Skip to main content

Scaffold Filling under the Breakpoint Distance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6398))

Abstract

Motivated by the trend of genome sequencing without completing the sequence of the whole genomes, Muñoz et al. recently studied the problem of filling an incomplete multichromosomal genome (or scaffold) I with respect to a complete target genome G such that the resulting genomic distance between I′ and G is minimized, where I′ is the corresponding filled scaffold. We call this problem the one-sided scaffold filling problem. In this paper, we follow Muñoz et al. to investigate the scaffold filling problem under the breakpoint distance for the simplest unichromosomal genomes. When the input genome contains no gene repetition (i.e., is a fragment of a permutation), we show that the two-sided scaffold filling problem is polynomially solvable. However, when the input genome contains some genes which appear twice, even the one-sided scaffold filling problem becomes NP-complete. Finally, using the ideas for solving the two-sided scaffold filling problem under the breakpoint distance we show that the two-sided scaffold filling problem under the genomic/rearrangement distance is also polynomially solvable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chain, P., Grafham, D., Fulton, R., FitzGerald, M., Hostetler, J., Muzny, D., Ali, J., et al.: Genome project standards in a new era of sequencing. Science 326, 236–237 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the assignment of orthologous genes via genome rearrangement. In: Proc. of the 3rd Asia-Pacific Bioinformatics Conf. (APBC 2005), pp. 363–378 (2005)

    Google Scholar 

  3. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common string partition problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 84–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Damaschke, P.: Minimum Common String Partition Parameterized. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87–98. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    Google Scholar 

  7. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 473–484. Springer, Heidelberg (2004); also in: The Electronic Journal of Combinatorics 12, paper R50 (2005)

    Google Scholar 

  8. Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 45–52. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Kaplan, H., Shafrir, N.: The greedy algorithm for edit distance with moves. Inf. Process. Lett. 97(1), 23–27 (2006)

    Article  Google Scholar 

  10. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling, contig fusion and gene order comparison. BMC Bioinformatics 11, 304 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Computer and System Sciences 65, 587–609 (2002)

    Article  Google Scholar 

  12. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theoretical Biology 99, 1–7 (1982)

    Article  Google Scholar 

  13. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, H., Zheng, C., Sankoff, D., Zhu, B. (2010). Scaffold Filling under the Breakpoint Distance. In: Tannier, E. (eds) Comparative Genomics. RECOMB-CG 2010. Lecture Notes in Computer Science(), vol 6398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16181-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16181-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16180-3

  • Online ISBN: 978-3-642-16181-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics