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Abstract. Declarative technologies have made great strides in expressivity 
between SQL and SBVR. SBVR models are more expressive that SQL 
schemas, but not as imminently executable yet. In this paper, we complete the 
architecture of a system that can execute SBVR models. We do this by 
describing how SBVR rules can be transformed into SQL DML so that they can 
be automatically checked against the database using a standard SQL query. In 
particular, we describe a formalization of the basic structure of an SQL query 
which includes aggregate functions, arithmetic operations, grouping, and 
grouping on condition. We do this while staying within a predicate calculus 
semantics which can be related to the standard SBVR-LF specification and 
equip it with a concrete semantics for expressing business rules formally. Our 
approach to transforming SBVR rules into standard SQL queries is thus 
generic, and the resulting queries can be readily executed on a relational 
schema generated from the SBVR model.  

Keywords: SBVR, SQL, Declarative Programming, Business Rules, Predicate 
Calculus, Formal Semantics 

1 Introduction 

The Business Rules Approach [1] has made significant strides in bridging the spheres 
of everyday human interactions and information technology. An outgrowth of that 
movement was the OMG standard Semantics of Business Vocabulary and Rules 
(SBVR) [2], which brought together research from linguistics, formal logics, as well 
as practical expertise. SBVR Models are considered constructs that are supposed to 
help businesses communicate with each other and also business people to 
communicate with implementers of information technology. Direct transformation of 
SBVR models into executable code is generally not encouraged and has often resulted 
in rather harsh compromises of SBVR’s meta-model and intended use when 
attempted [3]. The reason for this mismatch is the chasm between the declarative 
paradigm implemented by SBVR and the imperative procedural paradigm that is at 
the heart of most modern programming and business process languages. So thus far, 
human programmers are needed to interpret and convert the SBVR models into real-
world applications. An alternative approach, called Generative Information Systems 
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[4], was presented by the authors of this paper that allowed for real-world systems to 
be produced by inferring the appropriate reaction directly from a model, without the 
need for an intermediate code generation step, and without the need for explicitly 
defined business processes. A significant aspect of that model was the method of 
generating schemas for a relational database from the SBVR Vocabulary, and 
converting rules into SQL queries to verify the consistency of the data set. This last 
step, had been only sketched out in the original paper, as the theoretical framework 
required for this undertaking is significant. This paper addresses precisely these issues 
and examines in detail the conversion of SBVR rules into SQL queries for the 
purpose of validating the consistency of a given data set with the SBVR model. 

2 Generative Information Systems 

This section summarizes the architecture of Generative Information Systems (GIS) in 
[7] to provide the appropriate context for the rest of the paper. A GIS is based around 
the concept that the logic of the system is accessible to the owner of the system, and 
that any change in the logic is immediately reflected in the operation of the system. 
The architecture as can be seen in Figure 1, specifies that both the RESTful API and 
the relational database schema (in SQL-DDL) are to be generated from the model.  

 

 
Fig. 1. Connections between REST, SBVR and Relational Databases 

 
The end user can place requests on the system through the API. These requests get 
evaluated through the ruleset, and if they represent a legal transition and their result is 
a system in a consistent state, they are applied to the dataset. If not, the inconsistency 
is presented to the user, who can amend the request to take account of the new 
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information. Through this back and forth negotiation, the user either concludes that 
the request is fundamentally incompatible with the system, or reaches a formulation 
of the request that satisfies both the original goal and the system’s consistency 
requirements. This is, in an abstract sense, what many processes achieve. By guiding 
the user through a sequence of steps, they determine what change needs to be made to 
the system state to satisfy the user’s request while maintaining consistency. We call 
thus abstract process the ‘meta-process’. Its advantage over the traditional process-
driven message is that it can respond to unforeseen requests by the user, in contrast to 
the hardcoded process model which is constrained to the design-time foresight of the 
developers. More detail on this process can be seen in Figure 2. 
 

User: 
POST <en101> 

http://domain.org/students/John/courses/ 

 
System: 
403 Forbidden  

 

It is necessary that each student is registered for at most five courses 
 

Student_Name  Number_of_Courses  Names_of_Courses  

John  6  PY101, MA101, EN121, 

CS101, AF302, MG102  
 

User: 
[Start Transaction] 
DELETE 

http://domain.org/students/John/courses/ma101 

 

POST <en101> 

http://domain.org/students/John/courses/ 

[End Transaction] 

System:  
200 OK 

Fig. 2.  The meta-process control structure 

The way that consistency is currently checked is by performing a sequence of actions 
on the database as a transactional unit. First, a transaction is initiated. Secondly, the 
updates are applied to the dataset. If the database schema makes this impossible, the 
updates are rejected. If it is allowed, the relevant rules are checked against the dataset 
to make sure they are not violated. If they are violated, updates are rolled back and the 
details of the violation returned to the user. If the rules are not violated, the 
transaction proceeds. This mechanism is suitable for a proof of concept, but may have 
scalability limitations for concurrent systems. Optimizations can be explored that 
avoid the round-trip to the database. It is however interesting to note that this rough 

http://domain.org/students/John/courses/ma101�
http://domain.org/students/John/courses/�
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process of adding tentative information to the knowledge base, then checking for 
consistency, and deleting in case of violation, counterintuitively seems to be the way 
that the human brain deals with new knowledge. [5] This does not mean that the 
method is ideal, but it is an interesting parallel that we noted after setting the 
foundations for Generative Information Systems architecture. 

The step in the above process that was left least defined is the one where the 
updated dataset is checked against relevant rules for consistency. This is done by 
transforming each rule to an SQL query that requests violations to the rule to be 
returned (Figure 3). The precise mechanism by which this is carried out is the focus of 
this paper. 

 

 
Fig. 3. From SBVR Structured English, to SBVR Logical Formulation, to an SQL query. 

3 Vocabularies to SQL Schemas 

For rules to be validated over a dataset however, first there must be a schema for 
that dataset. As our starting point is an SBVR model, it is the vocabulary that is the 
obvious candidate for becoming the scaffold for our schema. The detailed process has 
been described in our previous work so here we will instead go through an example 
scenario which we will use throughout this paper. The model for our example can be 
seen in Table 1. One aspect not covered in previous work is that of primitive data 
types. We can see that the term Name has a concept type of Varchar(255). This can be 
read as a reference to a vocabulary of primitive data types that a generative 
information system is built on. These terms are essentially terminal symbols that get 
mapped directly onto programming language data types. We use the data types that 

 
 SELECT student.name AS Student_Name,  
     Count (course.id) AS Number_of_Courses 
 FROM student, course, student_is-registered-for_course  
 WHERE student.id = student_ is-registered-for_course.studentID  
         AND student_is-registered-for_course.courseID = course.id 
 GROUP BY student.id   
 HAVING COUNT(course.id) > 5 ;  
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are fundamental to SQL as this is our target data store. Another novel convention is 
that since the Name is had by Student , this relation is constrained to a one-to-one 
cardinality, and Name has no other attributes than its value, we render it an attribute of 
the table  with which it is associated rather than representing it in a separate table, 
similarly for Code and Title. 
 

Table 1. Example SBVR Model 
Terms Fact Types Rules 

Student 
 
Module 
 
Course 
 
Name 
Concept-type: Varchar(255) 
 
Code 
Concept-type: Varchar(255) 
 
Title 
Concept-type: Varchar(255) 

Student is registered for course 
 

Student is enrolled in module 
 
Module is available for course 
 

Student is under probation 

 

Student has name 
 

Course has title 
 
Module has code 
 

It is necessary that each student is 

registered for at most five courses. 

 

It is necessary that each student that 

is under probation is registered for at 

most three courses. 

 

It is obligatory that each student has 

exactly one name. 

 

It is obligatory that each course has 

exactly one title 

 

It is obligatory that each module has 

exactly one code. 

 
The result of converting the vocabulary (and some of the more basic rules) into a 
schema can be seen in Figure 4. 
 
CREATE TABLE student (id INT NOT NULL AUTO_INCREMENT, name VARCHAR(255), 
 is-under-probation BOOL, level INT, primary Key (id)); 
 
CREATE TABLE course (id INT NOT NULL AUTO_INCREMENT, 
 code VARCHAR(255), primary Key (id)); 
 
CREATE TABLE module (id INT NOT NULL AUTO_INCREMENT, 
 title VARCHAR(255), primary Key (id)); 
 
CREATE TABLE student_is-enrolled-in_module (studentID INT, moduleID INT, 
 primary Key (studentID, moduleID), 
 foreign Key (studentID) references student(id), 
 foreign Key (moduleID) references module(id)); 
 
CREATE TABLE student_is-registered-for_course (studentID INT, courseID INT, 
 primary Key (studentID, courseID), 
 foreign Key (studentID) references student(id), 
 foreign Key (courseID) references course(id)); 
 
CREATE TABLE course_is-available-for_module (courseID INT, moduleID INT, 
 primary Key (courseID, module_id), 
 foreign Key (courseID) references course(id), 
 foreign Key (moduleID) references module(id)); 

Fig. 4. Resulting SQL DDL Schema 
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4 A predicate calculus for advanced SQL DML constructs 

We have seen how an SBVR vocabulary can be used to generate a relational schema. 
In the remainder of the paper, we are concerned with translating SBVR rules into 
SQL queries. This operational rendering of business rules is more challenging. Thus, 
we want to prove the correctness of the transformation from SBVR-LF to SQL DML. 
SBVR-LF has a formal foundation based on first-order or predicate logic, and its 
variations [2]. SQL has established theoretical foundations [8] and a sound semantics 
for its basic constructs (SELECT-FROM-WHERE) is based on a tuple relational 
calculus [6]. This standard semantics however does not cover more advanced SQL 
DML constructs, such as arithmetic operations, aggregate functions [10], grouping, 
and grouping on condition. In this section we describe a tuple relational calculus 
extension that equips such constructs with a clearly defined semantics – this is 
necessary for operationalising SBVR rules which are more expressive than basic SQL 
queries (e.g. see running example). The result is a predicate calculus with identity, 
which establishes a generic mapping between SBVR-LF and SQL DML, as discussed 
in Section 5. We use the student enrollment example to illustrate our approach. 

4.1 Basic structure of an SQL query 

Our predicate calculus formalisation of SQL DML makes use of tuple variables. A 
tuple variable is a variable that ranges over a named relation (table). The general form 
of a query in tuple relational calculus is  

)}(|{ xx F  

where x is the set of tuples for which the expression )(xF is true. The relation is 
defined somewhere inside )(xF . As we will see, in our approach we make this 
explicit by separating the filter from the domain.  

If only some attributes of x are of interest, the above expression takes the form  

)}(|),..,,(: 21 x︷x Fxxx m  

where mxx ,..,1 are attributes of the relation which is the result of the query (i.e. 
attributes of a tuple x ). This set is created by selecting all tuples x for which )(xF is 
true, and then projecting those tuples on attributes mxx ,..,1 . The result of a query on a 
set of tuples (relation) is either a set of tuples matching a certain condition or a value 
(when using aggregate functions, cf. Section 4.3). For example, the 
query )}(|),(:{ xx studentidname returns a set of tuples which contain attributes name 
and id from the student relation. 

A predicate )(xP is a function that maps each element x of a set S  to the value 
‘true’ or ‘false’, i.e., },{: falsetrueSP → . 

Let Nx∈ - so x  is an element of the set of natural numbers. Then the predicate 
0)(1 ≥≡ xxP is true for all x while the predicate 0)(2 <≡ xxP  is false for all x.  

Predicates can consist of one expression (as in  above) or as a combination of 
expressions. These combinations arise by combining expressions using the usual first-
order or predicate logic operators (e.g. see [9]) given in Table 2. 
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Table 2. Logical connectives 

  ∧  (conjunction)   ∨  (disjunction)    ¬ (negation)  ⇒ (implication) 

Let Nx∈ , as before. The predicate 107)(3 >∧<≡ xxxP combines the expressions 
7<x and 10>x  (and is false for all Nx∈ ). The predicate 63)(4 <∧≥≡ xxxP is 

true for x = 3,4,5 and false for all other Nx∈ . Predicates can be used to define sets. 
For example, )}(|{ 11 xPNxxS ∧∈= denotes the set of all x such that x is natural 
number ( Nx∈ ) and satisfies the predicate 1P (where 0)(1 ≥≡ xxP , as before).  

We have seen that 1P is true for all x which means that 1S is the set of natural 
numbers, and we can write NxPNxxS =∧∈= )}(|{ 11 . Similarly, we have that 

∅=∧∈= )}(|{ 32 xPNxxS where predicate 1P  is as defined before. 
The fact that predicates can be used to define sets is well-known in mathematics 

and is central to our approach – we will be using the set membership to identify 
relations and the predicate as the selection condition on the tuples of these relations. 

If p and q are expressions that valuate to true or false, sometimes called WFFs for 
Well-Formed Formulae in the literature, e.g. see [6], then the following equations 
hold. These are standard in first-order logic, e.g. see [9], so we list them here in Table 
3 without further explanation. A thorough treatment can be found in [9]. 

Table 3. Equations on expressions (WWF) 

pp ≡¬¬ )(  qpqp ¬∨¬≡∧¬ )(  qpqp ¬∧¬≡∨¬ )(  
qpqp ∨¬≡⇒  )()()( rpqprqp ∧∨∧≡∨∧  )()()( rpqprqp ∨∧∨≡∧∨  

 
We now turn our attention to the basic structure of a query expressed in SQL DML 

in our formalization which is an extension to the tuple relational calculus while 
staying within the predicate calculus semantics – in particular, we will be concerned 
with setting up formal semantics for transforming SBVR rules to SQL queries based 
on a predicate calculus with identity. 

Since our interest is in transforming SBVR rules to SQL queries on the relational 
schema generated by the SBVR model, we will be concerned with predicates that 
define sets of tuples. The general form of a query in our predicate calculus is  

)}()({ xxx P|D ∧  

where )x(x n,..,: 1x is the set of tuples from a domain )(xD , and )(xD specifies the set 
of all possible tuples that x ranges over, i.e. a relation with nxx ,..,1 attributes, and 

)(xP is a predicate on the set of all tuples in )(xD . For example, 
}'6081958'.)({ =∧ idstudent|student xx returns the set of all tuples x from the relation 

student whose attribute id has the value 6081958. (Note that student.id is a primary 
key in our schema, given in Section 3, so this expression would return a single tuple.) 

The expression )}()({ xxx P|D ∧ in the extended predicate calculus considered here 
is mapped to SQL DML as: 

         SELECT    DISTINCT x  
         FROM       )(xD  
         WHERE    )(xP  ; 
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The SQL keyword DISTINCT is used to remove duplicates.  
If we are only interested in certain attributes nxx ,..,1 in the result x and not all 

attributes mxx ,..,1 of the relation specified in )(xD , then we write for the projection 

)}()(..,,{ 21 xxx P)|Dxx:(x n ∧  

which is mapped to SQL DML as: 
   SELECT    DISTINCT nxx ,..,1  
   FROM       )(xD  
   WHERE    )(xP  ; 

To express the JOIN statements in SQL DML which applies to two or more 
relations, we need to take a closer look at )(xD . In standard tuple relational calculus 
semantics, it is well known that joining two relations means taking the Cartesian 
product (× ) of the two relations. In our formalization, the join of two relations 
(tables) is captured in )(xD which is what is used to specify the set of all tuples from 
which the returned set of tuples x come from. The join condition, if any, is then added 
in the predicate )(xP - and that is in addition to the selection condition, if any. 

Therefore, if we want to join tuples from relations k,..,, yyy 21 we write  

}((...
2(1(|),...,1(: )P)kD)D)Dnxx xyyy︷x ∧×××  

where )D)kD)D)D xyyy ((...
2(1( =××× . This is mapped onto SQL DML as: 

   SELECT    nxx ,..,1  
   FROM       )D)D)D kyyy (...

2(1( ×××  
   WHERE    )(xP  ; 

Note that k,..,, yyy 21 denote relations (sets of tuples) while nxx ,..,1 is the list of 
attributes returned after the join of the relations, and this is denoted by ),...,(: 1 nxxx . 
It is also worth pointing out that selection conditions on attributes of k,..,, yyy 21 are 
included in )(xP since they are applied after the Cartesian product on these relations 
has been applied. For example,  

×× )__()(|).(,.,.(:{ cirfsDstudentDidcourseCOUNTnamestudentidstudentx
       }..__.__.)( idcoursecourseIDcirfsstudentIDcirfsidstudentcourseD =∧=∧×  

is transformed into: 

 SELECT      student.id, student.name, COUNT(student.id) 
 FROM         student, s_irf_c, course 
WHERE       student.id = s_irf_c.studentID AND s_irf_c.courseID = course.id ; 

We now turn our attention to arithmetic operations and aggregate functions. 

4.2 Arithmetic operations and aggregate functions  

In SQL, arithmetic operations may appear in the SELECT clause, as in: 
SELECT Salary*1.1, EmpID, EmpName 
FROM  Employee 
WHERE DeptName = ‘Research’; 
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which reflects the values of a 10% increase in salaries in the Research department. So 
we need to apply this arithmetic operation as a function on the returned set of tuples 
x . For this reason, we write 

)}()(|)({ xxx PDE ∧  

where )(xE is a function on x that includes addition (+), subtraction (-), multiplication 
(*), division (/), or a combination of these on one or more attributes of the tuples in 
x , i.e. tuples from )(xD which satisfy )(xP . 

Often, arithmetic operations only apply to certain attributes in the set of returned 
tuples x . So E should be applied to the attributes of x rather than across x . Thus, 

)}()(|))(),...,(),(.({ 21 xxx PDxExExE n ∧  

where )( ixE , ni ..1= , is applied to some attributes, in which case it is one or more of 
‘+’, ‘-’, ‘*’, ‘/’ and not applied to others, in which case we have ii xxE =)( (identity). 

In similar fashion, we can address the aggregate functions in SQL DML, i.e. SUM, 
AVG, MIN, MAX, COUNT. To take into account the fact that an arithmetic operation 
may have been already applied to a certain attribute, we define F as a composite 
function on E so that ))(())(( ii xEFxEF =o . In other words, F is applied to the 
output of E , and  we write 

)}()(|)))(()),...,(()),((.({ 21 xxx PDxEFxEFxEF n ∧  

Note that if F  is the aggregate function COUNT, for some attribute ix , then 
)( ixE must be the identity, i.e. ii xxE =)( , so that only attribute names are allowed in 

this case and no arithmetic operations.  
This predicate calculus construction is mapped onto SQL DML as 

SELECT ))(()),...,(()),(( 21 nxEFxEFxEF  
    FROM )(xD  
   WHERE )(xP ; 

For example,  

}3.)(|)).(,.,..({ =∧ levelstudentstudentidstudentCOUNTnamestudentidstudent xx  

is mapped onto the query: 
SELECT student.id, COUNT(student.id) 
FROM  student 
WHERE student.level = ‘3’ ; 

and returns the number of final year students in the dataset. 
We now turn our attention to grouping and filtering on groups. 

4.3 Grouping and Having 

The grouping operation on a database comes down to stating the desired grouping 
attribute(s) and the grouping condition, if any. The grouping condition selects those 
groups that satisfy the condition and discards those who do not. In our formalisation, 
the grouping attributes are specified before the projected attributes (and therefore will 
be mapped onto the SELECT clause in SQL DML) while the grouping condition will 
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be part of the predicate itself. We note that it cannot be included in )(xP , like we did 
for JOIN, because the grouping condition applies to the results of the grouping 
operation, i.e., once the groups have been formed by the grouping operations.  

Therefore, if we want to group a relation by a set of attributes ml xx ,... (a subset of 
all the attributes nxx ,...1 of the relation), we write 

)}()(,..,,,..,{ 1 xx:xx P)|Dx(x)x:(x nml ∧  

)x(x ml ,.., and )x(x n,..,1 need not be disjoint but both need to be subsets of the set of 
attributes of )nx(xD ,..,1)( =x . Finally, we note that )(xD may be the result of the 
Cartesian product of a number of relations, as before. 

The above expression in our predicate calculus is mapped onto SQL DML as: 
SELECT nxx ,..,1  
FROM  )(xD  
WHERE )(xP  
GROUP BY ml xx ,..,  

For example,  

|).(,.,.(:,.:{ idcourseCOUNTnamestudentidstudentidstudent xx  

∧×× )()__()(| courseDcirfsDstudentD  

}..__.__. idcoursecourseIDcirfsstudentIDcirfsidstudent =∧=∧  

returns the number of courses a student has taken, and does this for every student. 
This translates to the following SQL query: 

SELECT student.id, student.name, COUNT(course.id) 
FROM  student, s_irf_c, course 
WHERE student.id = s_irf_c.studentID  AND 

AND s_irf_c.courseID = course.id 
GROUP BY student.id ; 

Next we may add the grouping condition as an additional predicate )(xH which 
applies to the result (set of tuples) of the grouping operation, i.e. to the set of 
attributes in )x(x)x(x nml ,..,,.., 1⊆ . Therefore, we write 

)}()}()(,..,,,..,{|,..,{ 11 xxx:xxx HP)|Dx(x)x:(x)x:(x nmln ∧∧  

which is mapped onto SQL DML as: 
SELECT nxx ,..,1  
FROM  )(xD  
WHERE )(xP  
GROUP BY ml xx ,..,  
HAVING )(xH  

Note that this is different to a nested predicate calculus expression because a nested 
query would simply apply a selection condition to the result of the inner query but 
could project onto different attributes. In contrast, a grouping condition only filters 
the groups returned by the grouping operation, and thus cannot apply a further 
projection. For a nested query we would write 

)}()}()(,..,,,..,{|,..,{ '
1

''
1 xxx:xxx PP)|Dx(x)x:(x)x:(x nmln ∧∧  
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which would in turn map onto the following SQL DML: 
SELECT  ''

1 ,.., nxx  
FROM   ( SELECT nxx ,..,1  

  FROM  )(xD  
  WHERE )(xP ) 
  GROUP BY   ml xx ,..,  )  

WHERE )(' xP ; 
It can be seen that )(' xP applies to the result of the inner query, but the result of the 
nested query as a whole can include a projection on any attributes from )(xD . 

Going back to our example, if we want to check whether the business rule  
It is necessary that each student is registered for at most five courses 

expressed in the SBVR model given earlier in Figure 3 is satisfied, we need to restrict 
to groups (one for each student) who are associated with (registered for) more than 
five courses. We check for these cases since these are cases where the rule might be 
violated, and if this happens, the corresponding database operations will need to be 
executed as a transaction. Taking into account the associated database schema, this 
rule is expressed in terms of our extended predicate calculus as follows: 

|).(,.,.(:,.:{|
|)).(,.,.(:{

idcourseCOUNTnamestudentidstudentidstudent
idstudentCOUNTnamestudentidstudent

xx
x

 

∧=∧×× studentIDcirfsidstudentcourseDcirfsDstudentD .__.)()__()(|  

)}5).((}..__ >∧=∧ idcourseCOUNTidcoursecourseIDcirfs  
which is in turn mapped onto the following SQL DML statements: 

SELECT student.id, student.name, COUNT(course.id) 
FROM  student, s_irf_c, course 
WHERE student.id = s_irf_c.studentID  

AND s_irf_c.courseID = course.id 
GROUP BY student.id 
HAVING COUNT(course.id) > 5 ; 

It is in this way that we can take rules from an SBVR model and transform them 
into SQL DML so that we can then check whether they are satisfied on a relational 
database schema by executing a standard SQL query. In the next section we attempt 
to generalize this by taking a closer look at both ends, our predicate calculus -based 
formalisation and the SBVR-LF, and do so at the semantics level. 

5 From SBVR-LF to SQL DML 

In this section we turn our attention to the SBVR Logic Formulation (SBVR-LF) as 
defined in the SBVR specification document [2], and describe a mapping onto the 
predicate calculus foundation for SQL DML which was given in the previous section. 
The objective is to obtain a generic mapping between rules expressed in SBVR and 
queries expressed in standard SQL DML, since this would make business rules 
amenable to immediate validation against a dataset. 
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Before we embark on the mapping, we define the quantifiers within the predicate 
calculus semantics in our approach. There are two quantifiers in predicate logic that 
can be used in an expression (WFF) to find out how many elements of the 
corresponding set satisfy the expression.  

Let )(xP be a predicate (as before). Let )(xD denote the domain of x , i.e. the set of 
all possible values for the tuple x . To find out if for at least one tuple x from the 
domain )(xD the predicate )(xP is true, we write 

))()()(( xxx PD ∧∃  

which is read as “there is an x for which )(xD holds, and )(xP is true”. The result of 
this expression is either true or false. 

To find out if for all tuples in the domain )(xD the predicate )(xP is true, we write 

))()()(( xxx PD ⇒∀  

which is read as “for all x  for which )(xD holds, )(xP is true”. The result of this 
expression is true or false. 

With reference to the example predicates discussed in the start of Section 4.1, the 
expression ))()(( 3 xPxx ∧∈∃ N is false. The expression ))()(( 1 xPxx ⇒∈∀ N is true. 

Note the difference between ))()()(( xxx PD ∧∃  and  ))()()(( xxx PD ⇒∀ which 
can yield different results (true or false) for the same expression. To avoid such 
ambiguities the domain )(xD of an expression with a universal quantifier is always 
placed to the left of the implication logical operator ( ⇒ ). 

Again, drawing upon first-order logic we have that if )(xP is a predicate and 
)(1 xD , )(2 xD  are domains (expressions that define relations from the database 

schema generated by the SBVR vocabulary, as discussed in Section 3, and hence 
restrict the set of all possible values for a tuple x ), then the following equations hold. 

Table 4.  

))()(())()(( xxxx PP ¬∃¬≡∀  ))()(())()(( xxxx PP ¬∀¬≡∃  
)))()(2()(1)(())()(2)(1)(( xxxxxxxx PDDPDD ⇒⇒∀≡⇒×∀  
))())(2)(1)((())()(2)(1)(( xxxxxxxx PDDPDD ¬∧×∃¬≡⇒×∀  

 
We have given these standard equations in terms of predicates that define sets of 

tuples. In their general form, they apply to an element x rather than a tuple x and we 
would also have ∧  instead of ×  in the last two. 

The specification document of SBVR includes the definition of the Formal Logic 
and Mathematics Vocabulary [2, pp. 109-118] which provides the logical foundations 
for SBVR in terms of first-order logic. However, the SBVR specification predefines 
some numeric quantifiers [2, pp.97-98] in addition to the standard universal and 
existential quantifiers found in first-order predicate logic. These allow the user to say 
things like ‘exactly one car’ or ‘exactly two cars’ or ‘at most 8 and at least 3 cars’ or 
‘at most two cars’ and so on. Due to space limitations we do not reproduce the SBVR 
predefined quantifiers here, and refer the interested reader to the SBVR specification. 

The predefined quantifiers can be defined in terms of the quantifiers in our 
formalization, which were defined earlier in standard predicate logic (Table 4). 
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Drawing upon the definition schemas in [11], also outlined in [2], we may obtain a 
rewriting of the SBVR predefined quantifiers in our approach.  

The exactly one quantifier in SBVR-LF, denoted by x1∃ , can be rewritten as: 

))()()(())()()(())()((1( xyyyxxxxxx =∧⇒∀∧∧∃≡∧∃ yPDPDPD︶  

The at most n quantifier given in SBVR-LF, denoted by xn..0∃ , can be rewritten 
in terms of our predicate calculus as: 

∨∧∃∨∧∃¬≡∧∃ ))
1

()
1

()(
1

())()()(())()(()..0( xxxxxxxxx PDPDPDn  

∨=¬∧∧∃∧∧∃∨ )
21

())
1

()
2

()(
2

()
1

()
1

()(
1

(( xxxxxxxx PDPD  

M  

∧==¬∧∧∃∧∧∧∃∨ )
1

())()()(()
1

()
1

()(
1

((
nn

P
n

D
n

PD xxxxxxxx LL  

)))()
1

(()()()((
n

PD xyxyyyy =∨∨=∧⇒∀∧ L  

The first disjunction covers the case that there might not exist such a tuple x  (case 
of 0), the second covers the case there is one such x , the third is for two such x , and 
so on. The last disjunction says that n such x  may exist, but then there cannot be any 
more (n+1) tuples  that satisfy the predicate.  

Similarly, the at least n quantifier, denoted by x..n∃ , can be rewritten as: 
 

∧=¬∧∧∃∧∧∃≡∧∃ ))()()()(())()()(())()((..( 2x1x2x2x2x1x1x1xxxx PDPDPDn

︶  
  ∧=¬∧∧=¬∧∧∃∧∧ ))()()()()(( 1-nxnx1xnxnxnxnx LL PD  

∨=+¬∧∧=+¬∧+∧++∃∧ ))()()()()((( nxknx1xknxknxknxknx LPD
 ))))()(()()()(( nx1nx1x1nx1nx1nx1nx =+∨∨=+∧+⇒++∀∨ LPD  

The first n-1 conjunctions refer to each of the n tuples x that must exist, must 
satisfy the predicate. The last conjunction captures the fact that there may be k 
additional such x  that satisfy the predicate or no other x (apart from the n we already 
have) may exist that satisfy the predicate. 

The at least n and at most m quantifier given in SBVR-LF, and denoted by 
xmn..∃ , can be obtained by combining the rewriting of the at least n and that of the 

at most n quantifiers given earlier.  
The intention behind SBVR-LF is to (be able to) capture business facts and 

business rules formally. Formal statements of business rules may then be transformed 
into logical formulations that can be read in software tools, or readily adopted in 
approaches like the one we describe in this paper. An example given in the 
specification [2, pp.90-91] is the formalisation of a static constraint that says ‘each 
person was born on some date’ as the logical formulation: 

yxDateypersonx on born   was,:,: ∃∀  

Going back to our example, the rule in our SBVR model can be written as: 

:x∀ student, :5..0 y∃ course, x is registered for y  

With reference to the tree representation of this rule given in Figure 3 earlier, it can be 
seen that the root is a universal quantification (∀ ), the 1st variable is student, the 2nd 
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variable is course and the max cardinality is 5 ( 5..0∃ ) while the atomic formulation 
that completes the [at most n] quantification node is student is registered for course 
and this binds the 1st variable to x and the 2nd to y . 

In fact we are interested in disproving the rule, i.e. identifying students registered 
for 6 or more courses. This can be encoded by taking the negation of the logical 
formulation in which case the existential quantifier 5..0¬∃  gives ..6∃ . Thus, we have 

:x∃ student, :..6 y∃ course, x is registered for y  

Now student and course are relations in our database schema (Figure 4) and so is 
is registered for, thus all three appear in the domain )(xD (in a Cartesian product) and 
consequently in the FROM clause of the resulting SQL query. The primary key of 
student will have to match the foreign key of is registered for, similarly for course. 
These join conditions become the predicate )(xP and hence appear in the WHERE 
clause. The cardinality on the existential quantifier (6 or more) is the condition 
applied to the resulting tuples (per student), hence becomes the predicate )(xH and 
appears in the HAVING clause.  

It can be seen that the predicate calculus with identity we presented provides a 
bridge between SBVR-LF and SQL DML. This means that SBVR rules can be re-
written systematically as SQL queries, thus enabling their execution to maintain 
consistency of a database. The modality of the rule, which has not been addressed 
explicitly here, is taken into account only in enforcing consistency once a violation is 
observed. A violation of an alethic rule leads to a direct rejection of the update on the 
dataset while a violation of a deontic rule can be overridden if authorised by a user 
with sufficient privileges. 

6 Conclusions and Future Work 

In this paper we have briefly described the concept of generative information systems, 
and how rule-based modeling is at their core. We have discussed how an SBVR 
model (terms, fact types) is transformed into a relational schema that can act as a data 
store for our information system. By showing how the user interacts with the system, 
we have demonstrated the need for a formal and rigorous approach to transforming 
SBVR rules to SQL queries. This transformation allows a rule to be validated against 
the dataset in much the same way as issuing a query on a database.  

The correctness of the transformation has been shown using a predicate calculus 
with identity, which extends standard relational theory to include provision for 
aggregate functions and arithmetic operations,  and also address SQL DML constructs 
such as grouping (GROUP BY clause) and grouping on condition (HAVING clause).  

The work in [12] is also concerned with generating SQL DML from business rules. 
However, the rules are expressed in the ORM-based language ConQuer and the 
transformation is not attempted at the semantic level (at least not through relational 
theory). The problem of operationalising SBVR business rules is challenging. There 
are transformations to UML class diagrams [13] and R2ML [14] within an MDA 
context, as well as the reverse transformation from OCL to SBVR [15]. Instead, we 
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have described the operational rendering of SBVR rules into standard SQL queries, 
which can then be readily executed to maintain consistency of a database. 

To further the research discussed, the transformation needs to be implemented in a 
tool such that it can be applied to real-world problems. Another possible extension is 
to add model-checking capabilities to the model execution functionality, described 
here, such that models with inconsistent, redundant, or needlessly complex rules can 
be identified and refined accordingly.  
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