Skip to main content

Resolution for Stochastic Boolean Satisfiability

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6397))

Abstract

The stochastic Boolean satisfiability (SSAT) problem was introduced by Papadimitriou in 1985 by adding a probabilistic model of uncertainty to propositional satisfiability through randomized quantification. SSAT has many applications, e.g., in probabilistic planning and, more recently by integrating arithmetic, in probabilistic model checking. In this paper, we first present a new result on the computational complexity of SSAT: SSAT remains PSPACE-complete even for its restriction to 2CNF. Second, we propose a sound and complete resolution calculus for SSAT complementing the classical backtracking search algorithms.

This work has been partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean Satisfiability. Journal of Automated Reasoning 27(3), 251–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Majercik, S.M., Littman, M.L.: MAXPLAN: A New Approach to Probabilistic Planning. In: Artificial Intelligence Planning Systems, pp. 86–93 (1998)

    Google Scholar 

  4. Majercik, S.M., Littman, M.L.: Contingent Planning Under Uncertainty via Stochastic Satisfiability. Artificial Intelligence Special Issue on Planning With Uncertainty and Incomplete Information 147(1-2), 119–162 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Walsh, T.: Stochastic constraint programming. In: Proc. of the 15th European Conference on Artificial Intelligence (ECAI 2002), IOS Press, Amsterdam (2002)

    Google Scholar 

  6. Tarim, A., Manandhar, S., Walsh, T.: Stochastic constraint programming: A scenario-based approach. Constraints 11(1), 53–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balafoutis, T., Stergiou, K.: Algorithms for Stochastic CSPs. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction framework. In: SAC, pp. 316–320. ACM, New York (2007)

    Google Scholar 

  9. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: [24], ch. 26, pp. 825–885

    Google Scholar 

  11. Littman, M.L.: Initial Experiments in Stochastic Satisfiability. In: Proc. of the 16th National Conference on Artificial Intelligence, pp. 667–672 (1999)

    Google Scholar 

  12. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Communications of the ACM 5, 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Majercik, S.M.: Nonchronological backtracking in stochastic Boolean satisfiability. In: ICTAI, pp. 498–507. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  15. Teige, T., Fränzle, M.: Stochastic satisfiability modulo theories for non-linear arithmetic. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 248–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent probabilistic hybrid systems: An application to networked automation systems. Nonlinear Analysis: Hybrid Systems (2010) (to appear)

    Google Scholar 

  17. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Majercik, S.M.: Stochastic Boolean satisfiability. In: [24], vol. 27, pp. 887–925

    Google Scholar 

  20. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of DNF and isomorphism of monotone formulas. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 410–421. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)

    Google Scholar 

  23. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: [24], ch. 4, pp. 131–153

    Google Scholar 

  24. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (February 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teige, T., Fränzle, M. (2010). Resolution for Stochastic Boolean Satisfiability . In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16242-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16241-1

  • Online ISBN: 978-3-642-16242-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics