
Generating SQL Queries from SBVR Rules

Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

Department of Computing, FEPS, University of Surrey,
GU2 7XH, Guildford, Surrey, United Kingdom

{s.moschoyiannis, a.marinos, p.krause}@surrey.ac.uk

Abstract. Declarative technologies have made great strides in expressivity
between SQL and SBVR. SBVR models are more expressive that SQL
schemas, but not as imminently executable yet. In this paper, we complete the
architecture of a system that can execute SBVR models. We do this by
describing how SBVR rules can be transformed into SQL DML so that they can
be automatically checked against the database using a standard SQL query. In
particular, we describe a formalization of the basic structure of an SQL query
which includes aggregate functions, arithmetic operations, grouping, and
grouping on condition. We do this while staying within a predicate calculus
semantics which can be related to the standard SBVR-LF specification and
equip it with a concrete semantics for expressing business rules formally. Our
approach to transforming SBVR rules into standard SQL queries is thus
generic, and the resulting queries can be readily executed on a relational
schema generated from the SBVR model.

Keywords: SBVR, SQL, Declarative Programming, Business Rules, Predicate
Calculus, Formal Semantics

1 Introduction

The Business Rules Approach [1] has made significant strides in bridging the spheres
of everyday human interactions and information technology. An outgrowth of that
movement was the OMG standard Semantics of Business Vocabulary and Rules
(SBVR) [2], which brought together research from linguistics, formal logics, as well
as practical expertise. SBVR Models are considered constructs that are supposed to
help businesses communicate with each other and also business people to
communicate with implementers of information technology. Direct transformation of
SBVR models into executable code is generally not encouraged and has often resulted
in rather harsh compromises of SBVR’s meta-model and intended use when
attempted [3]. The reason for this mismatch is the chasm between the declarative
paradigm implemented by SBVR and the imperative procedural paradigm that is at
the heart of most modern programming and business process languages. So thus far,
human programmers are needed to interpret and convert the SBVR models into real-
world applications. An alternative approach, called Generative Information Systems

2 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

[4], was presented by the authors of this paper that allowed for real-world systems to
be produced by inferring the appropriate reaction directly from a model, without the
need for an intermediate code generation step, and without the need for explicitly
defined business processes. A significant aspect of that model was the method of
generating schemas for a relational database from the SBVR Vocabulary, and
converting rules into SQL queries to verify the consistency of the data set. This last
step, had been only sketched out in the original paper, as the theoretical framework
required for this undertaking is significant. This paper addresses precisely these issues
and examines in detail the conversion of SBVR rules into SQL queries for the
purpose of validating the consistency of a given data set with the SBVR model.

2 Generative Information Systems

This section summarizes the architecture of Generative Information Systems (GIS) in
[7] to provide the appropriate context for the rest of the paper. A GIS is based around
the concept that the logic of the system is accessible to the owner of the system, and
that any change in the logic is immediately reflected in the operation of the system.
The architecture as can be seen in Figure 1, specifies that both the RESTful API and
the relational database schema (in SQL-DDL) are to be generated from the model.

Fig. 1. Connections between REST, SBVR and Relational Databases

The end user can place requests on the system through the API. These requests get
evaluated through the ruleset, and if they represent a legal transition and their result is
a system in a consistent state, they are applied to the dataset. If not, the inconsistency
is presented to the user, who can amend the request to take account of the new

Generating SQL Queries from SBVR Rules 3

information. Through this back and forth negotiation, the user either concludes that
the request is fundamentally incompatible with the system, or reaches a formulation
of the request that satisfies both the original goal and the system’s consistency
requirements. This is, in an abstract sense, what many processes achieve. By guiding
the user through a sequence of steps, they determine what change needs to be made to
the system state to satisfy the user’s request while maintaining consistency. We call
thus abstract process the ‘meta-process’. Its advantage over the traditional process-
driven message is that it can respond to unforeseen requests by the user, in contrast to
the hardcoded process model which is constrained to the design-time foresight of the
developers. More detail on this process can be seen in Figure 2.

User:
POST <en101>

http://domain.org/students/John/courses/

System:
403 Forbidden

It is necessary that each student is registered for at most five courses

Student_Name Number_of_Courses Names_of_Courses

John 6 PY101, MA101, EN121,

CS101, AF302, MG102

User:
[Start Transaction]
DELETE

http://domain.org/students/John/courses/ma101

POST <en101>

http://domain.org/students/John/courses/

[End Transaction]

System:
200 OK

Fig. 2. The meta-process control structure

The way that consistency is currently checked is by performing a sequence of actions
on the database as a transactional unit. First, a transaction is initiated. Secondly, the
updates are applied to the dataset. If the database schema makes this impossible, the
updates are rejected. If it is allowed, the relevant rules are checked against the dataset
to make sure they are not violated. If they are violated, updates are rolled back and the
details of the violation returned to the user. If the rules are not violated, the
transaction proceeds. This mechanism is suitable for a proof of concept, but may have
scalability limitations for concurrent systems. Optimizations can be explored that
avoid the round-trip to the database. It is however interesting to note that this rough

http://domain.org/students/John/courses/ma101�
http://domain.org/students/John/courses/�

4 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

process of adding tentative information to the knowledge base, then checking for
consistency, and deleting in case of violation, counterintuitively seems to be the way
that the human brain deals with new knowledge. [5] This does not mean that the
method is ideal, but it is an interesting parallel that we noted after setting the
foundations for Generative Information Systems architecture.

The step in the above process that was left least defined is the one where the
updated dataset is checked against relevant rules for consistency. This is done by
transforming each rule to an SQL query that requests violations to the rule to be
returned (Figure 3). The precise mechanism by which this is carried out is the focus of
this paper.

Fig. 3. From SBVR Structured English, to SBVR Logical Formulation, to an SQL query.

3 Vocabularies to SQL Schemas

For rules to be validated over a dataset however, first there must be a schema for
that dataset. As our starting point is an SBVR model, it is the vocabulary that is the
obvious candidate for becoming the scaffold for our schema. The detailed process has
been described in our previous work so here we will instead go through an example
scenario which we will use throughout this paper. The model for our example can be
seen in Table 1. One aspect not covered in previous work is that of primitive data
types. We can see that the term Name has a concept type of Varchar(255). This can be
read as a reference to a vocabulary of primitive data types that a generative
information system is built on. These terms are essentially terminal symbols that get
mapped directly onto programming language data types. We use the data types that

 SELECT student.name AS Student_Name,
 Count (course.id) AS Number_of_Courses
 FROM student, course, student_is-registered-for_course
 WHERE student.id = student_ is-registered-for_course.studentID
 AND student_is-registered-for_course.courseID = course.id
 GROUP BY student.id
 HAVING COUNT(course.id) > 5 ;

Generating SQL Queries from SBVR Rules 5

are fundamental to SQL as this is our target data store. Another novel convention is
that since the Name is had by Student , this relation is constrained to a one-to-one
cardinality, and Name has no other attributes than its value, we render it an attribute of
the table with which it is associated rather than representing it in a separate table,
similarly for Code and Title.

Table 1. Example SBVR Model
Terms Fact Types Rules

Student

Module

Course

Name
Concept-type: Varchar(255)

Code
Concept-type: Varchar(255)

Title
Concept-type: Varchar(255)

Student is registered for course

Student is enrolled in module

Module is available for course

Student is under probation

Student has name

Course has title

Module has code

It is necessary that each student is

registered for at most five courses.

It is necessary that each student that

is under probation is registered for at

most three courses.

It is obligatory that each student has

exactly one name.

It is obligatory that each course has

exactly one title

It is obligatory that each module has

exactly one code.

The result of converting the vocabulary (and some of the more basic rules) into a
schema can be seen in Figure 4.

CREATE TABLE student (id INT NOT NULL AUTO_INCREMENT, name VARCHAR(255),
 is-under-probation BOOL, level INT, primary Key (id));

CREATE TABLE course (id INT NOT NULL AUTO_INCREMENT,
 code VARCHAR(255), primary Key (id));

CREATE TABLE module (id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(255), primary Key (id));

CREATE TABLE student_is-enrolled-in_module (studentID INT, moduleID INT,
 primary Key (studentID, moduleID),
 foreign Key (studentID) references student(id),
 foreign Key (moduleID) references module(id));

CREATE TABLE student_is-registered-for_course (studentID INT, courseID INT,
 primary Key (studentID, courseID),
 foreign Key (studentID) references student(id),
 foreign Key (courseID) references course(id));

CREATE TABLE course_is-available-for_module (courseID INT, moduleID INT,
 primary Key (courseID, module_id),
 foreign Key (courseID) references course(id),
 foreign Key (moduleID) references module(id));

Fig. 4. Resulting SQL DDL Schema

6 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

4 A predicate calculus for advanced SQL DML constructs

We have seen how an SBVR vocabulary can be used to generate a relational schema.
In the remainder of the paper, we are concerned with translating SBVR rules into
SQL queries. This operational rendering of business rules is more challenging. Thus,
we want to prove the correctness of the transformation from SBVR-LF to SQL DML.
SBVR-LF has a formal foundation based on first-order or predicate logic, and its
variations [2]. SQL has established theoretical foundations [8] and a sound semantics
for its basic constructs (SELECT-FROM-WHERE) is based on a tuple relational
calculus [6]. This standard semantics however does not cover more advanced SQL
DML constructs, such as arithmetic operations, aggregate functions [10], grouping,
and grouping on condition. In this section we describe a tuple relational calculus
extension that equips such constructs with a clearly defined semantics – this is
necessary for operationalising SBVR rules which are more expressive than basic SQL
queries (e.g. see running example). The result is a predicate calculus with identity,
which establishes a generic mapping between SBVR-LF and SQL DML, as discussed
in Section 5. We use the student enrollment example to illustrate our approach.

4.1 Basic structure of an SQL query

Our predicate calculus formalisation of SQL DML makes use of tuple variables. A
tuple variable is a variable that ranges over a named relation (table). The general form
of a query in tuple relational calculus is

)}(|{ xx F

where x is the set of tuples for which the expression)(xF is true. The relation is
defined somewhere inside)(xF . As we will see, in our approach we make this
explicit by separating the filter from the domain.

If only some attributes of x are of interest, the above expression takes the form

)}(|),..,,(: 21 x︷x Fxxx m

where mxx ,..,1 are attributes of the relation which is the result of the query (i.e.
attributes of a tuple x). This set is created by selecting all tuples x for which)(xF is
true, and then projecting those tuples on attributes mxx ,..,1 . The result of a query on a
set of tuples (relation) is either a set of tuples matching a certain condition or a value
(when using aggregate functions, cf. Section 4.3). For example, the
query)}(|),(:{ xx studentidname returns a set of tuples which contain attributes name
and id from the student relation.

A predicate)(xP is a function that maps each element x of a set S to the value
‘true’ or ‘false’, i.e., },{: falsetrueSP → .

Let Nx∈ - so x is an element of the set of natural numbers. Then the predicate
0)(1 ≥≡ xxP is true for all x while the predicate 0)(2 <≡ xxP is false for all x.

Predicates can consist of one expression (as in above) or as a combination of
expressions. These combinations arise by combining expressions using the usual first-
order or predicate logic operators (e.g. see [9]) given in Table 2.

Generating SQL Queries from SBVR Rules 7

Table 2. Logical connectives

 ∧ (conjunction) ∨ (disjunction) ¬ (negation) ⇒ (implication)

Let Nx∈ , as before. The predicate 107)(3 >∧<≡ xxxP combines the expressions
7<x and 10>x (and is false for all Nx∈). The predicate 63)(4 <∧≥≡ xxxP is

true for x = 3,4,5 and false for all other Nx∈ . Predicates can be used to define sets.
For example,)}(|{ 11 xPNxxS ∧∈= denotes the set of all x such that x is natural
number (Nx∈) and satisfies the predicate 1P (where 0)(1 ≥≡ xxP , as before).

We have seen that 1P is true for all x which means that 1S is the set of natural
numbers, and we can write NxPNxxS =∧∈=)}(|{ 11 . Similarly, we have that

∅=∧∈=)}(|{ 32 xPNxxS where predicate 1P is as defined before.
The fact that predicates can be used to define sets is well-known in mathematics

and is central to our approach – we will be using the set membership to identify
relations and the predicate as the selection condition on the tuples of these relations.

If p and q are expressions that valuate to true or false, sometimes called WFFs for
Well-Formed Formulae in the literature, e.g. see [6], then the following equations
hold. These are standard in first-order logic, e.g. see [9], so we list them here in Table
3 without further explanation. A thorough treatment can be found in [9].

Table 3. Equations on expressions (WWF)

pp ≡¬¬)(qpqp ¬∨¬≡∧¬)(qpqp ¬∧¬≡∨¬)(
qpqp ∨¬≡⇒)()()(rpqprqp ∧∨∧≡∨∧)()()(rpqprqp ∨∧∨≡∧∨

We now turn our attention to the basic structure of a query expressed in SQL DML

in our formalization which is an extension to the tuple relational calculus while
staying within the predicate calculus semantics – in particular, we will be concerned
with setting up formal semantics for transforming SBVR rules to SQL queries based
on a predicate calculus with identity.

Since our interest is in transforming SBVR rules to SQL queries on the relational
schema generated by the SBVR model, we will be concerned with predicates that
define sets of tuples. The general form of a query in our predicate calculus is

)}()({ xxx P|D ∧

where)x(x n,..,: 1x is the set of tuples from a domain)(xD , and)(xD specifies the set
of all possible tuples that x ranges over, i.e. a relation with nxx ,..,1 attributes, and

)(xP is a predicate on the set of all tuples in)(xD . For example,
}'6081958'.)({ =∧ idstudent|student xx returns the set of all tuples x from the relation

student whose attribute id has the value 6081958. (Note that student.id is a primary
key in our schema, given in Section 3, so this expression would return a single tuple.)

The expression)}()({ xxx P|D ∧ in the extended predicate calculus considered here
is mapped to SQL DML as:

 SELECT DISTINCT x
 FROM)(xD
 WHERE)(xP ;

8 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

The SQL keyword DISTINCT is used to remove duplicates.
If we are only interested in certain attributes nxx ,..,1 in the result x and not all

attributes mxx ,..,1 of the relation specified in)(xD , then we write for the projection

)}()(..,,{ 21 xxx P)|Dxx:(x n ∧

which is mapped to SQL DML as:
 SELECT DISTINCT nxx ,..,1
 FROM)(xD
 WHERE)(xP ;

To express the JOIN statements in SQL DML which applies to two or more
relations, we need to take a closer look at)(xD . In standard tuple relational calculus
semantics, it is well known that joining two relations means taking the Cartesian
product (×) of the two relations. In our formalization, the join of two relations
(tables) is captured in)(xD which is what is used to specify the set of all tuples from
which the returned set of tuples x come from. The join condition, if any, is then added
in the predicate)(xP - and that is in addition to the selection condition, if any.

Therefore, if we want to join tuples from relations k,..,, yyy 21 we write

}((...
2(1(|),...,1(:)P)kD)D)Dnxx xyyy︷x ∧×××

where)D)kD)D)D xyyy ((...
2(1(=××× . This is mapped onto SQL DML as:

 SELECT nxx ,..,1
 FROM)D)D)D kyyy (...

2(1(×××
 WHERE)(xP ;

Note that k,..,, yyy 21 denote relations (sets of tuples) while nxx ,..,1 is the list of
attributes returned after the join of the relations, and this is denoted by),...,(: 1 nxxx .
It is also worth pointing out that selection conditions on attributes of k,..,, yyy 21 are
included in)(xP since they are applied after the Cartesian product on these relations
has been applied. For example,

××)__()(|).(,.,.(:{ cirfsDstudentDidcourseCOUNTnamestudentidstudentx
 }..__.__.)(idcoursecourseIDcirfsstudentIDcirfsidstudentcourseD =∧=∧×

is transformed into:

 SELECT student.id, student.name, COUNT(student.id)
 FROM student, s_irf_c, course
WHERE student.id = s_irf_c.studentID AND s_irf_c.courseID = course.id ;

We now turn our attention to arithmetic operations and aggregate functions.

4.2 Arithmetic operations and aggregate functions

In SQL, arithmetic operations may appear in the SELECT clause, as in:
SELECT Salary*1.1, EmpID, EmpName
FROM Employee
WHERE DeptName = ‘Research’;

Generating SQL Queries from SBVR Rules 9

which reflects the values of a 10% increase in salaries in the Research department. So
we need to apply this arithmetic operation as a function on the returned set of tuples
x . For this reason, we write

)}()(|)({ xxx PDE ∧

where)(xE is a function on x that includes addition (+), subtraction (-), multiplication
(*), division (/), or a combination of these on one or more attributes of the tuples in
x , i.e. tuples from)(xD which satisfy)(xP .

Often, arithmetic operations only apply to certain attributes in the set of returned
tuples x . So E should be applied to the attributes of x rather than across x . Thus,

)}()(|))(),...,(),(.({ 21 xxx PDxExExE n ∧

where)(ixE , ni ..1= , is applied to some attributes, in which case it is one or more of
‘+’, ‘-’, ‘*’, ‘/’ and not applied to others, in which case we have ii xxE =)((identity).

In similar fashion, we can address the aggregate functions in SQL DML, i.e. SUM,
AVG, MIN, MAX, COUNT. To take into account the fact that an arithmetic operation
may have been already applied to a certain attribute, we define F as a composite
function on E so that))(())((ii xEFxEF =o . In other words, F is applied to the
output of E , and we write

)}()(|)))(()),...,(()),((.({ 21 xxx PDxEFxEFxEF n ∧

Note that if F is the aggregate function COUNT, for some attribute ix , then
)(ixE must be the identity, i.e. ii xxE =)(, so that only attribute names are allowed in

this case and no arithmetic operations.
This predicate calculus construction is mapped onto SQL DML as

SELECT))(()),...,(()),((21 nxEFxEFxEF
 FROM)(xD
 WHERE)(xP ;

For example,

}3.)(|)).(,.,..({ =∧ levelstudentstudentidstudentCOUNTnamestudentidstudent xx

is mapped onto the query:
SELECT student.id, COUNT(student.id)
FROM student
WHERE student.level = ‘3’ ;

and returns the number of final year students in the dataset.
We now turn our attention to grouping and filtering on groups.

4.3 Grouping and Having

The grouping operation on a database comes down to stating the desired grouping
attribute(s) and the grouping condition, if any. The grouping condition selects those
groups that satisfy the condition and discards those who do not. In our formalisation,
the grouping attributes are specified before the projected attributes (and therefore will
be mapped onto the SELECT clause in SQL DML) while the grouping condition will

10 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

be part of the predicate itself. We note that it cannot be included in)(xP , like we did
for JOIN, because the grouping condition applies to the results of the grouping
operation, i.e., once the groups have been formed by the grouping operations.

Therefore, if we want to group a relation by a set of attributes ml xx ,... (a subset of
all the attributes nxx ,...1 of the relation), we write

)}()(,..,,,..,{ 1 xx:xx P)|Dx(x)x:(x nml ∧

)x(x ml ,.., and)x(x n,..,1 need not be disjoint but both need to be subsets of the set of
attributes of)nx(xD ,..,1)(=x . Finally, we note that)(xD may be the result of the
Cartesian product of a number of relations, as before.

The above expression in our predicate calculus is mapped onto SQL DML as:
SELECT nxx ,..,1
FROM)(xD
WHERE)(xP
GROUP BY ml xx ,..,

For example,

|).(,.,.(:,.:{ idcourseCOUNTnamestudentidstudentidstudent xx

∧××)()__()(| courseDcirfsDstudentD

}..__.__. idcoursecourseIDcirfsstudentIDcirfsidstudent =∧=∧

returns the number of courses a student has taken, and does this for every student.
This translates to the following SQL query:

SELECT student.id, student.name, COUNT(course.id)
FROM student, s_irf_c, course
WHERE student.id = s_irf_c.studentID AND

AND s_irf_c.courseID = course.id
GROUP BY student.id ;

Next we may add the grouping condition as an additional predicate)(xH which
applies to the result (set of tuples) of the grouping operation, i.e. to the set of
attributes in)x(x)x(x nml ,..,,.., 1⊆ . Therefore, we write

)}()}()(,..,,,..,{|,..,{ 11 xxx:xxx HP)|Dx(x)x:(x)x:(x nmln ∧∧

which is mapped onto SQL DML as:
SELECT nxx ,..,1
FROM)(xD
WHERE)(xP
GROUP BY ml xx ,..,
HAVING)(xH

Note that this is different to a nested predicate calculus expression because a nested
query would simply apply a selection condition to the result of the inner query but
could project onto different attributes. In contrast, a grouping condition only filters
the groups returned by the grouping operation, and thus cannot apply a further
projection. For a nested query we would write

)}()}()(,..,,,..,{|,..,{ '
1

''
1 xxx:xxx PP)|Dx(x)x:(x)x:(x nmln ∧∧

Generating SQL Queries from SBVR Rules 11

which would in turn map onto the following SQL DML:
SELECT ''

1 ,.., nxx
FROM (SELECT nxx ,..,1

 FROM)(xD
 WHERE)(xP)
 GROUP BY ml xx ,..,)

WHERE)(' xP ;
It can be seen that)(' xP applies to the result of the inner query, but the result of the
nested query as a whole can include a projection on any attributes from)(xD .

Going back to our example, if we want to check whether the business rule
It is necessary that each student is registered for at most five courses

expressed in the SBVR model given earlier in Figure 3 is satisfied, we need to restrict
to groups (one for each student) who are associated with (registered for) more than
five courses. We check for these cases since these are cases where the rule might be
violated, and if this happens, the corresponding database operations will need to be
executed as a transaction. Taking into account the associated database schema, this
rule is expressed in terms of our extended predicate calculus as follows:

|).(,.,.(:,.:{|
|)).(,.,.(:{

idcourseCOUNTnamestudentidstudentidstudent
idstudentCOUNTnamestudentidstudent

xx
x

∧=∧×× studentIDcirfsidstudentcourseDcirfsDstudentD .__.)()__()(|

)}5).((}..__ >∧=∧ idcourseCOUNTidcoursecourseIDcirfs
which is in turn mapped onto the following SQL DML statements:

SELECT student.id, student.name, COUNT(course.id)
FROM student, s_irf_c, course
WHERE student.id = s_irf_c.studentID

AND s_irf_c.courseID = course.id
GROUP BY student.id
HAVING COUNT(course.id) > 5 ;

It is in this way that we can take rules from an SBVR model and transform them
into SQL DML so that we can then check whether they are satisfied on a relational
database schema by executing a standard SQL query. In the next section we attempt
to generalize this by taking a closer look at both ends, our predicate calculus -based
formalisation and the SBVR-LF, and do so at the semantics level.

5 From SBVR-LF to SQL DML

In this section we turn our attention to the SBVR Logic Formulation (SBVR-LF) as
defined in the SBVR specification document [2], and describe a mapping onto the
predicate calculus foundation for SQL DML which was given in the previous section.
The objective is to obtain a generic mapping between rules expressed in SBVR and
queries expressed in standard SQL DML, since this would make business rules
amenable to immediate validation against a dataset.

12 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

Before we embark on the mapping, we define the quantifiers within the predicate
calculus semantics in our approach. There are two quantifiers in predicate logic that
can be used in an expression (WFF) to find out how many elements of the
corresponding set satisfy the expression.

Let)(xP be a predicate (as before). Let)(xD denote the domain of x , i.e. the set of
all possible values for the tuple x . To find out if for at least one tuple x from the
domain)(xD the predicate)(xP is true, we write

))()()((xxx PD ∧∃

which is read as “there is an x for which)(xD holds, and)(xP is true”. The result of
this expression is either true or false.

To find out if for all tuples in the domain)(xD the predicate)(xP is true, we write

))()()((xxx PD ⇒∀

which is read as “for all x for which)(xD holds,)(xP is true”. The result of this
expression is true or false.

With reference to the example predicates discussed in the start of Section 4.1, the
expression))()((3 xPxx ∧∈∃ N is false. The expression))()((1 xPxx ⇒∈∀ N is true.

Note the difference between))()()((xxx PD ∧∃ and))()()((xxx PD ⇒∀ which
can yield different results (true or false) for the same expression. To avoid such
ambiguities the domain)(xD of an expression with a universal quantifier is always
placed to the left of the implication logical operator (⇒).

Again, drawing upon first-order logic we have that if)(xP is a predicate and
)(1 xD ,)(2 xD are domains (expressions that define relations from the database

schema generated by the SBVR vocabulary, as discussed in Section 3, and hence
restrict the set of all possible values for a tuple x), then the following equations hold.

Table 4.

))()(())()((xxxx PP ¬∃¬≡∀))()(())()((xxxx PP ¬∀¬≡∃
)))()(2()(1)(())()(2)(1)((xxxxxxxx PDDPDD ⇒⇒∀≡⇒×∀
))())(2)(1)((())()(2)(1)((xxxxxxxx PDDPDD ¬∧×∃¬≡⇒×∀

We have given these standard equations in terms of predicates that define sets of

tuples. In their general form, they apply to an element x rather than a tuple x and we
would also have ∧ instead of × in the last two.

The specification document of SBVR includes the definition of the Formal Logic
and Mathematics Vocabulary [2, pp. 109-118] which provides the logical foundations
for SBVR in terms of first-order logic. However, the SBVR specification predefines
some numeric quantifiers [2, pp.97-98] in addition to the standard universal and
existential quantifiers found in first-order predicate logic. These allow the user to say
things like ‘exactly one car’ or ‘exactly two cars’ or ‘at most 8 and at least 3 cars’ or
‘at most two cars’ and so on. Due to space limitations we do not reproduce the SBVR
predefined quantifiers here, and refer the interested reader to the SBVR specification.

The predefined quantifiers can be defined in terms of the quantifiers in our
formalization, which were defined earlier in standard predicate logic (Table 4).

Generating SQL Queries from SBVR Rules 13

Drawing upon the definition schemas in [11], also outlined in [2], we may obtain a
rewriting of the SBVR predefined quantifiers in our approach.

The exactly one quantifier in SBVR-LF, denoted by x1∃ , can be rewritten as:

))()()(())()()(())()((1(xyyyxxxxxx =∧⇒∀∧∧∃≡∧∃ yPDPDPD︶

The at most n quantifier given in SBVR-LF, denoted by xn..0∃ , can be rewritten
in terms of our predicate calculus as:

∨∧∃∨∧∃¬≡∧∃))
1

()
1

()(
1

())()()(())()(()..0(xxxxxxxxx PDPDPDn

∨=¬∧∧∃∧∧∃∨)
21

())
1

()
2

()(
2

()
1

()
1

()(
1

((xxxxxxxx PDPD

M

∧==¬∧∧∃∧∧∧∃∨)
1

())()()(()
1

()
1

()(
1

((
nn

P
n

D
n

PD xxxxxxxx LL

)))()
1

(()()()((
n

PD xyxyyyy =∨∨=∧⇒∀∧ L

The first disjunction covers the case that there might not exist such a tuple x (case
of 0), the second covers the case there is one such x , the third is for two such x , and
so on. The last disjunction says that n such x may exist, but then there cannot be any
more (n+1) tuples that satisfy the predicate.

Similarly, the at least n quantifier, denoted by x..n∃ , can be rewritten as:

∧=¬∧∧∃∧∧∃≡∧∃))()()()(())()()(())()((..(2x1x2x2x2x1x1x1xxxx PDPDPDn

︶
 ∧=¬∧∧=¬∧∧∃∧∧))()()()()((1-nxnx1xnxnxnxnx LL PD

∨=+¬∧∧=+¬∧+∧++∃∧))()()()()(((nxknx1xknxknxknxknx LPD
))))()(()()()((nx1nx1x1nx1nx1nx1nx =+∨∨=+∧+⇒++∀∨ LPD

The first n-1 conjunctions refer to each of the n tuples x that must exist, must
satisfy the predicate. The last conjunction captures the fact that there may be k
additional such x that satisfy the predicate or no other x (apart from the n we already
have) may exist that satisfy the predicate.

The at least n and at most m quantifier given in SBVR-LF, and denoted by
xmn..∃ , can be obtained by combining the rewriting of the at least n and that of the

at most n quantifiers given earlier.
The intention behind SBVR-LF is to (be able to) capture business facts and

business rules formally. Formal statements of business rules may then be transformed
into logical formulations that can be read in software tools, or readily adopted in
approaches like the one we describe in this paper. An example given in the
specification [2, pp.90-91] is the formalisation of a static constraint that says ‘each
person was born on some date’ as the logical formulation:

yxDateypersonx on born was,:,: ∃∀

Going back to our example, the rule in our SBVR model can be written as:

:x∀ student, :5..0 y∃ course, x is registered for y

With reference to the tree representation of this rule given in Figure 3 earlier, it can be
seen that the root is a universal quantification (∀), the 1st variable is student, the 2nd

14 Sotiris Moschoyiannis, Alexandros Marinos, Paul Krause

variable is course and the max cardinality is 5 (5..0∃) while the atomic formulation
that completes the [at most n] quantification node is student is registered for course
and this binds the 1st variable to x and the 2nd to y .

In fact we are interested in disproving the rule, i.e. identifying students registered
for 6 or more courses. This can be encoded by taking the negation of the logical
formulation in which case the existential quantifier 5..0¬∃ gives ..6∃ . Thus, we have

:x∃ student, :..6 y∃ course, x is registered for y

Now student and course are relations in our database schema (Figure 4) and so is
is registered for, thus all three appear in the domain)(xD (in a Cartesian product) and
consequently in the FROM clause of the resulting SQL query. The primary key of
student will have to match the foreign key of is registered for, similarly for course.
These join conditions become the predicate)(xP and hence appear in the WHERE
clause. The cardinality on the existential quantifier (6 or more) is the condition
applied to the resulting tuples (per student), hence becomes the predicate)(xH and
appears in the HAVING clause.

It can be seen that the predicate calculus with identity we presented provides a
bridge between SBVR-LF and SQL DML. This means that SBVR rules can be re-
written systematically as SQL queries, thus enabling their execution to maintain
consistency of a database. The modality of the rule, which has not been addressed
explicitly here, is taken into account only in enforcing consistency once a violation is
observed. A violation of an alethic rule leads to a direct rejection of the update on the
dataset while a violation of a deontic rule can be overridden if authorised by a user
with sufficient privileges.

6 Conclusions and Future Work

In this paper we have briefly described the concept of generative information systems,
and how rule-based modeling is at their core. We have discussed how an SBVR
model (terms, fact types) is transformed into a relational schema that can act as a data
store for our information system. By showing how the user interacts with the system,
we have demonstrated the need for a formal and rigorous approach to transforming
SBVR rules to SQL queries. This transformation allows a rule to be validated against
the dataset in much the same way as issuing a query on a database.

The correctness of the transformation has been shown using a predicate calculus
with identity, which extends standard relational theory to include provision for
aggregate functions and arithmetic operations, and also address SQL DML constructs
such as grouping (GROUP BY clause) and grouping on condition (HAVING clause).

The work in [12] is also concerned with generating SQL DML from business rules.
However, the rules are expressed in the ORM-based language ConQuer and the
transformation is not attempted at the semantic level (at least not through relational
theory). The problem of operationalising SBVR business rules is challenging. There
are transformations to UML class diagrams [13] and R2ML [14] within an MDA
context, as well as the reverse transformation from OCL to SBVR [15]. Instead, we

Generating SQL Queries from SBVR Rules 15

have described the operational rendering of SBVR rules into standard SQL queries,
which can then be readily executed to maintain consistency of a database.

To further the research discussed, the transformation needs to be implemented in a
tool such that it can be applied to real-world problems. Another possible extension is
to add model-checking capabilities to the model execution functionality, described
here, such that models with inconsistent, redundant, or needlessly complex rules can
be identified and refined accordingly.

Acknowledgements

This work has been supported by the European Commission through IST Project OPAALS:
Open Philosophies for Associative Autopoietic Digital Ecosystems (No. IST-2005-034824).

References

1. R. G. Ross, “The Business Rules Manifesto,” Business Rules Group. Version 2 (2003)
2. Object Management Group, “Semantics of Business Vocabulary and Rules Formal

Specification v1.0”, OMG document formal/08-01-02, January 2008. URL:
http://www.omg.org/spec/SBVR/1.0/. Accessed: 14/5/2010

3. Open Philosophies for Associative Autopoietic Digital Ecosystems, 2008. “Automatic code
structure and workflow generation from natural language models”.
URL: http://files.opaals.eu/OPAALS/Year_2_Deliverables/WP02/D2.2.pdf . (14/5/2010)

4. Marinos, A., Krause, P., “An SBVR Framework for RESTful Web Applications”,
Proceedings of the International Symposium on Rule Representation, Interchange and
Reasoning on the Web, Springer-Verlag Berlin, Heidelberg, 2009, pp. 144-158.

5. Gilbert, D., Tafarodi, R. and Malone, P. 1993. ‘You can't not believe everything you read’.
‘Journal of Personality and Social Psychology, 65(2), 221-233.

6. Date, C.J. An Introduction to Database Systems. Addison-Wesley, 2004.
7. Marinos, A. Krause, P. “An SBVR Framework for RESTful Web Applications”. In Proc.

RuleML 2009, LNCS 5858, pp144-158, Springer, 2009.
8. Codd, E.F. “Relational Completeness of Data Base Sublanguages”. In Proc. Courant

Computer Science Symposia Series 6, R. J. Dustin (ed), Prentice Hall, 1972.
9. Huth, A.R.A, Ryan, M.D., Logic in Computer Science: Modelling and reasoning about

systems. Cambridge University Press, 2002.
10. Nakano, R. “Translation with Optimization from Relational Calculus to Relational Algebra

having Aggregate Functions”. ACM Tran on Database Systems, 15(4):518-557, 1990.
11. Halpin, T. A. “A Logical Analysis of Information Systems: Static Aspects of the Data-

Oriented Perspective”. PhD Thesis, University of Queensland, 1989.
12. Bloesch, A.C., Halpin, T.A. “ConQuer: a Conceptual Query Language”. In Proc. 15th Int’l

Conf. on Conceptual Modelling, LNCS 1157, pp. 121-133, Springer, 1996.
13. Kleiner, M., Albert, P., Bezivin, J. “Parsing SBVR-based Controlled Languages”. In Proc.

MODELS 2009, LNCS 5795, pp. 122-136, Springer, 2009.
14. Demuth, B., Liebau, H-B. “An Approach for Bridging the Gaps Between Business Rules

and the Semantic Web”. In Proc. RuleML 2007, LNCS 4824, pp. 119-133, Springer, 2007.
15. Cabot, J., Pau, R., Raventos, R. “From UML/OCL to SBVR Specifications: A Challenging

Transformation”. Information Systems 35 (2010): 417-440, Elsevier, 2010.

http://www.omg.org/spec/SBVR/1.0/�
http://files.opaals.eu/OPAALS/Year_2_Deliverables/WP02/D2.2.pdf�

