plan exists, we return null in line 17.

The worst-case complexity of algorithm 1 is O(|W | log(|W |) + |EW |): the
while-loop in line 4 runs for at most |W | iterations (every free time window
is expanded at most once), and removing the smallest element from a priority
queue can be done in O(log(W)) time. All other operations between lines 4 and 10
can be performed in constant time. The for loop in line 11 could inspect every
connection between two free time windows exactly once, so lines 12 to 16 can
run at most |EW | times. If we assume that agents are not allowed to make cyclic
plans, then one resource can hold at most |A| reservations, and consequently
|A| + 1 free time windows. Hence, W ≤ (|A| + 1)|R|, and the complexity of
algorithm 1 is O(|A||R| log(|A||R|) + |A||R|2), which has been proved in [4],
where the correctness is also proved3.

3.1 Fixed-path scheduling algorithms

Algorithms to find a shortest-time schedule along a fixed sequence of resources
can be found in [2] and [7]. It is also possible to use algorithm 1 to schedule along
2 Because we make use of a closed list, it is not sufficient to require that the heuristic

is merely admissible (i.e., that it would never overestimate the cost of reaching the
destination). For a consistent heuristic, it should hold that h(w) ≤ g(w, w′)+h(w′),
where g(w, w′) is the actual cost of getting from w to w′.

3 Complexity analysis and correctness proof of an earlier version of algorithm 1 can
be found in [9].

a fixed path, by presenting it with a reduced version of the free time window
graph. In particular, the set of edges EW should only contain a pair (w,w′) in
case the respective resources r and r′ are successors in the path along which we
want to find a conflict-free schedule. The complexity of running algorithm 1 on
such a reduced free time window graph is O(|A||R| log(|A||R|)). The reduction
in complexity is achieved because a partial plan is only expanded to a single
successor resource, rather than considering expansion to all adjacent resources.
As a result, the for-loop in line 11 runs only for a single iteration (per partial
plan). The while loop from line 4 runs for at most |A||R| iterations, and none of
the lines in the algorithm contribute more than O(log(|A||R|)) time.

3.2 Examples

We will now present two examples to compare the context-aware approach to the
fixed-path scheduling approach. The first example shows how a central resource
can become a bottleneck in the fixed-path approach, while the second example
demonstrates that a context-aware planner can sometimes select plans that make
it harder for subsequent agents to find efficient plans. In figure 2 we see an

2

3

4

1
8

7

6 5

r
7

b
r
7

d

r
7

sr
7

a

r
3

s r
3

a

r
3

b
r
3

d

r
1

s

r
1

a
r
1

b

r
1

d

r
5

s

r
5

a

r
5

d

r
5

b

rc

Fig. 2. FPS, with k = 1, always makes use of rc, which leads to congestion.

infrastructure with a central resource rc, and agents Ai with respective start
locations ri

s and destination locations ri
d. For each agent, the shortest path from

start to destination is via the central resource rc. Each agent also has the option
of taking a path that is one resource longer. A fixed-path scheduling approach
(with k = 1) will select the shortest path for each agent, resulting in tremendous
congestion on the central resource. A context-aware approach will result in one
or two agents using rc, while the other agents will take the alternative route.

rd,1

rs,2

rs,1

rd,2

Fig. 3. An optimal multi-agent plan is for all agents to stay in their respective corridors.

In figure 3 we see an infrastructure with two long corridors of resources.
Three agents in resource rs,1 want to go to resource rd,1, while the three agents
in resource rs,2 want to go to resource rd,2. All locations, except for the start and
destination locations, have capacity one. The shortest path for each agent is to
travel to its destination along its initial corridor. The fixed-path approach with
k = 1 will therefore direct each agent along its initial corridor, which will result
in the optimal multi-agent plan. The behaviour of the context-aware approach
depends on the order in which the agents plan. If all agents from one group
are allowed to plan first, then for either the second or the third agent it will be
fastest to select the other corridor; then all agents from the other group must
wait until a corridor is empty.

4 Experiments

In this section we will compare the global plan cost resulting from k-shortest
path scheduling and context-aware routing, and see how they compare to lower
bounds on the cost of an optimal global plan. A lower bound on the makespan is
the longest of the shortest paths between any of the agents’ source-destination
pairs, while a lower bound on joint plan cost is the sum of the lengths of the
shortest paths between the agents’ source-destination pairs.

One problem instance consists of an infrastructure, a set of agents each with
randomly chosen start and destination locations, and a random ordering of the
agents in which they will plan (in section 3.2, we saw that agent orderings can
have an impact on global plan quality). In our experiments we varied the num-
ber of agents from 50 to 500, with steps of 50, and for each number of agents
400 different problem instances: 20 different sets of agent start and destination
locations, and 20 different agent orderings for each ‘task set’.

The first infrastructure we used is a model of Amsterdam Schiphol airport
(see figure 4(a)), on which the start location of each agent was a gate (or a
runway), and the destination location a runway (or a gate). Of the six runways
available at Schiphol, three were randomly chosen to be departure runways, the
remaining three arrival runways4. There are a total of around 200 gates in the

4 At Schiphol airport, runways are not operated in mixed mode, which is to say they
are never used for departure and arrival at the ‘same’ time.

Schiphol infrastructure, and around 800 taxiway resources, for a total of a little
over 1000 resources. We generated two types of infrastructures: lattice networks,
which are like grids only with variable-length connections between intersections,
and random graphs, which are constructed by first creating a random spanning
tree5, and then adding edges between randomly chosen, as yet unconnected
nodes (until the desired number of edges in the graph has been reached). See
figure 4(b) for an example of a random graph. The minimum travel times of the
resources were determined by setting the length of the median-length resource to
150 meters, and setting the maximum agent speed to 40km/h (as in the airport
experiments). In figure 4, we see two examples of the kind of paths that the

(a) Schiphol airport (b) Random graph on 21 nodes and 39
edges

Fig. 4. The thicker lines indicate the 5 shortest paths between two locations.

k-shortest paths algorithm returns. Figure 4(a) shows a section of the Schiphol
infrastructure, and we can see that all five paths have much in common with
the shortest paths: two alternative paths take a parallel taxiway, while two other
paths make a very small detour. In figure 4(b), we see that the five paths found
on a random graph are significantly different from each other, and they might
constitute alternatives for an agent that tries to avoid congested roads.

100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

number of agents

co
m

pu
ta

tio
n

tim
e

(m
ill

is
ec

on
ds

)

K = 1
K = 2
K = 3
K = 4
K = 5
CA

Fig. 5. CPU times for CARP and FPS (k = 1, 2,...,5) on random infrastructures.

4.1 Results

In figure 5, we can see that although fixed-path scheduling is faster, context-
aware routing still manages to find plans for all 500 agents within half a second
of computation time, when planning on random graphs6. On the larger Schiphol
infrastructure, finding all 500 agent plans required around 5 seconds. Figure 6

100 200 300 400 500

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

number of agents

jo
in

t
p

la
n

 c
o

s
t

a
s
 p

e
rc

e
n

ta
g

e
 o

f
lo

w
e

r
b

o
u

n
d

 (
%

) k = 1

k = 2

k = 3

k = 4

k = 5

CA

(a) Joint plan cost

100 200 300 400 500

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

number of agents

m
a

k
e

s
p

a
n

 (
s
e

c
o

n
d

s
)

k = 1

k = 2

k = 3

k = 4

k = 5

CA

(b) Makespan

Fig. 6. Global plan cost of CARP and FPS on the Schiphol infrastructure.

shows the results from the comparison between context-aware routing and fixed-
path scheduling on the Schiphol infrastructure. The most important conclusion
5 We create a random spanning tree by iterating through the set of nodes, and in

iteration i we connect the node with index i with a randomly chosen node with
index smaller than i.

6 All experiments were run on 4GB dual-CPU 2.4 GHz AMD Opteron machines.

we can draw from figure 6 is that context-aware routing outperforms fixed-path
scheduling, for all k between 1 and 5, for both makespan and joint plan cost.
Figure 6 also shows that for k = 1 (i.e., when agents always choose the shortest
path), fixed-path scheduling can perform quite badly. Apparently, if each agent
chooses the shortest path, then some resources become overused, resulting in
long waiting times, even if alternative routes are available, which a context-
aware planner would choose. The reason that for higher values of k fixed-path
scheduling still does not approach the performance of context-aware is that, on
the Schiphol infrastructure, a standard k-shortest path algorithm does not find
useful alternatives, as we can see in figure 4(a). A second conclusion that we
can draw is that context-aware routing stays quite close to the lower bounds
on global plan cost. For 500 agents, the cost of the multi-agent plan (whether
measured in makespan or in joint plan cost) is only 30% more expensive than the
lower bounds. Figure 7 shows the results in terms of joint plan costs for the other

100 200 300 400

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

number of agents

jo
in

t
p

la
n

 c
o

s
t

a
s
 p

e
rc

e
n

ta
g

e
 o

f
lo

w
e

r
b

o
u

n
d

 (
%

)

k = 1

k = 2

k = 3

k = 4

k = 5

CA

(a) Random graphs on 180 nodes and 300
edges.

100 200 300 400 500

1
0
0

1
5
0

2
0
0

2
5
0

number of agents

jo
in

t
p

la
n

 c
o

s
t

a
s
 p

e
rc

e
n

ta
g

e
 o

f
lo

w
e

r
b

o
u

n
d

 (
%

)
k = 1

k = 2

k = 3

k = 4

k = 5

CA

(b) Lattice graphs of around 450 re-
sources.

Fig. 7. Joint plan cost for CARP and FPS, on lattice and random infrastructures.

types of infrastructures. A quick glance reveals that fixed-path scheduling fares
no better on the generated instances. Because of space considerations, we only
show the joint plan cost results here, but for the makespan measure the same
holds as for the Schiphol infrastructure: fixed-path scheduling performs even
worse than for the joint plan cost measure. It seems that fixed-path scheduling
is unable to find useful alternative paths, because the nature of Yen’s [8] k-
shortest path algorithm is such that all shortest paths are found by making
minimal deviations from the same shortest path.

5 Conclusions

In this paper we presented our context-aware route planning algorithm, which
finds an optimal (shortest-time) route plan that is conflict-free with regard to a

set of existing agent plans. We compared our algorithm to an approach that finds
an optimal schedule along a fixed path. The advantage of fixed-path scheduling
is that it requires less computation time than context-aware routing. In practice,
however, this may not be of great importance, as context-aware routing can often
find plans for hundreds of agents within a second.

With regard to the global plan cost resulting from the application of ei-
ther context-aware routing or fixed-path scheduling, in our experiments context-
aware routing consistently outperforms fixed-path scheduling. The fixed-path
scheduling approach, in which we can choose from one of k shortest paths, seemed
to suffer from the fact that the k shortest paths returned by Yen’s algorithm [8]
(which was also used by the fixed-path scheduling approach of Lee et al. [7])
are too similar. Using the k shortest disjoint paths (cf. [10]) can remove that
concern, but there may not always be many disjoint paths.

Given the speed of context-aware routing, we do not believe, however, that
trying to revive fixed-path scheduling by finding alternative sets of k paths is the
most fruitful direction of future research. Instead, we could focus on determining
which routes a context-aware route planner should not take. From our examples
we know that context-aware route planners sometimes select routes that make it
very difficult for subsequent agents to find good plans. In analogy to Stackelberg
games (cf. [11]), if the first few agents select routes that are beneficial to others,
then subsequent agents may join existing flows of agents on the infrastructure,
which might lead to efficient global plans.

References

1. Vis, I.F.: Survey of research in the design and control of automated guided vehicle
systems. European Journal of Operational Research 170(3) (May 2006) 677–709

2. Hatzack, W., Nebel, B.: The operational traffic problem: Computational complex-
ity and solutions. In: ECP’01. (2001) 49–60

3. Trüg, S., Hoffmann, J., Nebel, B.: Applying automatic planning systems to airport
ground-traffic control - a feasibility study. In: KI. (2004) 183–197

4. ter Mors, A.W.: The world according to MARP: multi-agent route planning. PhD
thesis, Delft University of Technology (March 2010)

5. Desaulniers, G., Langevin, A., Riopel, D., Villeneuve, B.: Dispatching and conflict-
free routing of automated guided vehicles: An exact approach. International Jour-
nal of Flexible Manufacturing Systems 15(4) (November 2004) 309–331

6. Kim, C.W., Tanchoco, J.M.: Conflict-free shortest-time bidirectional AGV route-
ing. International Journal of Production Research 29(1) (1991) 2377–2391

7. Lee, J.H., Lee, B.H., Choi, M.H.: A real-time traffic control scheme of multiple
AGV systems for collision-free minimum time motion: a routing table approach.
IEEE Transactions on Man and Cybernetics, Part A 28(3) (May 1998) 347–358

8. Yen, J.Y.: Finding the K shortest loopless paths in a network. Management Science
17(11) (July 1971) 712–716

9. ter Mors, A.W., Zutt, J., Witteveen, C.: Context-aware logistic routing and
scheduling. In: ICAPS. (2007) 328–335

10. Suurballe, J.: Disjoint paths in a network. Networks 4(2) (1974) 125–145
11. Korilis, Y.A., Lazar, A., Orda, A.: Achieving network optima using Stackelberg

routing strategies. IEEE/ACM transactions on networking 5(1) (1997) 161–173

