Skip to main content

Revisiting Matrix Interpretations for Polynomial Derivational Complexity of Term Rewriting

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6397))

Abstract

Matrix interpretations can be used to bound the derivational complexity of term rewrite systems. In particular, triangular matrix interpretations over the natural numbers are known to induce polynomial upper bounds on the derivational complexity of (compatible) rewrite systems. Using techniques from linear algebra, we show how one can generalize the method to matrices that are not necessarily triangular but nevertheless polynomially bounded. Moreover, we show that our approach also applies to matrix interpretations over the real (algebraic) numbers. In particular, it allows triangular matrix interpretations to infer tighter bounds than the original approach.

This research is supported by FWF (Austrian Science Fund) project P22467.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving termination with matrix interpretations over the reals. In: WST 2009, pp. 12–15 (2009)

    Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  3. Charalambides, C.A.: Enumerative Combinatorics. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  4. Chuan-Chong, C., Khee-Meng, K.: Principles and Techniques in Combinatorics. World Scientific Publishing Company, Singapore (1992)

    Book  MATH  Google Scholar 

  5. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. JAR 40(2–3), 195–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix evolutions. In: WST 2007, pp. 4–8 (2007)

    Google Scholar 

  7. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify termination of left-linear term rewriting systems. I&C 205(4), 512–534 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 108–121. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (preliminary version). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  10. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Jungers, R.M., Protasov, V., Blondel, V.D.: Efficient algorithms for deciding the type of growth of products of integer matrices. LAA 428(10), 2296–2311 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based on matrix and context dependent interpretations. In: FSTTCS 2008. LIPIcs, vol. 2, pp. 304–315 (2008)

    Google Scholar 

  14. Neurauter, F., Middeldorp, A.: Polynomial interpretations over the reals do not subsume polynomial interpretations over the integers. In: RTA 2010. LIPIcs, vol. 6, pp. 243–258 (2010)

    Google Scholar 

  15. Rose, H.E.: Linear Algebra: A Pure Mathematical Approach. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  16. Serre, D.: Matrices: Theory and Applications. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  18. Termination problem data base, version 7.0.2. (2010), http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz

  19. Waldmann, J.: Polynomially bounded matrix interpretations. In: RTA 2010. LIPIcs, vol. 6, pp. 357–372 (2010)

    Google Scholar 

  20. Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. In: RTA 2010. LIPIcs, vol. 6, pp. 385–400 (2010)

    Google Scholar 

  21. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: LPAR-16. LNCS, vol. 6355. Springer, Heidelberg (to appear, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neurauter, F., Zankl, H., Middeldorp, A. (2010). Revisiting Matrix Interpretations for Polynomial Derivational Complexity of Term Rewriting . In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16242-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16241-1

  • Online ISBN: 978-3-642-16242-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics