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Abstract

Given two genomes with duplicate genes, Zero Exemplar Distance is the problem of
deciding whether the two genomes can be reduced to the same genome without duplicate genes
by deleting all but one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette
recently proved that Zero Exemplar Distance for monochromosomal genomes is NP-hard
even if each gene appears at most two times in each genome, thereby settling an important open
question on genome rearrangement in the exemplar model. In this paper, we give a very simple
alternative proof of this result. We also study the problem Zero Exemplar Distance for
multichromosomal genomes without gene order, and prove the analogous result that it is also
NP-hard even if each gene appears at most two times in each genome. For the positive direction,
we show that both variants of Zero Exemplar Distance admit polynomial-time algorithms if
each gene appears exactly once in one genome and at least once in the other genome. In addition,
we present a polynomial-time algorithm for the related problem Exemplar Longest Common

Subsequence in the special case that each mandatory symbol appears exactly once in one
input sequence and at least once in the other input sequence. This answers an open question of
Bonizzoni et al. We also show that Zero Exemplar Distance for multichromosomal genomes
without gene order is fixed-parameter tractable if the parameter is the maximum number of
chromosomes in each genome.

1 Introduction

Given two genomes with duplicate genes, Genome Rearrangement with Gene Families [12]
is the problem of deleting all but one copy of each gene in each genome, so as to minimize some
rearrangement distance between the two reduced genomes. The minimum rearrangement distance
thus attained is called the exemplar distance between the two genomes. For example, each of the
following two monochromosomal genomes

G1 : −4 +1 +2 +3 −5 +1 +2 +3 −6

G2 : −1 −4 +1 +2 −5 +3 −2 −6 +3

∗Supported in part by NSF grant DBI-0743670. A preliminary version of this paper (including Theorem 1,
Theorem 2, and a weaker version of Theorem 4) appeared in Proceedings of the 8th Annual RECOMB Satellite
Workshop on Comparative Genomics (RECOMB-CG 2010) [11].
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has at most two copies of each gene, and each of the following two reduced genomes

G′

1 : −4 +1 +2 −5 +3 −6

G′

2 : −4 +1 +2 −5 +3 −6

has exactly one copy of each gene. Recall that in the study of genome rearrangement, a gene is
usually represented by a signed integer: the absolute value of the integer (the unsigned integer)
denotes the gene family to which the gene belongs; the sign of the integer denotes the orientation
of the gene in its chromosome. Then a chromosome is a sequence of signed integers, and a genome
is a collection of chromosomes.

Genome Rearrangement with Gene Families is not a single problem but a whole class of
related problems, because the choice of rearrangement distance is not unique. This choice becomes
irrelevant, however, when we ask the fundamental question: Is the distance zero? In the example
above, the two reduced genomes G′

1 and G′

2 are identical, thus the exemplar distance between the
two original genomes G1 and G2 is zero for any reasonable choice of rearrangement distance.

In this paper, we study the most basic version of the problem Genome Rearrangement

with Gene Families: Given two sequences of signed integers, Zero Exemplar Distance (for
monochromosomal genomes) is the problem of deciding whether the two sequences have a common
subsequence including each unsigned integer exactly once in either positive or negative form.

Due to its generic nature, the problem Zero Exemplar Distance has been extensively stud-
ied by several groups of researchers [5, 4, 2] focusing on different rearrangement distances, and,
not surprisingly, has acquired several different names. Except for trivial distinctions, Zero Ex-

emplar Distance is essentially the same problem as Zero Exemplar Conserved Interval

Distance [5], Exemplar Longest Common Subsequence (deciding whether a feasible solution
exists) [4], and Zero Exemplar Breakpoint Distance [2].

It is easy to check that if only one of the two genomes has duplicate genes, then Zero Exemplar

Distance can be solved in linear time: we simply need to decide whether the genome without
duplicates is a subsequence of the genome with duplicates. In sharp contrast, if both genomes
contain duplicate genes, then even if each gene appears at most three times in each genome,
the problem Zero Exemplar Distance is already NP-hard, as shown independently in three
papers [5, 4, 2]. The quest for the exact boundary between polynomial solvability and NP-hardness
led to the following open question first raised by Chen et al. in 2006:

Question 1 (Chen, Fowler, Fu, and Zhu, 2006 [5]). Is the problem Zero Exemplar Distance for
monochromosomal genomes still NP-hard if each gene appears at most two times in each genome?

This question was finally settled in the affirmative by Blin et al. in 2009:

Theorem 1 (Blin, Fertin, Sikora, and Vialette, 2009 [3]). Zero Exemplar Distance for monochro-
mosomal genomes is NP-hard even if each gene appears at most two times in each genome.

In Section 2, we give a very simple alternative proof of this theorem.
Both the previous proof of Theorem 1 [3] and our alternative proof depend crucially on the

order of the genes in the chromosomes. One may naturally wonder whether the complexity of Zero
Exemplar Distance would change if gene order is not known. Note that genome rearrangement
distances such as the syntenic distance [8] can be defined in the absence of gene order.

Now model each chromosome as a set of unsigned integers instead of a sequence of signed
integers. Then Zero Exemplar Distance for multichromosomal genomes without gene order
is the following problem: Given two collections G1 and G2 of subsets of the same ground set S
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of unsigned integers, decide whether both G1 and G2 can be reduced, by deleting elements from
subsets and deleting subsets from collections, to the same collection G′ of subsets of S such that
each unsigned integer in S is contained in exactly one subset in G′, i.e., G′ is a partition of S. For
example,

S : {1, 2, 3, 4, 5}

G1 : {1, 2, 3} {2, 3, 4} {4, 5}

G2 : {1, 2} {2, 3, 4} {3, 4, 5} {1, 5}

G′ : {1, 2} {3} {4, 5}

In Section 3, we prove the following theorem analogous to Theorem 1:

Theorem 2. Zero Exemplar Distance for multichromosomal genomes without gene order is
NP-hard even if each gene appears at most two times in each genome.

As decision problems, both variants of Zero Exemplar Distance, for monochromosomal
genomes and for multichromosomal genomes without gene order, are in NP. Thus, following the
NP-hardness results in Theorem 1 and Theorem 2, these two decision problems are both NP-
complete. Moreover, the NP-hardness results in Theorem 1 and Theorem 2 imply that unless
NP=P, the corresponding minimization problems of computing the exemplar distance between
two genomes do not admit any approximation. We refer to [5, 6, 4, 2, 1] for related results.

The problem Zero Exemplar Distance for monochromosomal genomes, as mentioned earlier,
has been studied under several different names. Given two sequences A and B over an alphabet
Σ = Σ1∪Σ2, where Σ1 is a set ofmandatory symbols and Σ2 is a set of optional symbols, Exemplar
Longest Common Subsequence [4] is the problem of finding a longest common subsequence of
A and B that contains all mandatory symbols in Σ1. For example, if Σ1 = {1, 2, 3} and Σ2 = {4, 5},
then C = 124355 is an exemplar longest common subsequence of the two sequences A = 12423545
and B = 1142443555.

Due to the strict requirement on mandatory symbols, Exemplar Longest Common Sub-

sequence does not always have a feasible solution. It is not difficult to see that simply deciding
whether a feasible solution to Exemplar Longest Common Subsequence exists for two se-
quences A and B is the same as the problem Zero Exemplar Distance for two monochromo-
somal genomes A′ and B′ obtained from A and B by deleting all optional symbols. Recall that
the problem Zero Exemplar Distance for monochromosomal genomes becomes trivial when
only one of the two genomes has duplicate genes. For the equivalent problem of deciding whether
a feasible solution to Exemplar Longest Common Subsequence exists, Bonizzoni et al. [4]
showed another tractable special case: If each mandatory symbol appears a total of at most three
times in A and B, then there is a polynomial-time algorithm, based on 2SAT, that decides whether
A and B have a common subsequence containing all mandatory symbols. This algorithm does not
solve the maximization problem, however, and the following question was left open:

Question 2 (Bonizzoni et al. [4]). Is there a polynomial-time algorithm for Exemplar Longest

Common Subsequence in the special case that each mandatory symbol appears a total of at most
three times in the two input sequences?

Without loss of generality, we assume that each input sequence contains each symbol in the
alphabet at least once. If each mandatory symbol appears a total of at most three times in the
two input sequences, then it must appear exactly once in one sequence, and at least once in the
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other sequence, as in the example shown earlier. In Section 4, we prove the following theorem that
complements Theorem 1 and answers the open question of Bonizzoni et al. in the affirmative:

Theorem 3. Zero Exemplar Distance for monochromosomal genomes admits a polynomial-
time algorithm in the special case that each gene appears exactly once in one genome and at least
once in the other genome. Exemplar Longest Common Subsequence admits a polynomial-
time algorithm in the special case that each mandatory symbol appears exactly once in one input
sequence and at least once in the other input sequence.

Finally, in Section 5, we prove the following theorem that complements Theorem 2:

Theorem 4. Zero Exemplar Distance for multichromosomal genomes without gene order ad-
mits a polynomial-time algorithm in the special case that each gene appears exactly once in one
genome and at least once in the other genome, and is fixed-parameter tractable if the parameter is
the maximum number of chromosomes in each genome.

2 Alternative Proof of Theorem 1

We prove that Zero Exemplar Distance for monochromosomal genomes is NP-hard by a reduc-
tion from the well-known NP-complete problem 3SAT [9]. Let (V,E) be a 3SAT instance, where
V = {v1, . . . , vn} is a set of n boolean variables, E = {e1, . . . , em} is a conjunctive boolean formula
of m clauses, and each clause in E is a disjunction of exactly three literals of the variables in V .
We will construct two sequences (genomes) G1 and G2 over 2n+6m+1 distinct unsigned integers
(genes):

• Two variable genes xi, yi for each variable vi, 1 ≤ i ≤ n;

• Three clause genes aj , bj , cj for each clause ej , 1 ≤ j ≤ m;

• Three literal genes rj, sj , tj for the three literals of each clause ej , 1 ≤ j ≤ m;

• One separator gene z.

In our construction, all genes appear in the positive orientation in the two genomes, so we will
omit the signs in our description. The two genomes G1 and G2 are represented schematically as
follows:

G1 : 〈v1〉 . . . 〈vn〉 z 〈e1〉 . . . 〈em〉

G2 : 〈v1〉 . . . 〈vn〉 z 〈e1〉 . . . 〈em〉

For each variable vi, the variable gadget 〈vi〉 consists of one copy of xi and two copies of yi in
G1, two copies of xi and one copy of yi in G2, and, for each literal of the variable in the clauses,
one copy of the corresponding literal gene (rj , sj , or tj for some clause ej) in each genome. Let
pi,1, . . . , pi,ki be the literal genes for the positive literals of vi, and let qi,1, . . . , qi,li be the literal genes
for the negative literals of vi. The genes xi, yi, pi,1, . . . , pi,ki , qi,1, . . . , qi,li in the variable gadget 〈vi〉
are arranged in the following pattern in the two genomes:

G1〈vi〉 : yi pi,1 . . . pi,ki xi qi,1 . . . qi,li yi

G2〈vi〉 : pi,1 . . . pi,ki xi yi xi qi,1 . . . qi,li
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For each clause ej, the clause gadget 〈ej〉 consists of two copies of each clause gene aj , bj , cj and
one copy of each literal gene rj , sj , tj. These genes in 〈ej〉 are arranged in the following pattern in
the two genomes:

G1〈ej〉 : rj aj bj cj sj aj bj cj tj

G2〈ej〉 : aj rj bj aj sj cj bj tj cj

This completes the construction. It is easy to check that each gene appears at most two times
in each genome, and that each genome includes exactly 3n + 12m + 1 genes including duplicates.
We give an example:

Example 1. For a 3SAT instance of 4 variables and 2 clauses e1 = {r1 = v1, s1 = ¬v2, t1 = ¬v3}
and e2 = {r2 = ¬v1, s2 = v3, t2 = v4}, the reduction constructs the following two genomes:

G1 : y1r1x1r2y1 y2x2s1y2 y3s2x3t1y3 y4t2x4y4
z r1a1b1c1s1a1b1c1t1 r2a2b2c2s2a2b2c2t2

G2 : r1x1y1x1r2 x2y2x2s1 s2x3y3x3t1 t2x4y4x4
z a1r1b1a1s1c1b1t1c1 a2r2b2a2s2c2b2t2c2

The assignment v1 = true, v2 = false, v3 = false, v4 = true satisfies the 3SAT instance and
corresponds to the following common reduced genome:

G′ : r1x1y1 y2x2s1 y3x3t1 t2x4y4 z a1b1c1 r2a2s2b2c2

The reduction clearly runs in polynomial time. It remains to prove the following lemma:

Lemma 1. The 3SAT instance (V,E) is satisfiable if and only if the two genomes G1 and G2 have
a common subsequence G′ including exactly one copy of each gene.

We first prove the direct implication. Suppose that the 3SAT instance (V,E) is satisfiable. We
will compose a common subsequence G′ of the two genomes G1 and G2 from a common subsequence
of each variable gadget 〈vi〉, the separator gene z in the middle, and a common subsequence of each
clause gadget 〈ej〉. Consider a truth assignment that satisfies the 3SAT instance. For each variable
vi, take the subsequence pi,1 . . . pi,ki xiyi if vi is set to true, and take the subsequence yixi qi,1 . . . qi,li
if vi is set to false. For each clause ej , at least one of its three literals is true; correspondingly, at
least one of the three literal genes rj , sj, tj has been taken from some variable gadget 〈vi〉. Now
take a subsequence from the clause gadget 〈ej〉 following one of three cases:

1. If rj has been taken, then take the subsequence ajbjsjcjtj.

2. If sj has been taken, then take either the subsequence rjbjajcjtj or the subsequence rjajcjbjtj .

3. If tj has been taken, then take the subsequence rjajsjbjcj .

Here an underlined literal gene is omitted from the subsequence taken from the clause gadget 〈ej〉
if its other copy has already been taken from some variable gadget 〈vi〉. The common subsequence
G′ thus composed clearly includes exactly one copy of each gene.

We next prove the reverse implication. Suppose that the two genomesG1 and G2 have a common
subsequence G′ including exactly one copy of each gene. We will find a satisfying assignment for
the 3SAT instance (V,E) as follows. Due to the strategic location of the separator gene z in the
two genomes, each literal gene must appear in the common subsequence either before z in both
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genomes, in some variable gadget 〈vi〉, or after z in both genomes, in some clause gadget 〈ej〉. The
crucial property of the clause gadget 〈ej〉 is that it cannot have a common subsequence including
exactly one copy of each clause gene aj, bj , cj unless at least one of the three literal genes rj , sj, tj
is omitted. A literal gene omitted from the common subsequence of the clause gadget 〈ej〉 has to
appear in the common subsequence of some variable gadget 〈vi〉, where the two variable genes xi
and yi must appear in the order xiyi if the literal is positive and appear in the order yixi if the
literal is negative. Now set each variable vi to true if the two variable genes xi and yi appear in
the common subsequence G′ in the order xiyi, and set it to false otherwise. Then each clause gets
at least one true literal. This completes the proof of Theorem 1.

3 Proof of Theorem 2

We prove that Zero Exemplar Distance for multichromosomal genomes without gene order is
NP-hard by a reduction again from 3SAT. Let (V,E) be a 3SAT instance, where V = {v1, . . . , vn}
is a set of n boolean variables, E = {e1, . . . , em} is a conjunctive boolean formula of m clauses,
and each clause in E is a disjunction of exactly three literals of the variables in V . Without loss
of generality, assume that no clause in E contains two literals of the same variable in V . We will
construct two genomes G1 and G2 over n+ 9m distinct genes:

• One variable gene xi for each variable vi, 1 ≤ i ≤ n;

• Six clause genes aj, bj , cj , a
′

j , b
′

j , c
′

j for each clause ej , 1 ≤ j ≤ m;

• Three literal genes rj, sj , tj for the three literals of each clause ej , 1 ≤ j ≤ m.

For each variable vi, let pi,1, . . . , pi,ki be the literal genes for the positive literals of vi, and
let qi,1, . . . , qi,li be the literal genes for the negative literals of vi. G1 includes one subset and G2

includes two subsets of genes including xi:

G1〈vi〉 : {pi,1, . . . , pi,ki , xi, qi,1, . . . , qi,li}

G2〈vi〉 : {pi,1, . . . , pi,ki , xi} {xi, qi,1, . . . , qi,li}

For each clause ej , G1 includes six subsets and G2 includes seven subsets of clause/literal genes:

G1〈ej〉 : {aj , bj} {bj , cj} {cj , aj} {a′j , rj} {b
′

j , sj} {c
′

j , tj}

G2〈ej〉 : {aj , bj , cj} {aj , a
′

j , rj} {bj , b
′

j , sj} {cj , c
′

j , tj} {a′j} {b
′

j} {c
′

j}

This completes the construction. It is easy to check that each gene appears at most two times
in each genome, G1 includes exactly n+ 15m genes including duplicates, and G2 includes exactly
2n+ 18m genes including duplicates. We give an example:

Example 2. For a 3SAT instance of 4 variables and 2 clauses e1 = {r1 = v1, s1 = ¬v2, t1 = ¬v3}
and e2 = {r2 = ¬v1, s2 = v3, t2 = v4}, the reduction constructs the following two genomes:

G1 : {r1, x1, r2} {x2, s1} {s2, x3, t1} {t2, x4}
{a1, b1} {b1, c1} {c1, a1} {a′1, r1} {b

′

1, s1} {c
′

1, t1}
{a2, b2} {b2, c2} {c2, a2} {a′2, r2} {b

′

2, s2} {c
′

2, t2}
G2 : {r1, x1} {x1, r2} {x2} {x2, s1} {s2, x3} {x3, t1} {t2, x4} {x4}

{a1, b1, c1} {a1, a
′

1, r1} {b1, b
′

1, s1} {c1, c
′

1, t1} {a′1} {b
′

1} {c
′

1}
{a2, b2, c2} {a2, a

′

2, r2} {b2, b
′

2, s2} {c2, c
′

2, t2} {a′2} {b
′

2} {c
′

2}
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The assignment v1 = true, v2 = false, v3 = false, v4 = true satisfies the 3SAT instance and
corresponds to the following common reduced genome:

G′ : {r1, x1} {x2, s1} {x3, t1} {t2, x4}
{a1} {b1, c1} {a′1} {b

′

1} {c
′

1}
{c2} {a2, b2} {a′2, r2} {b

′

2, s2} {c
′

2}

The reduction clearly runs in polynomial time. It remains to prove the following lemma:

Lemma 2. The 3SAT instance (V,E) is satisfiable if and only if the two genomes G1 and G2 have
a common reduced genome G′ including exactly one copy of each gene.

We first prove the direct implication. Suppose that the 3SAT instance (V,E) is satisfiable.
We will compose a common reduced genome G′ of the two genomes G1 and G2 as follows. Con-
sider a truth assignment that satisfies the 3SAT instance. For each variable vi, take the subset
{pi,1, . . . , pi,ki , xi} if vi is set to true, and take the subset {xi, qi,1, . . . , qi,li} if vi is set to false. For
each clause ej , at least one of its three literals is true; correspondingly, at least one of the three
literal genes rj, sj , tj has been taken from some variable gadget 〈vi〉. Now take some subsets of
clause/literal genes following one of three cases:

1. If rj has been taken, then take the subsets {aj}, {bj , cj}, {a
′

j}, {b
′

j , sj}, {c
′

j , tj}.

2. If sj has been taken, then take the subsets {bj}, {cj , aj}, {a
′

j , rj}, {b
′

j}, {c
′

j , tj}.

3. If tj has been taken, then take the subsets {cj}, {aj , bj}, {a
′

j , rj}, {b
′

j , sj}, {c
′

j}.

Here an underlined literal gene is omitted from the subset taken from the clause gadget 〈ej〉 if its
other copy has already been taken from some variable gadget 〈vi〉. The reduced genome G′ thus
composed clearly includes exactly one copy of each gene.

We next prove the reverse implication. Suppose that the two genomes G1 and G2 have a
common reduced genome G′ including exactly one copy of each gene. We will find a satisfying
assignment for the 3SAT instance (V,E) as follows. The crucial property of the clause gadget 〈ej〉
is that it cannot have a common reduced genome including exactly one copy of each clause gene
aj , bj , cj , a

′

j , b
′

j , c
′

j unless at least one of the three literal genes rj , sj, tj is omitted. A literal gene
omitted from the clause gadget 〈ej〉 has to appear in a subset in G′ that contains some variable
gene xi. By the construction of the variable gadgets, this subset contains, besides xi, either literal
genes for positive literals, or literal genes for negative literals. Now set each variable vi to true if
the subset in G′ that contains xi also contains at least one literal gene for a positive literal, and
set it to false otherwise. Then each clause gets at least one true literal. This completes the proof
of Theorem 2.

4 Proof of Theorem 3

Let A and B be two sequences of lengths n and m, respectively, over an alphabet Σ = Σ1 ∪ Σ2,
where Σ1 is a set of mandatory symbols and Σ2 is a set of optional symbols. In the special case
that each mandatory symbol in Σ1 appears exactly once in one sequence and at least once in
the other sequence, we have the obvious but important property that any common subsequence
of the two sequences can contain each mandatory symbol at most once. This property leads to a
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very simple algorithm that decides whether a feasible solution to Exemplar Longest Common

Subsequence exists in this special case:

Algorithm 1.

1. Obtain two sequences A′ and B′ from A and B by deleting all optional symbols in Σ2.

2. Compute a longest common subsequence C∗ of A′ and B′.

3. If C∗ contains all mandatory symbols in Σ1, return yes. Otherwise, return no.

The time complexity of Algorithm 1 is O(nm) by using a standard dynamic programming
algorithm for longest common subsequence [10]. The correctness of Algorithm 1 is justified by the
following lemma:

Lemma 3. A and B have a common subsequence containing all mandatory symbols in Σ1 if and
only if the longest common subsequence C∗ of A′ and B′ contains all mandatory symbols in Σ1.

Proof. The reduction from A and B to A′ and B′ preserves the mandatory symbols. Thus A and B

have a common subsequence containing all mandatory symbols in Σ1 if and only if A′ and B′ have
a common subsequence containing all mandatory symbols in Σ1. It remains to prove the equivalent
claim that A′ and B′ have a common subsequence containing all mandatory symbols in Σ1 if and
only if C∗ contains all mandatory symbols in Σ1.

The “if” direction of the claim is trivial because C∗ is a common subsequence of A′ and B′. To
prove the “only if” direction, recall that in any common subsequence of A′ and B′, each mandatory
symbol can appear at most once. Thus the length of any common subsequence of A′ and B′ is at
most the size of Σ1. Moreover, if the length of some common subsequence of A′ and B′ is equal
to the size of Σ1, then this common subsequence must contain all mandatory symbols in Σ1, and
vice versa. Now suppose that A′ and B′ have a common subsequence C ′ containing all mandatory
symbols in Σ1. Then the length of C ′ must be equal to the size of Σ1. Since the length of C∗ is at
least the length of C ′, the length of C∗ must also be equal to the size of Σ1. Then C∗ must contain
all mandatory symbols in Σ1 too. This completes the proof.

Since deciding whether a feasible solution to Exemplar Longest Common Subsequence

exists for two sequences A and B is the same as the problem Zero Exemplar Distance for two
monochromosomal genomes A′ and B′ obtained from A and B by deleting all optional symbols, we
also have an O(nm) algorithm for Zero Exemplar Distance for monochromosomal genomes in
the special case that each gene appears exactly once in one genome and at least once in the other
genome.

We next present an algorithm for the maximization problem Exemplar Longest Common

Subsequence in the special case that each mandatory symbol appears exactly once in one input
sequence and at least once in the other input sequence:

Algorithm 2.

1. Assign each mandatory symbol in Σ1 a weight of w = min{n,m}+1, and assign each optional
symbol in Σ2 a weight of 1. Compute a common subsequence C∗ of A and B of the maximum
total weight.
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2. If C∗ contains all mandatory symbols in Σ1, return C∗. Otherwise, report that no feasible
solution exists.

If A and B have no common subsequence containing all mandatory symbols in Σ1, then clearly
the maximum-weight common subsequence C∗ of A and B cannot contain all mandatory symbols
in Σ1, and hence the algorithm correctly reports that no feasible solution exists. Otherwise, the
correctness of Algorithm 2 is justified by the following lemma:

Lemma 4. If A and B have a common subsequence containing all mandatory symbols in Σ1, then
the maximum-weight common subsequence C∗ of A and B is a longest common subsequence of A
and B that contains all mandatory symbols in Σ1.

Proof. Suppose that A and B have a common subsequence C containing all mandatory symbols
in Σ1. We first show that the maximum-weight common subsequence C∗ of A and B contains all
mandatory symbols in Σ1. Note that the number of optional symbols in C∗ is at most the length of
C∗, which is at most min{n,m}. Also recall that any common subsequence of A and B can contain
each mandatory symbol at most once. If C∗ does not contain all mandatory symbols in Σ1, then
by our choice of w = min{n,m}+ 1, the total weight of C∗ would be at most

(|Σ1| − 1) · w +min{n,m} · 1 < (|Σ1| − 1) · w + w · 1 = |Σ1| · w.

On the other hand, since C contains all mandatory symbols in Σ1, the weight of C is at least
|Σ1| ·w. This contradicts the assumption that C∗ is a maximum-weight common subsequence of A
and B.

Now, since C∗ contains all mandatory symbols and can contain each mandatory symbol at most
once, C∗ must contain each mandatory symbol exactly once. Then, to have the maximum total
weight, C∗ must be a longest common subsequence of A and B that contains all mandatory symbols
in Σ1.

Again, the overall time complexity of Algorithm 2 is clearly O(nm). This completes the proof
of Theorem 3.

5 Proof of Theorem 4

We present two algorithms for Zero Exemplar Distance for multichromosomal genomes without
gene order. Let k1 and k2, respectively, be the numbers of chromosomes in G1 and G2. Let
A1, . . . , Ak1 be the k1 chromosomes in G1. Let B1, . . . , Bk2 be the k2 chromosomes in G2. Let
k = max{k1, k2}. Let n be the total number of genes in G1 and G2, i.e., n =

∑k1
i=1 |Ai|+

∑k2
j=1 |Bj|.

We first present a polynomial-time algorithm for Zero Exemplar Distance for multichro-
mosomal genomes without gene order in the special case that each gene appears exactly once in
one genome and at least once in the other genome. Our algorithm is based on maximum-weight
matching in bipartite graphs:

Algorithm 3.

1. Construct a complete bipartite graph G = (V1∪V2, V1×V2) with vertices V1 = {A1, . . . , Ak1}
and V2 = {B1, . . . , Bk2}. Associate with each edge between Ai ∈ V1 and Bj ∈ V2 a reduced
chromosome Cij = Ai ∩Bj and a weight equal to its size.
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2. Compute a maximum-weight matching M in the graph G.

3. If the set of reduced chromosomes corresponding to the edges in M includes all the genes,
return yes. Otherwise, return no.

To see the correctness of Algorithm 3, note that each reduced chromosome of a common re-
duced genome is a common subset of two distinct chromosomes, one from each input genome, and
corresponds to an edge of a matching in the complete bipartite graph. In the special case that each
gene appears exactly once in one genome and at least once in the other genome, no gene can appear
more than once in the reduced chromosomes corresponding to the edges of a matching. Thus the
maximum possible weight of a matching is equal to the number of distinct genes, and a common
reduced genome that includes all the genes corresponds to a matching of the maximum weight.

We now analyze the time complexity of Algorithm 3. Steps 1 and 3 can be easily implemented
in O(n2) time. Step 2 can be implemented in O(k3) time using a standard algorithm for weight
bipartite matching; see e.g. [13]. Thus the overall time complexity is O(n2 + k3).

We next present a fixed-parameter tractable algorithm for this problem without any assumption
on the distribution of duplicate genes. Refer to [7] for basic concepts in parameterized complexity
theory. The parameter of our algorithm is k = max{k1, k2}:

Algorithm 4.

1. Add k − k1 empty chromosomes Ak1+1, . . . , Ak to G1, or add k − k2 empty chromosomes
Bk2+1, . . . , Bk to G2, such that G1 and G2 have the same number k of chromosomes.

2. For each permutation π of 〈1, . . . , k〉, compute Cπ = ∪k
i=1(Ai ∩Bπ(i)).

3. If for some permutation π the set Cπ includes all the genes, return yes. Otherwise return no.

To see the correctness of Algorithm 4, note again that each chromosome of a common reduced
genome is a common subset of two distinct chromosomes, one from each input genome. All other
chromosomes of the two input genomes that do not contribute to the common reduced genome are
deleted. To handle the matching and the deletion of the chromosomes in a uniform way, we can
think of each chromosome deleted from one genome as matched to a chromosome deleted from the
other genome or to an empty chromosome. Thus by padding the two genomes to the same number
of chromosomes, we only need to consider perfect matchings as permutations. The time complexity
of Algorithm 4 is O(k!n2), with O(n2) time for each of the k! permutations. This completes the
proof of Theorem 4.

We remark that the problem Zero Exemplar Distance for multichromosomal genomes with-
out gene order is unlikely to have a fixed-parameter tractable algorithm if the parameter is the
maximum number of genes in any single chromosome. This is because 3SAT remains NP-hard even
if for each variable there are at most five clauses that contain its literals [9]. As a result, the number
of genes in each chromosome need not be more than some constant in our reduction from 3SAT.
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also thanks Pedro J. Tejada for bringing the open question of Bonizzoni et al. [4], Question 2, to
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