Skip to main content

Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6332))

Abstract

Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

http://www.kramer.in.tum.de/Members/ganzert/publications/ ganzert_etal_ds2010_suppl_material.pdf

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, J.H.T.: A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Ann. Biomed. Eng. 35, 1165–1174 (2007)

    Article  Google Scholar 

  2. Bates, J.H.T., Brown, K.A., Kochi, T.: Identifying a model of respiratory mechanics using the interrupter technique. In: Proceedings of the Ninth American Conference I.E.E.E. Engineering Medical Biology Society, pp. 1802–1803 (1987)

    Google Scholar 

  3. Beydon, L., Svantesson, C., Brauer, K., Lemaire, F., Jonson, B.: Respiratory mechanics in patients ventilated for critical lung disease. Eur. Respir. J. 9(2), 262–273 (1996)

    Article  Google Scholar 

  4. Bisiani, R.: Beam search. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelligence, pp. 56–58. Wiley & Sons, Chichester (1987)

    Google Scholar 

  5. Bradshaw, G.L., Langley, P., Simon, H.A.: Bacon.4: The discovery of intrinsic properties. In: Proceedings of the Third Biennial Conference of the Canadian Society for Computational Studies of Intelligence, pp. 19–25 (1980)

    Google Scholar 

  6. Bridewell, W., Asadi, N.B., Langley, P., Todorovski, L.: Reducing overfitting in process model induction. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 81–88 (2005)

    Google Scholar 

  7. Bridewell, W., Langley, P., Todorovski, L., Džeroski, S.: Inductive process modeling. Mach. Learn. 71, 1–32 (2008)

    Article  Google Scholar 

  8. DePauw, D.J.W., DeBaets, B.: Incorporating model identifiability into equation discovery of ode systems. In: Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 2135–2140 (2008)

    Google Scholar 

  9. Džeroski, S., Todorovski, L.: Discovering dynamics: From inductive logic programming to machine discovery. J. Intell. Inf. Syst. 4, 89–108 (1994)

    Article  Google Scholar 

  10. Falkenhainer, B.C., Michalski, R.S.: Integrating quantitative and qualitative discovery in the ABACUS system. In: Machine Learning: An Artificial Intelligence Approach, pp. 153–190. Morgan Kaufman, San Mateo (1990)

    Google Scholar 

  11. Fung, Y.C.: Biomechanics. Mechanical Properties of Living Tissues. Springer, New York (1981)

    Google Scholar 

  12. Ganzert, S., Möller, K., Steinmann, D., Schumann, S., Guttmann, J.: Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model. Crit. Care 13(6) (2009)

    Google Scholar 

  13. Grasso, S., Terragni, P., Mascia, L., Fanelli, V., Quintel, M., Herrmann, P., Hedenstierna, G., Slutsky, A.S., Ranieri, V.M.: Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit. Care Med. 32(4), 1018–1027 (2004)

    Article  Google Scholar 

  14. Haberthür, C., Guttmann, J., Osswald, P.M., Schweitzer, M.: Beatmungskurven - Kursbuch und Atlas. Springer, Heidelberg (2001)

    Book  Google Scholar 

  15. Hickling, K.G.: The pressure-volume curve is greatly modified by recruitment. a mathematical model of ards lungs. Am. J. Respir. Crit. Care Med. 158(1), 194–202 (1998)

    Article  Google Scholar 

  16. Koehn, B.W., Zytkow, J.M.: Experimenting and theorizing in theory formation. In: Proceedings ACM SIGART International Symposium on Methodologies for Intelligent Systems, pp. 296–307 (1986)

    Google Scholar 

  17. Kokar, M.M.: Determining arguments of invariant functional descriptions. Mach. Learn. 1(4), 403–422 (1986)

    Google Scholar 

  18. Križman, V., Džeroski, S., Kompare, B.: Discovering dynamics from measured data. In: Working Notes of the MLnet Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pp. 191–198 (1995)

    Google Scholar 

  19. Langley, P., Sanchez, J., Todorovski, L., Džeroski, S.: Inducing process models from continuous data. In: Proceedings the Nineteenth International Conference on Machine Learning, pp. 347–354 (2002)

    Google Scholar 

  20. Langley, P.W.: Bacon: A production system that discovers empirical laws. In: Proceedings of the Fifth International Joint Conference on Artificial Intelligence, p. 344 (1977)

    Google Scholar 

  21. Langley, P., Zytkow, J.M.: Data-driven approaches to empirical discovery. Artif. Intell. 40, 283–310 (1989)

    Article  Google Scholar 

  22. Macintyre, N.R.: Basic principles and new modes of mechanical ventilation. In: Crit Care Med: Perioperative Management, pp. 447–459. Lippincott Williams & Wilkins, Philadelphia (2002)

    Google Scholar 

  23. Mols, G., Brandes, I., Kessler, V., Lichtwarck-Aschoff, M., Loop, T., Geiger, K., Guttmann, J.: Volume-dependent compliance in ARDS: proposal of a new diagnostic concept. Intens. Care Med. 25(10), 1084–1091 (1999)

    Article  Google Scholar 

  24. Nédellec, C., Rouveirol, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias in ILP. In: DeRaedt, L. (ed.) Advances in Inductive Logic Programming, pp. 82–103. IOS Press, Amsterdam (1996)

    Google Scholar 

  25. Network, T.A.R.D.S.: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. the acute respiratory distress syndrome network. N. Engl. J. Med. 342(18), 1301–1308 (2000)

    Article  Google Scholar 

  26. Nordhausen, B., Langley, P.: A robust approach to numeric discovery. In: Proceedings of the Seventh International Conference on Machine Learning, pp. 411–418 (1990)

    Google Scholar 

  27. Schaffer, C.: A proven domain-independent scientific function-finding algorithm. In: Proceedings of the 8th National Conference on Artificial Intelligence, pp. 828–833 (1990)

    Google Scholar 

  28. Schaffer, C.: Bivariate scientific function finding in a sampled, real-data testbed. Mach. Learn. 12, 167–183 (1991)

    Google Scholar 

  29. Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 440–446 (1992)

    Google Scholar 

  30. Tobin, M.J.: Ventilator monitoring, and sharing the data with patients. Am. J. Respir. Crit. Care Med. 163(4), 810–811 (2001)

    Article  Google Scholar 

  31. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process models in dynamic domains. In: Proceedings of the Twentieth National Conference on Artificial Intelligence, AAAI 2005, pp. 892–897 (2005)

    Google Scholar 

  32. Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings of Fourteenth Internationl Conference on Machine Learning, pp. 376–384 (1997)

    Google Scholar 

  33. Zembowicz, R., Zytkow, J.M.: Automated discovery of empirical equations from data. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 429–440. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganzert, S., Guttmann, J., Steinmann, D., Kramer, S. (2010). Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds) Discovery Science. DS 2010. Lecture Notes in Computer Science(), vol 6332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16184-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16184-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16183-4

  • Online ISBN: 978-3-642-16184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics